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Abstract

Nonlinear dynamics and neural systems: synchronization and modeling

by

Mark Alan Kramer

Doctor of Philosophy in Applied Science and Technology

University of California, Berkeley

Professor Andrew J. Szeri, Chair

We study the electrical activity of the human cortex in two ways. First, we state seven coupling measures to

analyze electroencephalogram and electrocortiogram time series. We apply these measures to simulated and observed

data, and we use the measures to deduce changes in coupling induced by auditory stimuli and produced by dementia.

Second, we define a mathematical model of the spatially averaged, mean-field cortical electrical activity recorded

by the electroencephalograph and electrocortiograph. We compare the model results with ictal electrocortical data

collected from four human subjects, and we show that the observed and simulated results agree in two important ways.

We use the model to develop three methods for controlling seizures through electrical stimulation and to suggest the

physiological mechanisms — and points of leverage for therapies — of epilepsy.

Professor Andrew J. Szeri
Dissertation Committee Chair
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Chapter 1

Introduction

The human cerebral cortex — the outer few millimeters of the brain — is thought to control behaviors unique

to humans (such as language and abstract thinking.) It consists of over 1010 neurons and receives over 1014 synaptic

connections [1]. These synaptic connections allow an important type of communication between neurons. Both local

connections between two neighboring neurons (e.g., intracortical connections) and nonlocal connections between

two distant neurons (e.g., corticocortical connections) occur. In each case the communication occurs through the

transmission of electrical signals.

There exist many techniques for investigating this neuronal communication. A crude division of such studies

separates the presynaptic and postsynaptic neurons. In considering the former, one may investigate how a presynaptic

neuron generates an action potential, the propagation of this action potential along an axon, or the effect of the action

potential on a synapse. In considering the postsynaptic neuron, one may determine the importance of dendritic spines,

the geometry of the dendritic tree, or the integration of dendritic input. Additionally, one may study the interface

between two neurons (e.g., the dynamics of neurotransmitters within the synaptic cleft.) These investigations may

involve optical, chemical, magnetic, and nuclear imaging techniques. Here we consider electric potential recordings.

Electric potential recordings may be taken at the microscopic spatial scale between two synaptically connected

neurons. Many such recordings have been performed to reveal important aspects of cortical communication [2]. Yet,

such recordings from single neurons cannot capture the complete behavior of cortical electrical activity. To study the

electrical activity of the entire cortex, one would need to record from every neuron. Clearly, such recordings — from

over 1010 individual neurons — are infeasible.

The electroencephalograph and electrocortiograph provide two techniques for observing mesoscopic cortical elec-
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trical activity. In these two methods an electrode on the scalp and cortical surface results in the electroencephalogram

(EEG) and electrocortiogram (ECoG) time series, respectively. The advantages of recording this mesoscopic data,

rather than microscopic single neuron recordings, are twofold. First, the EEG and ECoG recordings are noninvasive.

To record from a single neuron, one might pierce the cortex in vivo with a microelectrode, thereby damaging cortical

tissue. Electrodes for EEG or ECoG observations rest passively on the scalp or cortical surface, respectively, and

do not penetrate the cortex. Second, the EEG and ECoG time series represent the summed electrical activity from

millions of individual neurons [3]. Some researchers believe that neural populations (e.g., groups of 105 neighboring

neurons organized into cortical macrocolumns) form the functional units of the cortex [4, 5]. The EEG and ECoG

recordings — not the single unit recordings — can capture the electrical activity of these functional units.

Because the techniques are less invasive, recordings of mesoscopic cortical electrical activity are more common

in humans than single-unit recordings. Yet, the analysis of the resulting EEG or ECoG data can be more difficult. To

illustrate this, we first consider the example of cortical communication or coupling. At the microscopic spatial scale,

one might hypothesize that two neurons communicate through a synaptic connection. To test this hypothesis one may

stimulate the first neuron (with an current pulse, say) and record the resulting electrical activity of the second neuron.

If the second neuron emits an action potential, then one may conclude that the two neurons are coupled. This coupling

may not occur directly; the stimulation of the first neuron may excite an intermediate neuron (or group of neurons)

that in turn excites the observed neuron. Moreover difficulties might arise in isolating and recording from individual

neurons. Yet the analysis required to test whether two neurons are synaptically coupled is quite simple.

At the mesoscopic spatial scale one might hypothesize that two cortical regions — not individual neurons —

communicate. As a hypothetical example, we consider two regions of the temporal lobe that communicate when a

subject hears a particular sound (e.g., an auditory tone [6].) To investigate this we place two electrodes on the subject’s

scalp — one above each cortical region — and record the EEG as we present the subject with different images. An

analysis of the resulting EEG time series may reveal that the data recorded at the two electrodes correlate whenever

the subject hears a particular tone, say a chirp. To determine this correlation, we may employ a variety of different

measures. For example, in the time domain, we may compute the cross-correlation, synchronization, or average

mutual information between the two time series. In the frequency domain, we may compute the coherence, phase

consistency, or Granger causality between the the two time series. Complications can arise in determining the measure

appropriate for the data of interest. For example, in the analysis of the hypothetical EEG data, we may first decide that

a frequency domain approach is appropriate. We must then determine how to perform the time domain to frequency

domain conversion (e.g., should we use a Fourier transform or a Hilbert transform? [7]) and whether to window the

data (e.g., should we use no windowing, a Hanning window, or a multitaper window? [8])
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Having decided upon and calculated a particular frequency domain measure, we then interpret the results. Perhaps

we hypothesize that the increased coupling occurs in the γ frequency band ( � 40 Hz to � 80 Hz.) Because we record

scalp EEG data, we expect to detect only weak power in the γ-band. Therefore, to enhance the γ-band effect, we might

average the frequency domain result that follows stimulus onset (i.e., the auditory chirp) over multiple trials. Or, we

might compare the γ-band effect to a baseline of γ-band activity recorded following another (or no) stimulus. In any

case, the interpretation of the coupling result is rarely simple. Moreover increased coupling between two EEG time

series is only suggestive of increased communication between two cortical regions. For example, in the hypothetical

EEG experiment, the two cortical regions may form no synaptic connections yet show increased coupling if each

becomes activated by the same (perhaps subcortical) region. For these reasons, we find the analysis of coupling in

EEG (and ECoG) data more difficult than between single neurons. Yet, coupling between mesoscopic cortical regions

is of often interest and such analyses are frequently performed.

The difficulties of interpreting mesoscopic data are not limited to the coupling measures. Perhaps even more

challenging is a physiological interpretation of EEG and ECoG data. For example, in the hypothetical EEG experiment,

we may find an increased coupling between the two regions of the frontal lobe. We may also know (from anatomical

evidence, say) that the two cortical regions communicate directly and not through an intermediate source. We may

then ask: what physiological changes result in the increased coupling? Perhaps an increase occurs in the synaptic

transmission between the cortical regions due to a more robust propagation of action potentials. Or, perhaps the cortical

regions both become more excitable and more susceptible to synaptic input. To determine what physiological changes

result in increased coupling, we may consider performing invasive experiments, for example injecting chemicals into

the cortex or removing a transmission pathway. Of course such experiments are not permissible in human subjects.

Instead, we construct a mathematical model to relate observed EEG and ECoG data with cortical physiology.

At the microscopic spatial scale, accurate mathematical models exist that describe the electrical activity of in-

dividual neurons (e.g., for CA3 hippocampal pyramidal neurons [9].) To describe the mesoscopic electrical activity

recorded at a scalp or cortical electrode, we might attempt to simulate the behavior of these individual neurons. To

implement this model, we would have to define (at least) the characteristics of each neuron (e.g., pyramidal or stel-

late, extent of dendritic branching, locations), the connections between neurons, and the connections from other brain

regions. Unfortunately, a complete description of human cortical physiology does not exist. Even if we approximate

this complicated physiology, we must simulate � 105 cortical neurons, and computational limits would still make this

detailed simulation infeasible (although see [10, 11]). To model mesoscopic cortical electrical activity, we must utilize

a different approach.

Here we will implement a model of mesoscopic cortical electrical activity. To construct such a model, researchers
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have considered the spatially averaged electrical activity from neural populations [12, 13]. Although crude, these

models have allowed researchers to make quantitative predictions for EEG and ECoG data. Perhaps more importantly,

researchers have used these models to connect observed EEG data with cortical physiology.

In what follows, we consider the coupling and modeling of mesoscopic cortical electrical activity. We begin in

Chapter 2 with a discussion of seven coupling measures. In Sections 2.1.2 - 2.1.3 we define the coupling measures,

and in Sections 2.2 - 2.4 we apply the measures to simulated data. We apply some of the coupling measures to ECoG

data in Section 2.5 and to EEG data in Section 2.6, and we suggest how both measures reveal changes in cortical

communications. In Chapter 3 we present a model of mesoscopic cortical electrical activity recorded during seizure.

We first discuss clinical ECoG data collected from four human subjects in Section 3.2. We then define the model in

Section 3.3. We compare the model results, presented in Sections 3.4 - 3.5, with the observational data in Section 3.6,

and we show that the two results agree in two important ways. In Section 3.7 we suggest three controllers to halt and

abort seizures, and in Section 3.8 we interpret the model results to suggest how seizures may occur.
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Chapter 2

Coupling measures

In this chapter we describe seven coupling measures and apply them to simulated and observed (i.e., EEG and

ECoG) data. We begin in Section 2.1.1 with a brief introduction to the data and measures. In Sections 2.1.2 and

2.1.3 we define the linear (windowed cross-correlation and windowed coherence) and nonlinear (synchronization)

measures, respectively. To investigate the properties of these measures we apply them to simulated data generated

from the coupled Henon map (Section 2.2), the coupled Rössler system (Section 2.3), and simulated data containing

bursts of oscillatory activity (Section 2.4). We then apply these measures to EEG and ECoG data recorded from the

human scalp and cortex. In Section 2.5 we apply the coupling measures to ECoG data recorded from three electrodes

during an auditory evoked-response potential experiment. We show that the synchronization results suggest a crude

model of cortical connectivity. In Section 2.6 we apply three synchronization measures to scalp EEG data collected

from healthy subjects and subjects diagnosed with dementia. We show how the average synchronization results provide

a concise measure to differentiate the healthy subjects from those diagnosed with Alzheimer’s disease. We interpret

these results in terms of changes in cortical connectivity. Some material in this chapter is reprinted with permission

from M. A. Kramer, E. Edwards, M. Soltani, M. S. Berger, R. T. Knight and A. J. Szeri, Physical Review E, 70,

011914, 2004. Copyright 2004 by the American Physical Society.
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2.1 Definitions

2.1.1 Introduction

To investigate the relationships between two time series (in this case, recorded simultaneously from different scalp

or cortical electrodes), we can utilize many different techniques. These include traditional measures of linear interde-

pendence, such as the cross-correlation [14] and coherence [15] [16]. These two measures are related by the Fourier

transform, and both assume stationarity of the time series [17]. To compare two nonstationary time series (e.g., EEG

or ECoG data), we compute the cross-correlation and coherence between small temporal intervals, or windows, of

the data. We define two windowed, linear coupling measures — the windowed cross-correlation and the windowed-

coherence — in Section 2.1.2. During the past twenty years, many new techniques to detect nonlinear interdependence

have been developed. These synchronization measures include identical synchronization [18], generalized synchro-

nization [19], phase synchronization [20], and synchronization techniques robust to noisy data [21] [22]. We define

five measures of nonlinear coupling in Section 2.1.3.

In general, one applies synchronization and linear coupling measures to pairs of time series derived from a single

simulation or experiment. But, for a data set of interest in this work, an ensemble formalism is particularly useful.

In many neuroelectrophysiologic studies researchers record EEG and ECoG data in response to a specific stimulus,

for example an auditory tone. Typically in these evoked-response potential (ERP) experiments, the response to the

sensory stimulus is oscillatory, weak, and of short duration. Therefore, an ensemble of ERPs are recorded (with time

referenced to the stimulus onset), and various measures are averaged over the ensemble to improve the signal to noise

ratio. Physically, ensemble averaging assumes that repetitive applications of the stimulus activate similar pathways in

the brain [23]. We therefore expect that the ERP will begin at approximately the same time — say 100 ms — after each

stimulus presentation. We further assume that the response of the cortex will trace approximately the same trajectory

with each stimulus presentation. In what follows we will show how this assumption is useful.

To develop coupling measures appropriate for two ensembles of measurements, we adopt the following notation.

We denote the ensembles of scalar time series sk � n � and rk � n � , where the time index n ��� 1 � � � n ��� and the ensemble

index k ��� 1 � � � k ��� . Specifically, we think of sk � n � and rk � n � as the value of the electric potential recorded simultane-

ously at two different electrodes as a function of discrete time n. The physical time t is related to the discrete time

n by t � n∆t 	 t0 where t0 is the initial time and ∆t is the sampling interval. Each ensemble member k represents a

unique realization of the same experiment. In what follows, we apply most of the coupling measures to the ensembles

sk � n � and rk � n � in an obvious way; we compute the coupling between sk � n � and rk � n � for each k and then average the

coupling results over the ensemble. But for one synchronization measure, T 
 x � n ��� y  , we exploit the ensemble nature



2.1. DEFINITIONS 7

of the data; we discuss this measure in Section 2.1.3.

2.1.2 Linear Measures

In this section we state two measures of linear coupling, the cross-correlation and the coherence, and define

windowed versions of each. Both measures have been extensively studied, and many excellent references are available

[17, 8]. Here we outline the application of these measures to two ensembles, sk � n � and rk � n � , and leave the details to

the references. The ensemble averaged cross correlation coefficient is defined as,

ρ
�
t � �

1
k �

k �
∑
k � 1

� n ��� t

∑
n � 1


 sk � n 	 t ��� s̄k  
 rk � n ��� r̄k �
∑n �

n � 1 sk
�
n ��� s̄k

�
∑n �

n � 1 rk
�
n ��� r̄k �
	 (2.1)

where t � 0 is the lag time, and s̄k and r̄k are the mean values of ensemble member sk � n � and rk � n � , respectively. The

expression for t � 0 is similar. Note that (2.1) includes the ensemble average over k. Next, the ensemble averaged

coherence is defined as,

γ
�
f � �

1
k �

k �
∑
k � 1

� G � sk � n � 	 rk � n � � �
G
�
sk
�
n � 	 sk

�
n � �


G
�
rk
�
n � 	 rk

�
n � � � (2.2)

Here G
�
sk � n � 	 rk � n � � is the cross spectral density function of ensemble members sk � n � and rk � n � , G

�
sk � n � 	 sk � n � � and

G
�
rk � n � 	 rk � n � � are the auto spectral density functions of sk � n � and rk � n � , respectively, and f is the frequency. Again the

expression is averaged over the k � ensemble members.

In (2.1) and (2.2) we implicitly assume that the linear coupling between sk � n � and rk � n � remains constant over

the duration of each ensemble member (i.e., that the cross-correlation and coherence are independent of time.) For

neurophysiological time series, this assumption of stationarity is rarely satisfied. Instead, we may choose an ensemble

duration short enough so that the data segment is effectively stationary but long enough to yield stable results [24].

The windowed cross-correlation (WCC) and windowed coherence (WC) are generalizations of the cross-correlation

and coherence, respectively, that include time dependence. To compute the WCC, we first partition the data sk � n �
and rk � n � with fixed k into overlapping windows. For example, the first window may include data for 0 � n � 10,

the second 5 � n � 15, the third 10 � n � 20, and so on. Here the windows have a duration of 10 indices and an

overlap of 5 indices. We then compute the cross-correlation between sk � n � and rk � n � within each window. The result

is the cross-correlation as a function of the lag time and the center time of the windows for each ensemble member k.

We average these results over the k ensembles to determine the WCC. The windowed coherence (WC) between sk � n �
and rk � n � is computed in a similar manner. We partition the data into overlapping windows, compute the coherence

between sk � n � and rk � n � in each window for k fixed, and then average the results over the k � ensembles to determine
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the WC. We note that the WC is identical to the event-related coherence defined in [25]. The result of computing the

WC is coherence as a function of frequency and the center time of each window. We illustrate these linear measures

in Sections 2.2-2.4 when we apply them to simulated data.

2.1.3 Synchronization Measures

In this section we define five synchronization measures in current use. Four of the synchronization measures

require that we first embed the data sk � n � and rk � n � . The goal of this embedding procedure is to transform the scalar

time series data into vector time series data and reconstruct the state space of the system. We define vectors xk � n � �


 sk � n � 	 sk � n 	 τ � 	 � � � 	 sk � n 	 
 d � 1  τ �� and yk � n � � 
 rk � n � 	 rk � n 	 τ � 	 � � � 	 rk � n 	 
 d � 1  τ �� from sk � n � and rk � n � , respectively

[26]. Here τ denotes the delay time and d the embedding dimension, which we assume are the same for both ensembles

and all ensemble members. The goal in choosing these two parameters is to eliminate self-intersections of the dynamics

that result from projecting the trajectory to lower dimensional space. The standard procedures for determining τ and

d are demanding; τ is often assigned to be the time of the first minimum of the average mutual information, and d is

calculated through a false nearest neighbors algorithm [26]. We provide detailed descriptions and examples of these

procedures for the simulated data in Sections 2.2 and 2.3. Unfortunately, for the EEG and ECoG data of interest in

this work, we cannot compute τ and d in this way. These observational data typically consist of short, noisy data sets

for which the average mutual information and false nearest neighbor calculations are inaccurate. In fact, we do not

know if the electrical activity recorded from the human cortex is the result of a low-dimensional deterministic process.

Therefore, the embedding dimension of the cortex is not well-defined. In this chapter, we study the synchronization

phenomena in a comparative way and do not suggest that the dynamics of cortical electrical activity are accurately

modeled as a d-dimensional deterministic system [27]. We show in Section 2.6 that we can use different values of τ

and d to compute stable coupling results.

We start by considering two synchronization measures, S 
 x � n ��� y  and H 
 x � n � � y  , which follow from [21]. We

denote as nk � i, where i
� � 1 	 � � � 	 N � , the time indices of the N nearest neighbors to the element xk � n � of the k-th

member of the ensemble at time n. For all of the synchronization measures that follow we define neighborhoods in

terms of distance calculated using a Euclidean metric. We note that xk � n � and its nearest neighbors are all elements of

the k-th member of the ensemble. Define the mean squared Euclidean distance from the element xk � n � to its N nearest

neighbors as

R 
 xk � n �  �
1
N

N

∑
i � 1


 xk � n ��� xk � nk � i �� 2 � (2.3)

Note that R 
 xk � n �� is a function of time n through xk � n � . Similarly, we denote the time indices of the nearest neighbors
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to yk � n � as mk � i and define

R 
 xk � n ��� y  �
1
N

N

∑
i � 1


 xk � n ��� xk �mk � i �  2 � (2.4)

Here, we calculate the average squared distance from xk � n � to elements in the same ensemble k using the time indices

(mk � i) from ensemble yk � n � . Then we define

S 
 xk � n ��� y  �
R 
 xk � n ��

R 
 xk
�
n � � y  	 (2.5)

for the kth ensemble. We average (2.5) over the ensembles to get

S 
 x � n � � y  �
1
k �

k �
∑
k � 1

R 
 xk � n � 
R 
 xk

�
n ��� y  � (2.6)

If the ensembles x and y are synchronous at time n then S 
 x � n � � y �� 1; if they are independent, then S 
 x � n ��� y  � 0.

S 
 x � n � � y  is the first synchronization measure we consider. We note that a variation of this measure, intended to account

for noisy data, can be found in [22].

To define the second synchronization measure, we compute the mean squared distance from xk � n � to every time

point in the ensemble k:

R̄ 
 xk � n �  �
1

P � 1

P

∑
p � 1


 xk � n ��� xk � p �  2 	 (2.7)

where P � n � � 
 d � 1  τ. Then, from [21], define

H 
 xk � n ��� y  � log
R̄ 
 xk � n ��

R 
 xk
�
n � � y  	 (2.8)

which we average over the ensembles to obtain

H 
 x � n � � y  �
1
k �

k �
∑
k � 1

log
R̄ 
 xk � n � 

R 
 xk
�
n ��� y  (2.9)

as the second synchronization measure. For the third synchronization measure, we follow [28] and define a (nearly)

normalized synchronization measure. In our notation this measure becomes

N 
 x � n � � y  �
1
k �

k �
∑
k � 1

R̄ 
 xk � n �  � R 
 xk � n ��� y 
R̄ 
 xk

�
n �� � (2.10)

Note that N 
 x � n ��� y  is also ensemble averaged. Equations (2.6), (2.9), and (2.10) are three well known synchronization
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measures. Here we augment each measure with a simple ensemble averaging scheme. We apply the three measures to

simulated data in Sections 2.2 and 2.3.

Before introducing the synchronization measure T 
 x � y  , we illustrate how the nearest neighbors are chosen in the

synchronization measures S 
 x � n � � y  , H 
 x � n � � y  , and N 
 x � n � � y  . In Figure 2.1(a) we show a typical ensemble member

sk � n � for the ECoG ERP data we discuss in detail in Section 2.5. The stimulus (an auditory tone) occurs at time t � 0

ms. We note that before the stimulus the measured voltage fluctuates between � 20 mV, while after the stimulus an

oscillatory burst occurs between t � 30 ms and t � 160 ms. After the oscillatory burst, the voltage returns to its

pre-stimulus range.

We now discuss the procedure for finding nearest neighbors to a point within the oscillatory burst. For illustrative

purposes, we embedded the ensemble member sk � n � using d � 3 and τ � 10. We note that these embedding parameters

do not eliminate self-intersections of the dynamics. We show this embedding, xk � n � , in Figure 2.1(b). The point

marked with an asterisk in Figures 2.1(a) and 2.1(b) is the same and corresponds to a point in the oscillatory burst

of sk � n � . Denote the time index of this point as n � . In Figure 2.1(c) we show the local neighborhood of xk � n � � , and

we mark the five nearest neighbors to xk � n � � with triangles. It is clear from Figures 2.1(b) and 2.1(c) that the nearest

neighbors to xk � n � � lie immediately along the trajectory passing through xk � n � � . By excluding nearest neighbors within

a local temporal window near xk � n � � , we only succeed in selecting neighbors further along this isolated trajectory.

For this case, the trajectory of a single ensemble member does not cover anything like an attractor in the embedding

space. Therefore neighbors along the oscillatory burst must be defined with care. We show in what follows that by

considering neighbors across the ensemble of measurements, we can — in this case — construct a more representative

picture of the underlying dynamics when the data are available only in short data sets.

The fourth synchronization measure we propose is similar to those discussed in [21] and [28]. But, for this

synchronization measure, nearest neighbors are chosen from across the ensemble of measurements, rather than from

within each individual ensemble member. To illustrate this idea, we show in Figure 2.2(a) ten ensembles — collected

in the ECoG ERP experiment we discuss in Section 2.5 — embedded using d � 3 and τ � 10. The darkest curve in the

figure is the single ensemble member shown in Figure 2.1(b). Now the element of ensemble k at time t � n � , xk � n � � ,
has a nearest neighbor in each ensemble l �� k. Notice we do not include the nearest neighbor to xk � n � � in ensemble

k. Finding a single nearest neighbor to xk � n � � in each ensemble l �� k, rather than throughout a single time series,

avoids the complications associated with serial correlations of the data from short data sets. In general we denote the

time index of the nearest neighbor to xk � n � in ensemble l as nk � l and call this set of neighbors the nearest ensemble

neighbors to xk � n � . In Figure 2.2(b), we show the local neighborhood of the point xk � n � � ; we mark the point xk � n � �
with an asterisk and the ten nearest ensemble neighbors to this point with triangles. Here the neighbors are chosen



2.1. DEFINITIONS 11

(a) (b)

(c)

Figure 2.1: (a) The electric potential of one ensemble member recorded by one electrode in the ECoG ERP experiment
we discuss in detail in Section 2.5. The stimulus occurs at t � 0 ms. Note the oscillatory burst between 30 ms and 160
ms. The asterisk marks a point on the oscillatory burst. (b) The embedding of the times series in (a). We chose d � 3
and τ � 10 for illustrative purposes and project the 3-dimensional embedding onto the plane of the page. The asterisk
in this figure corresponds to the asterisk in (a). (c) The local neighborhood of the point marked with an asterisk in (b).
The five nearest neighbors to this point are marked by triangles. The nearest neighbors are temporally proximal to the
fiducial point because the data set is short.
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(a) (b)

Figure 2.2: (a) Ten ensemble members embedded using d � 3 and τ � 10. The thickest curve is the ensemble member
shown in Figures 2.1(a) and 2.1(b). The other nine ensemble members are difficult to distinguish. The point xk � n � �
is marked with an asterisk. (b) The local neighborhood of the point xk � n � � . The thickest curve is the the trajectory of
xk � n � . The point xk � n � � is marked with an asterisk. The thin curves are trajectories of nine other ensemble members.
The nearest ensemble neighbors are marked with triangles.

from across the ensemble of measurements, rather than within each individual ensemble member. Because we have

assumed that the trajectory of each ensemble member follows similar dynamics, this method of determining neighbors

is justified.

Now we define the new synchronization measure. As for the three synchronization measures already discussed,

we reconstruct the state spaces of the time series sk � n � and rk � n � to create xk � n � and yk � n � , respectively. For each time

point n of every ensemble member k we calculate the mean Euclidean distance from xk � n � to its k � � 1 nearest ensemble

neighbors,

D 
 xk � n �� �
1

k � � 1

k �
∑
l � 1
l �� k

�
xk � n ��� xl � nk � l �

�
� (2.11)

Here
�����

denotes the Euclidean distance, and the nk � l are the time indices of the nearest ensemble neighbors to xk � n � .
We also calculate the standard deviation σD 
 xk � n �� of the mean distance in (2.11). Similarly, we denote the time indices
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of the nearest ensemble neighbors to yk � n � as mk � l , and then compute the following

T 
 xk � n � � y  �
1

k � � 1

k �
∑
l � 1
l �� k

Θ � D 
 xk � n �  	 σD 
 xk � n �  � �
xk � n ��� xl �mk � l �

��� 	 (2.12)

where Θ 
 �  is the Heaviside step function. In (2.12) we determine the distance from xk � n � to each xl �mk � l � . If this

distance is less than D 
 xk � n �� 	 σD 
 xk � n �  (i.e. the average distance from xk � n � to its nearest ensemble neighbors plus

one standard deviation), then we define xl �mk � l � as a neighbor of xk � n � . Thus, a neighbor of xk � n � and yk � n � (yl �mk � l � and

xl �mk � l � , respectively) shares the same ensemble l and time index mk � l . Call this neighbor a shared neighbor of xk � n �
and yk � n � . By summing the number of shared neighbors between xk � n � and yk � n � , and dividing by the total number of

possible neighbors — the number of ensemble members k � minus one — we measure the synchronization between the

two time series at time n in (2.12). We average (2.12) over the ensemble of measurements to yield,

T 
 x � n ��� y  �
1
k �

k �
∑
k � 1

T 
 xk � n ��� y  � (2.13)

The fourth measure (2.13) differs from the three synchronization measures in (2.6), (2.9), and (2.10). In (2.13) we

compute neighbors from across the ensemble of measurements and determine the fraction of shared neighbors between

ensembles y and x. If for some time index n this fraction approaches 1 � 0, then we say that the synchronization between

the two ensembles is strong at time n. If this fraction approaches 0 � 0, then we say that the synchronization is weak.

We include the standard deviation σD 
 xk � n �� in (2.12) to extend the radius of the neighborhood around xk � n � ; a stricter

measure of synchronization results if we exclude this term. The interpretation of (2.13) is somewhat clearer than the

ratio of mean squared distances utilized in the synchronization methods S 
 x � n � � y  , H 
 x � n ��� y  , and N 
 x � n ��� y  . We show

in Section 2.4.1 that the ratio of mean squared distances can be misleading in certain types of examples.

All of the measures we have discussed determine the ensemble averaged synchronization between ensembles x

and y at a specific time n. In some applications — ERP experiments, for example — it may be important to investigate

time delayed synchronization. An idea along these lines was mentioned in [21]. In words, we would like to compare

the synchronization between xk � n � and yk �m � when n �� m; i.e. we would like to know whether xk � n � at time n is related

to yk �m � at time m. To do so, we determine the time indices mk � l of the nearest ensemble neighbors to yk � n � . We then

compute the distance between xk � n � and xl �mk � l � for each l �� k, and record the number of these points that lie close

to xk � n � , as in (2.12). Now, we shift the time indices mk � l by an integer η. We then compute the distance between

xk � n 	 η � and xl �mk � l 	 η � for each l �� k, and record the number of these points that lie close to xk � n 	 η � . Here we are

comparing xk � n 	 η � at time (n 	 η) to the time shifted nearest ensemble neighbors of yk � n � at time n. Equation (2.12)
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is easily extended to include time shifted synchronization,

T 
 xk � n 	 η � � y  �
1

k � � 1

k �
∑
l � 1
l �� k

Θ � D 
 xk � n 	 η �  	 σD 
 xk � n 	 η �  � �
xk � n 	 η ��� xl �mk � l 	 η � � � 	 (2.14)

where η is an integer time shift. If the distance between xk � n 	 η � and xl �mk � l 	 η � is less than D 
 xk � n 	 η �  	 σD 
 xk � n 	
η �  for all l �� k, then T 
 xk � n 	 η � � y  � 1 � 0. It is important to keep in mind that the mk � l are still based on yk � n � , although

this is lost in the notation of (2.14). We note that the time shifting scheme is essentially equivalent to delaying the

ensembles before applying the measure defined in (2.13). We average (2.14) over the ensemble to obtain,

T 
 x � n 	 η ��� y  �
1
k �

k �
∑
k � 1

T 
 xk � n 	 η ��� y  � (2.15)

Equation (2.15) is the time shifted, ensemble averaged synchronization between ensembles x and y. Any of the

synchronization measures discussed above could have been modified to include time shifts, but we chose only to

consider (2.15). We note that T 
 xk � n 	 η � � y  and T 
 yk � n 	 η � � x  measure different quantities; in the former neighborhoods

of y are examined in x, while in the latter neighborhoods in x are examined in y. Determining the driver-response

relationship from the asymmetry of these two synchronization measurements is not obvious. We refer the interested

reader to [21] and [29].

The final synchronization measure that we consider is the phase synchronization P 
 θ  . The phase synchronization

differs from those synchronization measures already discussed in that we do not embed the scalar data sk � n � and rk � n � .
Instead, we first compute the Hilbert transforms of ensemble members sk � n � and rk � n � for k fixed. The Hilbert transform

of the continuous time series q
�
t � is,

Q
�
t � �

1
π

� ∞� ∞

q
�
τ �

t � τ
dτ � (2.16)

We use (2.16) to construct the analytic signal q
�
t � 	 ıQ

�
t � � A

�
t � expıθ � t � , which uniquely determines the amplitude

A
�
t � and phase θ

�
t � of q

�
t � . We apply this procedure to sk � n � and rk � n � (with k fixed) and extract the phase θ

�
n � from

each as a function of index n. We then compute the phase difference between sk � n � and rk � n � at each n; this is

identical to the 1 : 1 phase locking in [30]. Finally, we define the phase synchronization between sk � n � and rk � n � as

the probability that the phase difference between sk � n � and rk � n � assumes the value θ, where 0 � θ � 2π. We compute

this phase synchronization between sk � n � and rk � n � for each ensemble member k and average the results over the

ensemble. We define the fifth synchronization measure P 
 θ  as this ensemble averaged phase synchronization. We use

a windowing procedure identical to that discussed for the linear measures in Section 2.1.2 to construct the windowed

phase synchronization (WPS). The result of the WPS is phase synchronization as a function of phase θ and the center
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time of each window.

Before we apply the seven coupling measures to experimental data, we investigate the properties of each. To do

so, we apply each measure to simulated data in Sections 2.2 - 2.4. Following this analysis of simulated data, we apply

some of the coupling measures to EEG and ECoG data in Sections 2.5 and 2.6. We use the results to suggest changes

in cortical connectivity following an auditory stimulus and the effects of Alzheimer’s disease.

2.2 Example: Henon map

To illustrate the linear and nonlinear coupling measures proposed in Sections 2.1.2 and 2.1.3, we apply each

measure to simulated data. We start with the standard example of the unidirectionally coupled non-identical Henon

map [22],

rk � n � � 1 � 4 � rk � n � 1 � 2 	 0 � 3rk � n � 2 �
sk � n � � 1 � 4 � � κ � n � rk � n � 1 � 	 
 1 � κ

�
n �� sk � n � 1 � � sk � n � 1 � 	 0 � 1sk � n � 2 � �

(2.17)

Here, the ensemble members differ only in the initial values of sk � n � and rk � n � , which are chosen randomly but avoid

the fixed points of the system. We set the sampling interval ∆t � 1 s, and assign the coupling strength κ
�
n � the value

0 � 9 (strong coupling) when 100 s � n � 150 s and 0 � 0 (no coupling) otherwise. Thus, we expect the coupling measures

to detect interdependence between the ensemble members sk � n � and rk � n � only when the coupling is strong (i.e., when

100 s � n � 150 s.) For this simulation we fix the number of ensemble members k � to forty, the duration of each

ensemble member n � to 300, and scale each ensemble member to have zero mean.

In Figure 2.3(a) we show two typical ensemble members: sk � n � and rk � n � for k � 1. We note that the data possess no

obvious structure and that the coupling for 100 s � n � 150 s is not apparent. In what follows, we analyze the coupling

between these two ensembles of data in the same way we analyze the observed ECoG and EEG data in Sections 2.5

- 2.6. Here we have the advantage of knowing the map (2.17) and coupling κ
�
n � that determine the dynamics of sk � n �

and rk � n � .

Linear measures

We show in Figure 2.3(b) the WCC computed between the ensembles sk � n � and rk � n � . To compute the WCC,

we chose overlapping windows of duration 30 s and overlap 15 s. For example, in the first window we compute the

cross-correlation between sk � n � and rk � n � for 0 s � n � 30 s, in the second for 15 s � n � 45 s, in the third for 30 s
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(a) (b)

(c)

Figure 2.3: (a) The first ensemble members of sk � n � (solid line) and rk � n � (dashed line) generated from the unidirec-
tionally coupled non-identical Henon map for 50 s � n � 200 s. The coupling for 100 s � n � 150 s is not obvious.
(b) The windowed cross-correlation (WCC) between sk � n � and rk � n � . We plot the center time of each window along
the horizontal axis, the lag time along the vertical axis, and the value of the cross-correlation in linear greyscale with
values greater than 0 � 8 in black, less than � 0 � 8 in white, and near 0 � 0 in grey. All WCC figures follow this color
scheme unless otherwise indicated. The WCC reveals a strong correlation between sk � n � and rk � n � at zero lag for 100
s � n � 150 s. (c) The windowed coherence (WC) between sk � n � and rk � n � . We plot the center time of each window
along the horizontal axis, the frequency along the vertical axis, and the value of the coherence in linear greyscale
with values greater than 0 � 8 in black and near 0 � 0 in white. The coherence between sk � n � and rk � n � is strong for all
frequencies when 100 s � n � 150 s.
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� n � 60 s, and so on. In Figure 2.3(b) we plot the WCC in linear greyscale with values greater than 0 � 8 in black, near

0 � 0 in grey, and less than � 0 � 8 in white. The horizontal axis indicates the center time of each window, and the vertical

axis the lag-time; we denote the location of zero lag with a horizontal line. We conclude from this figure that a region

of strong correlation exists between sk � n � and rk � n � for 100 s � n � 150 s, as expected. In this case, the linear WCC

measure detects the nonlinear coupling between the two dynamical maps in (2.17).

We show in Figure 2.3(c) the WC computed between the ensembles sk � n � and rk � n � . The windowing is the same

as for the WCC. We plot the WC in linear greyscale with black and white representing coherence values greater the

0 � 8 and near 0 � 0, respectively. The horizontal axis indicates the center time of each window, and the vertical axis the

frequency (up to the Nyquist frequency, in this case 0 � 5 Hz.) We find a region of strong coherence between sk � n � and

rk � n � for nearly all frequencies. Here again, a linear measure — the WC — detects the nonlinear coupling between the

two dynamical maps in (2.17).

Nonlinear measures

Before applying four of the synchronization measures to the data, we must first embed sk � n � and rk � n � ; therefore,

we must chose the embedding dimension d and delay time τ. As mentioned in Section 2.1.3, specific algorithms exist

to determine d and τ. Here we briefly describe these algorithms and apply them to the simulated data from (2.17).

In choosing τ, we determine the coordinates of the embedded vector. For example, given the scalar time series q
�
n �

we can construct the two-dimensional vector x
�
n � � � q � n � 	 q � n 	 τ � � . The value of τ determines the second coordinate

q
�
n 	 τ � of x

�
n � . The goal is to chose τ such that each new coordinate of x

�
n � provides the maximum amount of new

information about the dynamics. For example, consider the case in which q
�
n � possesses strong serial correlations.

If we choose τ � 1 the second coordinate of x
�
n � ��� q � n � 	 q � n 	 1 � � would provide little new information about the

dynamics; knowing q
�
n � we can accurately predict q

�
n 	 1 � due to the strong serial correlations in the data. In this case,

we may choose τ � 1.

For noise free data, a prescription exists for choosing τ. Typically, we chose τ to be the first minimum of the

average mutual information (AMI) of the scalar time series (e.g., q
�
n � or sk � n � with k fixed) with itself. In this way

we insure that each new coordinate provides the most new information about the dynamics. The computation of the

AMI requires a complete sampling of the attractor. For the simulated data from the Henon maps, this is not achieved

by the individual ensemble members of sk � n � which contain only n � � 300 points. Therefore, we compute the AMI of

sk � n � concatenated over all ensemble members (for a total of 300 � 40 � 12000 points.) We could have increased n �
simply by continuing iteration of the map (2.17). But for the ECoG and EEG data we consider in Sections 2.5 and

2.6 a retrospective continuation of the observation is impossible. We therefore proceed with the analysis of sk � n � with
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(a) (b)

Figure 2.4: Computation of the embedding parameters for the time series generated from the unidirectionally coupled
non-identical Henon map. (a) The average mutual information (AMI) of the concatenated sk � n � as a function of time
lag. No relative minimum exists for any lag. (b) The percentage of false nearest neighbors of the concatenated sk � n � as
a function of the embedding dimension. The value asymptotes to a small, positive number for dimension 4 and greater.
This is due to the random initial values of sk � n � for each ensemble member.

n � � 300 and k � � 40.

We show in Figure 2.4(a) the AMI computed for the concatenated version of sk � n � . The AMI decreases rapidly

from a maximum value at τ � 1 s. In this case, no obvious minimum in the AMI exists, and we may choose τ to equal

the time at which the AMI reaches 25% of its maximum value [26]. Here, we would chose τ � 5 s. We note that this

procedure for choosing τ is only prescriptive. Instead of using the AMI to compute τ, we could have chosen τ to be

the first minimum of the auto-correlation of the concatenated sk � n � . In general, an optimal choice for τ does not exist

and a wide range of values is acceptable [26, 31]. Here we simply set τ � 2 s. At this τ, the AMI plotted in Figure

2.4(a) achieves 75% of the maximum value. We find (but do not show) similar synchronization results for τ � 5 s.

With τ fixed, we must now determine the embedding dimension d. To do so, we distinguish between the true

dynamics of the system and the observed dynamics. We assume that the true dynamics of the system are governed

by a n-dimensional system of differential or difference equations. For observational data, these equations typically

are unknown and only a 1-dimensional time series (e.g., the voltage recorded at an electrode) is observed. Thus,

although the true (and usually unknown) dynamics of the system occur in Rn, we only observe a projection of the

dynamics of R1. In this 1-dimensional space, a trajectory may cross itself, as evidenced in Figure 2.3(a). But in the

original phase space of the dynamical system (i.e., in Rn) a trajectory may not cross itself (due to the uniqueness of

solutions.) Therefore, to choose d, we determine the dimension that eliminates false-crossings of the trajectory with
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itself due to a projection of the dynamics onto a lower-dimensional space. This procedure requires that we determine

the percentage of false nearest neighbors in each dimension. If two points are true nearest neighbors, then these points

remain neighbors regardless of the embedding dimension. But, if two points are false nearest neighbors, then there

exists a large enough dimension at which these points cease to be neighbors.

To choose d, we determine the dimension in which the percentage of false nearest neighbors approaches zero. The

algorithm is simple, but computationally expensive. As for the AMI calculation, we first concatenate the ensemble

members of sk � n � to establish a scalar time series of 12000 points that sample the entire attractor. We then embed the

concatenated s
�
n � in dimension d to create the vector x

�
n � ��� s � n � 	 s � n 	 τ � 	 � � � 	 s � n 	 
 d � 1  τ � � . For each point in x

�
n �

we determine its nearest neighbor which is labeled by a unique time m. Then, we embed s
�
n � in dimension d 	 1. If the

nearest neighbor to x
�
n � (now in 
 d 	 1  -dimensions) still occurs at time m, then these points are true nearest neighbors;

otherwise, these points are false nearest neighbors. We continue this procedure until we determine the dimension d at

which the percentage of false nearest neighbors approaches 0 � 0.

We show the result of the false nearest neighbor calculation in Figure 2.4(b). The percentage of false nearest

neighbors for d � 1 is high, as expected, because the higher dimensional map is projected onto a lower dimensional

space. At d � 4, the percentage of false nearest neighbors asymptotes to a positive value near zero. This result agrees

with the known system in (2.17) which consists of two, coupled Henon maps (each with an embedding dimension

of 2.) The reason that the percentage of false nearest neighbors asymptotically approaches a small positive value is

that we analyzed a concatenated version of the dynamics sk � n � . For each ensemble member k, the first point (n � 0)

is a random number. Therefore, the concatenated dynamics contain a small percentage (0 � 33%) of random numbers.

These random numbers are distributed uniformly throughout space of any dimension, and a small percentage of false

nearest neighbors will exist for any d.

We have now determined the delay time τ � 2 s and the embedding dimension d � 4 for sk � n � and can reconstruct

the state space vector xk � n � . We use these same embedding parameters to define yk � n � from rk � n � . With the two state

space vectors, we may now compute the measures of nonlinear coupling. In Figure 2.5(a) we show the synchronization

measures S 
 x � n � � y  (dashed), H 
 x � n � � y  (dotted), and N 
 x � n ��� y  (solid.) We find that all three measures increase during

the interval of nonlinear coupling between the two ensembles: 100 s � n � 150 s. In Figure 2.5(b) we show the time

shifted synchronization measure T 
 x � n 	 η ��� y  . We plot the time along rk � n � and sk � n � in the horizontal and vertical

directions, respectively, and the value of T 
 x � n 	 η � � y  in linear greyscale with values greater than 0 � 08 in black and

near 0 � 0 in white. Again, the nonlinear coupling between the two ensembles is clear and appears as the thin diagonal

band in the contour plot. From the location of the band in Figure 2.5(b) we conclude that ensembles xk � n � and yk � n �
are synchronous when 100 s � n � 150 s; i.e. the two are coupled with no time shift. The reader may wonder why
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the values of T 
 x � n 	 η � � y  are so small. This follows from the rather tight definition we have adopted in (2.14) for the

neighborhood of xk � n � ; for this example, we set σD
� 0 � 0 in (2.14). It may be profitable to relax this definition for

noisy data.

Finally, in Figure 2.5(c) we show the windowed phase synchronization P 
 θ  between sk � n � and rk � n � . We plot the

center time of each window along the horizontal axis, the phase (in radians) along the vertical axis, and the value of

the phase synchronization in linear greyscale, with values greater than 0 � 1 in black and near 0 � 0 in white. We find a

region of strong phase synchronization at angles near 0 � 0 (or equivalently near 2π) for 100 s � n � 150 s. This result

reveals that the coupling between sk � n � and rk � n � is in phase with zero phase lag.

In summary we have applied seven coupling measures (the WCC, WC, and five synchronization measures) to the

ensembles of data generated from (2.17). We have shown that each measure (both the linear and nonlinear) detects the

coupling between sk � n � and rk � n � . Because each measure detects this coupling, there is no need to apply all seven. In

Sections 2.3 and 2.4 we show two examples in which some of the coupling measures provide erroneous results.

2.3 Example: coupled Rössler oscillators

In Section 2.2 we applied seven coupling measures to simulated data produced by two, coupled difference equa-

tions. Here we apply the coupling measures to data computed from a system of coupled differential equations. Specif-

ically, we consider the coupled Rössler oscillators [32]:

ẋ1
�
t � � � ω1y1

�
t ��� z1

�
t � 	 γ

�
t � 
 x2

�
t � 2 ��� x1

�
t ��

ẏ1
�
t � � � ω1x1

�
t � 	 Ay1

�
t �

ż1
�
t � � B 	 z1

�
t ��
 x1

�
t ��� µ 

ẋ2
�
t � � � ω2y2

�
t ��� z2

�
t �

ẏ2
�
t � � � ω2x2

�
t � 	 Ay2

�
t �

ż2
�
t � � B 	 z2

�
t ��
 x2

�
t ��� µ  �

(2.18)

We denote the first and second subsystems with the subscripts 1 and 2, respectively. The parameters A � 0 � 15, B � 0 � 2,

and µ � 6 � 8 govern the dynamics of each subsystem, and ω1
� 1 � 5 and ω2

� 0 � 5 determine the basic frequencies of

each subsystem. The parameter γ
�
t � in the first equation of (2.18) controls the coupling of subsystem 2 with subsystem

1. We set γ
�
t � � 0 � 5 (moderate coupling) for 40 s � t � 60 s, and γ

�
t � � 0 � 0 (no coupling), otherwise. The expression

x2
�
t � 2 � denotes the value of x2 at time t � 2 s (i.e., the value of x2 two seconds in the past.) Thus, the velocity of
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(a) (b)

(c)

Figure 2.5: Synchronization measures applied to the unidirectionally coupled non-identical Henon map. (a) Three
synchronization measures: S 
 x � n � � y  (dashed), H 
 x � n ��� y  (dotted), N 
 x � n ��� y  (solid). All of the measures are smoothed
over a window of size 11 at each time point. All three measures increase during the interval of nonlinear coupling (100
s � n � 150 s) between the chaotic time series. (b) The time shifted synchronization measure T 
 x � n 	 η ��� y  smoothed
over a two-dimensional window of size 11 at each time point. Note that the horizontal and vertical axes show time
along ensembles rk � n � and sk � n � , respectively. In the contour plot, there are five evenly spaced contour levels, ranging
from 0.0 (white) to 0.08 (black). Unless defined otherwise, all T 
 x � n 	 η ��� y  figures follow this grey-scale scheme. The
diagonal line in the figure corresponds to the location of zero time lag. The contour plot shows synchronization occurs
with time shift η � 0 during the time interval 100 s � n � 150 s. (c) The windowed phase synchronization. We plot
the center time of each window along the horizontal axis, the phase (in radians) along the vertical axis, and the value
of the phase synchronization in linear greyscale, with values greater than 0 � 1 in black and near 0 � 0 in white. A region
of strong phase synchronization occurs at angles near 0 � 0 (or equivalently near 2π) for 100 s � n � 150 s.
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x1 at time t depends on the value of x2 at time t � 2 s. We note that the dynamics of subsystem 2 do not depend on

subsystem 1.

In Figure 2.6(a) we plot an example of x1 (solid line) and x2 (dashed line) for 0 s � t � 120 s. To calculate

these time series, we solve (2.18) numerically using a forth-order Runge-Kutta method with time step ∆t � 0 � 2 s and

initial time t0 � � 1880 s. We choose random initial conditions for the trajectory and iterate the uncoupled differential

equations so that, at t � 0 s, both subsystems evolve on their independent Rössler attractors. We note that the dynamics

of x1 appear to change for 40 s � t � 60 s, but that the moderate coupling between x1 and x2 is not obvious through

visual inspection.

We now apply the coupling measures of Sections 2.1.2 and 2.1.3 to the data from the coupled Rössler oscillators.

To do so, we construct the ensembles sk � n � and rk � n � such that each ensemble member k is a numerical solution of

(2.18) for x1 and x2, respectively, with random initial conditions. We calculate x1 and x2 following the procedure used

to create the time series shown in Figure 2.6(a). We then scale x1 and x2 to have zero mean, and set sk � n � to x1 and

rk � n � to x2 for 0 s � t � 120 s. We repeat this procedure until the ensembles contain k � � 30 members.

We show the results of the linear coupling measures in Figures 2.6(b) and 2.6(c). The WCC, shown in Figure

2.6(b), achieves a small positive value at time lags between � 2 � 0 s and 2 � 0 s for 40 s � t � 60 s. From this result

we might conclude that a weak correlation between sk � n � and rk � n � occurs although we cannot determine the lead/lag

relationship from the WCC result. Similarly, from the WC result shown in Figure 2.6(c) we detect a weak interval

of coupling (40 s � t � 60 s) between the ensembles. For this example, the results of both linear measures suggest

coupling occurs between sk � n � and rk � n � . The measures correctly identify the time interval of this coupling, but neither

reveals the lead/lag relationship between the ensembles.

Knowing that the linear measures detect a weak coupling between sk � n � and rk � n � , we apply the nonlinear coupling

measures. To compute four of the measures, we must first embed the time series. We follow the procedures described

in Section 2.2 to compute the delay time τ and embedding dimension d. In Figure 2.7(a) we plot the AMI computed

for the concatenated version of sk � n � . The first relative minimum of the AMI occurs at a lag of 1 s; therefore we choose

τ � 1 s. In Figure 2.7(b) we plot the percentage of false nearest neighbors as a function of dimension. This percentage

decreases rapidly and approaches a small, positive value for dimensions greater than five. Again, the percentage of

false nearest neighbors does not reach zero due to the small number (k � � 20) of random initial conditions included in

the concatenated sk � n � . Therefore, we set d � 6, equal to twice the embedding dimension of the Rössler attractor.

Having determined τ � 1 s and d � 6, we construct the state space vectors xk � n � and yk � n � from sk � n � and rk � n � ,
respectively. We show in Figure 2.8(a) the synchronization measures S 
 x � n ��� y  (dashed line), H 
 x � n ��� y  (dotted line),

and N 
 x � n � � y  (solid line) applied to this embedded Rössler data. Two of the measures, H 
 x � n � � y  and N 
 x � n � � y  ,
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(a) (b)

(c)

Figure 2.6: Example data and linear analysis for time series generated from the coupled Rössler oscillators system. (a)
The first ensemble member (k � 1) pair sk � n � (solid line) and rk � n � (dashed line). The coupling for 40 s � t � 60 s is
not apparent. (b) The WCC between sk � n � and rk � n � . The color scheme is the same as that used to create Figure 2.3(b).
(c) The WC between sk � n � and rk � n � . The color scheme is the same as that used to create Figure 2.3(c).
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(a) (b)

Figure 2.7: Computation of the embedding parameters for the time series generated from the coupled Rössler oscilla-
tors. (a) The average mutual information (AMI) of the concatenated sk � n � as a function of time lag. The first relative
minimum occurs at a lag of 1 s. (b) The percentage of false nearest neighbors of the concatenated sk � n � as a function
of the embedding dimension. The value asymptotes to a small, positive number for dimensions greater than 5.

decrease during the coupling interval 45 s � n � 70 s. Thus, using these measures, we incorrectly conclude that

the coupling between sk � n � and rk � n � weakens during the interval of known coupling. The third measure S 
 x � n ��� y 
does increase during the know coupling interval (35 s � n � 50 s) but we show in Section 2.4 that S 
 x � n ��� y  can give

spurious results for oscillatory data. In fact, we expect none of these measures to reveal the increased coupling for 40

s � t � 60 s. These synchronization measures only detect simultaneous coupling between sk � n � and rk � n � , and cannot

detect the delayed effect of x2 on x1.

In Figure 2.8(b) we show the time shifted synchronization measure T 
 x � n 	 η � � y  . The region of maximum T 
 x � n 	 η � � y 
begins approximately 4 s above the diagonal (i.e., η � 4 s) and continues to larger values of η. This result indicates that

rk � n � leads sk � n � during the interval of strongest coupling. Moreover, the largest values of T 
 x � n 	 η � � y  occur during the

time intervals 35 s � t � 50 s in rk � n � (along the horizontal axis) and 45 s � t � 60 s in sk � n � (along the vertical axis).

Thus we may use the synchronization measure T 
 x � n 	 η ��� y  to detect the changes in coupling and lead/lag relationship

between sk � n � and rk � n � , although we do not determine the exact delay in coupling of 2 s.

Finally, we show the phase synchronization between sk � n � and rk � n � in Figure 2.8(c). The phase synchronization

increases slightly for 40 s � t � 60 s at angles less than 1 � 0 radian and near 2π radians. From this result, we conclude

that weak phase coupling occurs between sk � n � and rk � n � , but we cannot determine the lead/lag relationship of the

ensembles from this measure.

We now summarize the results of this section. To determine the coupling between two times series generated from
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(a) (b)

(c)

Figure 2.8: Synchronization measures applied to the coupled Rössler system. (a) Three synchronization measures:
S 
 x � n � � y  (dashed), H 
 x � n ��� y  (dotted), N 
 x � n � � y  (solid). All of the measures are smoothed over a window of size
11 at each time point. Two of the measures H 
 x � n � � y  and N 
 x � n � � y  decrease during the known interval of mod-
erate coupling between sk � n � and rk � n � . (b) The time shifted synchronization measure T 
 x � n 	 η ��� y  smoothed over a
two-dimensional window of size 11 at each time point. Note that the horizontal and vertical axes show time along
ensembles rk � n � and sk � n � , respectively. The color scheme is the same as in Figure 2.5(b). The diagonal line in the
figure corresponds to the location of zero time lag. The region of maximum T 
 x � n 	 η � � y  begins approximately 4 s
above the diagonal. (c) The windowed phase synchronization between sk � n � and rk � n � . The color scheme is the same
as that used to create Figure 2.5(c). An interval of weak phase synchronization occurs at angles less than 1 � 0 radian
and near 2π radians for 40 s � t � 60 s.
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the coupled Rössler oscillators (2.18), we applied seven coupling measures. We showed that both linear measures

(WCC and WC) detect weak coupling between the ensembles but fail to reveal that rk � n � leads sk � n � . Of the five

synchronization measures, two — H 
 x � n � � y  and N 
 x � n � � y  — failed to detect the coupling. Only the synchronization

measures S 
 x � n � � y  , T 
 x � n 	 η � � y  , and P 
 θ  revealed the coupling between sk � n � and rk � n � . (We show in the next section

that, for ensembles of oscillatory time series, the measure S 
 x � n � � y  is unreliable.) The T 
 x � n 	 η � � y  result revealed not

only the approximate time interval of the coupling, but also the approximate lead/lag relationship between sk � n � and

rk � n � .

2.4 Example: Oscillatory Bursts

In this last set of examples, we apply the linear and nonlinear coupling measures to simulated data motivated

by voltage recordings from the human scalp and cortical surfaces during an ERP experiment. In typical EEG and

ECoG ERP time series data, weak bursts of oscillatory activity occur. For example, an auditory stimulus may evoke

a 10 Hz burst in one electrode, followed by a 40 Hz burst in another electrode [33]. Our goal in this section is to

determine which of the coupling measures accurately detect this specific type of interdependence. We show that — of

the synchronization measures — we may only use T 
 x � n 	 η ��� y  to detect interdependent bursts of oscillatory activity

occurring between the two ensembles. For the two examples in this section, we set the total number of ensemble

members to twenty (k � � 20), the sampling interval ∆t � 1 ms, and σD
� 1 � 0 in (2.14) to extend the radius of local

neighborhoods for noisy data.

2.4.1 Bursting data versus noise

We start by considering the case where the two ensembles of time series measurements sk � n � and rk � n � are un-

related. Specifically, we simulate the case where one electrode measures a response to a stimulus while the other

electrode does not. We expect that all of the coupling measures will detect no interdependence between these two en-

sembles of measurements. However, we show that the measure S 
 x � n � � y  erroneously detects synchronization between

the ensembles and explain why this occurs.

We construct sk � n � such that each ensemble member consists of identical, weak bursts of oscillatory behavior

when 100 ms � n � 150 ms. Each ensemble member is further constructed from 200 sinusoids, where each sinusoid is

assigned a random uniformly-distributed frequency (from 0 to 100 Hz) and random uniformly-distributed phase (from� π to π). We scale this sum of 200 sinusoids such that the ratio of the oscillatory burst amplitude to the amplitude of
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the summed sinusoids is approximately 2. We denote this ratio of amplitudes as the signal-to-noise ratio (SNR). Here

the oscillatory bursts represent evoked responses while the sinusoids act as noise. We shall refer to this type of noise as

sinusoidal noise. In this example, the ensemble members of rk � n � consist only of sinusoidal noise (i.e., these ensemble

members possess no evoked responses.) We show an example of the individual ensemble members in Figure 2.9(a).

Here the weak evoked response of sk � n � (solid line) is mostly hidden by the noise. After averaging the time series

over the ensembles, the evoked response in ensemble sk � n � and lack of response in ensemble rk � n � become apparent in

Figure 2.9(b).

We show in Figures 2.9(c) and 2.9(d) the WCC and WC, respectively, computed between the ensembles. As

expected, the values of both measures remain near zero for all times. Thus, from the linear measures, we correctly

conclude that no coupling between sk � n � and rk � n � occurs. To calculate the synchronization between the two ensembles

we chose τ � 1 and d � 10 to reconstruct the state space vectors, xk � n � and yk � n � from sk � n � and rk � n � , respectively.

Unlike the analysis in Sections 2.2 and 2.3, we do not compute τ and d using the AMI and false nearest neighbor

procedures, respectively. For noisy data — like those we use in this example — these procedures are inappropriate.

Thus, we simply assign the values of τ and d. We illustrate in Section 2.4.2 how the synchronization results depend

upon the choice of τ and d.

In Figure 2.10 we show the synchronization results for sk � n � and rk � n � . We expect all of the measures to detect

no synchronization between the two ensembles. In Figure 2.10(a) we plot the synchronization measures S 
 x � n ��� y 
(dashed line), H 
 x � n ��� y  (dotted line), and N 
 x � n � � y  (solid line). Both H 
 x � n ��� y  and N 
 x � n ��� y  fluctuate between

0 � 15 and 0 � 45 but possess no obvious structure suggestive of a change in synchronization between the two ensembles.

S 
 x � n � � y  , though, suggests at least a doubling ( � 0 � 1 to � 0 � 25) in synchronization between the two ensembles during

the time of the oscillatory burst in sk � n � . This is caused by the numerator of (2.5), R 
 xk � n �  , which increases during the

oscillatory burst due to the increased distance from xk � n � to its nearest neighbors during this interval. The denominator

of (2.5) — R 
 xk � n � � y  — also increases during the interval of oscillatory behavior, though not enough to compensate

for the increase in R 
 xk � n �  . Thus, for this example the increase in S 
 x � n � � y  is due to an increase in R 
 xk � n �� , not

an increase in the synchronization between the two ensembles. The synchronization measure T 
 x � n 	 η � � y  and the

phase synchronization (shown in Figures 2.10(b) and 2.10(c), respectively) reveal no interdependence between the

two ensembles, as expected. In the next example we will not consider S 
 x � n ��� y  .

2.4.2 Simultaneous Bursts

We now consider the case where both ensembles respond to a stimulus, but in different ways. In this example,

a high frequency burst of oscillatory activity occurs in sk � n � and a simultaneous low frequency burst of oscillatory
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(a) (b)

(c) (d)

Figure 2.9: The ensembles of bursting data and noisy data, and the linear coupling measures. (a) A typical ensemble
member from the oscillatory bursting data sk � n � (solid line) and the noisy data rk � n � (dashed line). The weak oscillatory
response in sk � n � between 100 ms and 150 ms is hidden in the noise. (b) The ensemble averaged ERPs of ensemble s
(solid line) and ensemble r (dashed line). The oscillatory response in ensemble s for 100 ms � n � 150 ms is apparent.
(c) The WCC between sk � n � and rk � n � . The color scheme is the same as that used to create Figure 2.3(b). (d) The WC
between sk � n � and rk � n � . The color scheme is the same as that used to create Figure 2.3(c). We find the WC is near
zero for all values of frequency and time. Both linear measures detect no coupling between the two ensembles.
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(a) (b)

(c)

Figure 2.10: Synchronization measures applied to the burst versus noise system. (a) Three synchronization measures:
S 
 x � n � � y  (dashed line), H 
 x � n � � y  (dotted line), and N 
 x � n � � y  (solid line). All three measures are smoothed over a
window of size 11 ms at each time point. Both H 
 x � n � � y  and N 
 x � n ��� y  fluctuate between 0 � 15 and 0 � 45 over the entire
time interval and suggest no obvious synchronization between the ensembles, as expected. S 
 x � n ��� y  increases during
the interval 100 ms � n � 140 ms, and therefore suggests an increased synchronization between the ensembles during
this interval. This incorrect interpretation is a consequence of the increase in R 
 xk � n �� during the oscillatory burst, as
explained in the text. (b) The time shifted synchronization measure T 
 x � n 	 η � � y  . The plotting and color scheme are
the same as that used to create Figure 2.5(b). The T 
 x � n 	 η � � y  result reveals no coupling between the ensembles. (c)
The windowed phase synchronization. The plotting and color scheme are the same as that used to create Figure 2.5(c).
This measure also reveals no coupling between the ensembles.
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activity occurs in rk � n � for 100 ms � n � 150 ms and each k. Sinusoidal noise is added to each sk � n � and rk � n � such that

the SNR is approximately 2. A typical ensemble member pair (sk � n � solid line, rk � n � dashed line) is shown in Figure

2.11(a). The individual ensemble members in Figure 2.11(a) do not reveal the structure of the ERP, which is mostly

hidden by the noise. Only after averaging an ensemble of these time series do the ERPs become apparent in Figure

2.11(b). From the ensemble averaged data, we conclude that both ensembles exhibit a nontrivial response. If this were

observed ECoG data, we would conclude that both ensembles respond to the stimulus. We require that the coupling

measures detect this type of relationship, in which both ensembles respond to a stimulus simultaneously, although at

different frequencies.

We show in Figures 2.11(c) and 2.11(d) the WCC and WC, respectively. The WCC displays a moderate increase

for 130 ms � t � 140 ms and a time lag near � 6 ms. From this result, we might conclude that the two ensembles

are coupled and that sk � n � leads rk � n � by approximately 6 ms. This result is incorrect; we constructed sk � n � and rk � n �
to oscillate simultaneously. We also note that other regions of moderate correlation exist in the figure (e.g., at 110 ms� t � 130 ms and a time lag near 10 ms) and make the WCC results difficult to interpret. The second linear measure

— the WC — exhibits two regions of strong coherence. Both occur for 100 ms � t � 150 ms, one for low frequencies

(less than 50 Hz) and the other for high frequencies (between 200 Hz and 500 Hz.)

To compute the synchronization between ensembles sk � n � and rk � n � we again choose τ � 1 ms and d � 10 to re-

construct the state space vectors, xk � n � and yk � n � from sk � n � and rk � n � , respectively. In Figure 2.12(a) we plot H 
 x � n ��� y 
(dotted line) and N 
 x � n � � y  (solid line). Both results fluctuate throughout the entire time interval and neither accurately

captures the synchronization between the two ensembles. We show T 
 x � n 	 η � � y  for this example in Figure 2.12(b).

The value of T 
 x � n 	 η � � y  is positive only for 100 ms � n � 135 ms along both axes. Because the nonzero values of

T 
 x � n 	 η � � y  lie near the diagonal, we correctly conclude that the time shift η � 0, and the coupling between rk � n � and

sk � n � is simultaneous (i.e., the bursts in rk � n � and sk � n � occur simultaneously.) Finally, we show the phase synchroniza-

tion in Figure 2.12(c). This measure displays no regions of strong coupling. Of the four synchronization measures

applied in this example we may only use T 
 x � n 	 η � � y  to detect the interdependence between the two ensembles.

We note that, although the time intervals of synchronization displayed in Figure 2.12(b) are approximately correct,

T 
 x � n 	 η � � y  is not large over the entire interval of the oscillatory bursts (i.e., for 100 ms � t � 150 ms.) This is a

consequence of the noise added to the time series. To illustrate this, we apply T 
 x � n 	 η ��� y  to data identical to that

analyzed in Figure 2.12(b) except that we set the SNR to approximately 100; here the data is nearly noiseless. We

show the results in Figure 2.4.2. The rectangular region of synchronization measured by T 
 x � n 	 η ��� y  occurs from 90

ms � n � 150 ms in both rk � n � and sk � n � . The reader may wonder why T 
 x � n 	 η ��� y  detects synchronization beginning

at 90 ms in sk � n � when the oscillatory burst in sk � n � starts at 100 ms. This is due to the phase space reconstruction
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(a) (b)

(c) (d)

Figure 2.11: The ensembles of bursting data and the linear coupling measures. (a) A typical ensemble member pair
from the oscillatory bursting data: sk � n � (solid line) and rk � n � (dashed line). The weak oscillatory responses of both
time series are mostly hidden in the noise. (b) The ensemble averaged ERPs of sk � n � (solid line) and rk � n � (dashed line).
The oscillatory bursts, hidden in the single ensemble member pair of (a), are revealed here in the ensemble averaged
ERPs. (c) The WCC between sk � n � and rk � n � . The color scheme is the same as that used to create Figure 2.3(b). The
WCC detects moderate cross-correlation for 130 ms � t � 140 ms and a time lag near � 6 ms. (d) The WC between
sk � n � and rk � n � . The color scheme is the same as that used to create Figure 2.3(c). The WC detect strong coherence
between sk � n � and rk � n � for 100 ms � t � 150 ms.
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(a) (b)

(c)

Figure 2.12: Synchronization measures applied to the ensembles of bursting data. (a) Two synchronization measures:
H 
 x � n ��� y  (dotted line), and N 
 x � n � � y  (solid line), smoothed over a window of size 11 ms at each time point. Neither
H 
 x � n ��� y  nor N 
 x � n ��� y  accurately captures the synchronization between the two ensemble for 100 ms � n � 160 ms.
(b) The time shifted synchronization T 
 x � n 	 η ��� y  applied to the ensemble of oscillatory bursting data of Figure 2.11(a).
The plotting and color scheme are the same as that used to create Figure 2.5(b). This measure detects the synchroniza-
tion between the two ensembles for 100 ms � n � 135 ms in sk � n � (along the vertical axis) and for 100 ms � n � 135
ms in rk � n � (along the horizontal axis). (c) The windowed phase synchronization. The plotting and color scheme are
the same as that used to create Figure 2.5(c). This measure also reveals no coupling between the ensembles.
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Figure 2.13: The synchronization measure T 
 x � n 	 η � � y  applied to the bursting ensembles of data with weak noise
(SNR � 100). The plotting and color scheme are the same as that used to create Figure 2.5(b). A region of strong
synchronization occurs for 90 ms � n � 150 ms in rk � n � along the horizontal axis and 100 ms � n � 160 ms in sk � n �
along the vertical axis.

we have used to create xk � n � and yk � n � . For τ � 1 and d � 10, xk � n � � 
 sk � n � 	 sk � n 	 1 � 	 � � � 	 sk � n 	 9 �  ; the vector xk � n �
depends upon sk � n � and future values of sk � n � . Thus, although the oscillatory burst begins at n � 100 ms in sk � n � , the

effect of this burst on the reconstructed vector xk � n � begins at n � 100 � 9 � 91 ms. Similarly for rk � n � and yk � n � .
The effects of the phase space reconstruction must be considered when interpreting the synchronization results of

experimental data.

We now summarize the results of our computer simulations. We have shown in Section 2.2 that the linear and

nonlinear coupling measures can detect the interdependence of two nonlinear maps. In Section 2.3 we showed that,

when a time lag occurs in the coupling, most of the measures fail. Only the synchronization measure T 
 x � n 	 η � � y 
succeeded in detecting the coupling and the lead/lag relationship between the ensembles. Finally, in Section 2.4 we

applied the coupling measures to bursting data inspired by EEG and ECoG recordings. In Section 2.4.1 we showed

that S 
 x � n ��� y  erroneously detects synchronization between two unrelated ensembles in one of which oscillatory bursts

occur. In Section 2.4.2 we showed that H 
 x � n � � y  , N 
 x � n � � y  , and the phase synchronization fail to detect interdepen-

dence between two related ensembles in which bursts of oscillatory activity occur. The measure T 
 x � n 	 η � � y  is the

only measure to behave correctly in the three examples we considered.

We do not wish to suggest that the WCC, WC, S 
 x � n � � y  , H 
 x � n � � y  , N 
 x � n � � y  , and phase synchronization are

poor coupling measures. The references in Section 2.1.1 have shown the utility of these synchronization methods

applied to a variety of simulated and experimental data. Instead, we suggest that these measures are not appropriate

to, say, compute the coupling between ensembles containing short, oscillatory bursts of activity. In the next section,

we apply some of the coupling measures to time series collected in two observations and suggest how the coupling
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measures are useful in inferring cortical connectivity.

2.5 Application: auditory ECoG ERP data.

Having described the coupling measures in Sections 2.1.2 and 2.1.3 and applied them to simulated data in Sections

2.2 - 2.4, we now apply them to data collected in an ECoG ERP experiment [34]. The ECoG data were recorded from

an awake subject undergoing neurosurgery for tumor removal. The recordings were done in accordance with Univer-

sity of California, San Francisco (UCSF) and University of California, Berkeley (UCB) human subjects requirements

and patient consent was obtained. Seven carbon ball electrodes (just under 3 mm in diameter) were placed on the

left hemisphere around the posterior extent of the Sylvian fissure, near the known position of primary and secondary

auditory cortices. Two epidural electrodes served as reference and ground for the differential amplifiers. The analog

signals were bandpass filtered in the amplifier between 0 � 1 and 250 Hz, amplified by 104, and digitized at a sampling

rate of 2003 Hz with 16 bit resolution. The data were subsequently high-pass filtered above 2 � 3 Hz using a symmetrical

finite response filter and all epochs with detectable artifact were removed.

The stimuli consisted of short duration (180 ms) tones occurring at two different frequencies. During the experi-

ment, the patient passively heard three, 210 s blocks of tones while watching a slide show. In the first and third blocks,

85% of the tones were at 500 Hz (standards) and 15% of the tones were at 550 Hz (deviants). Tones occurred at a

rate of � 2 � 5 Hz. In the second block, the standards were replaced by silences (i.e., only deviant tones occurred.)

Traditional time-frequency analyses revealed cortical responses between approximately 25 ms and 250 ms from tone

onset [6]. As expected from previous scalp EEG and animal studies, responses to standards were weak, responses to

deviants were stronger, and responses to deviants only were strongest.

In the analysis that follows, we apply a coupling measure to three electrodes from the second block of tones

(deviants only) in which the evoked responses were strongest. For convenience, we refer to the three electrodes as

A, B, and C. We consider times 125 ms preceding the stimulus onset to 220 ms following the stimulus onset, choose

k � � 40 ensemble members, and subtract the mean from each ensemble member. We do not average reference the

data due to the small number (nine) of electrodes. Therefore, the shared reference electrode may artificially increase

the coupling results. If this effect were important, we would expect all electrode pairs to show strong coupling for all

time. We show below that the coupling results vary from strong to weak, and for some electrode pairs no coupling was

detected. Therefore, we assume that the reference electrode only weakly effects the coupling results presented below.

Before applying the coupling measures, we illustrate the characteristics of the data collected at the three electrodes.

In Figure 2.14(a) we show typical ensembles members recorded at electrodes A (solid curve), B (dashed curve) and C
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(a) (b)

Figure 2.14: ECoG data recorded in the ERP experiment at electrodes A, B, and C. In both figures we plot time (in ms)
relative to stimulus onset along the horizontal axis and voltage (in mV) along the vertical axis. (a) Individual members
of the first ensemble recorded at electrodes A (solid curve), B (dashed curve), and C (dotted curve). (b) The ensemble
average results at electrodes A (solid curve), B (dashed curve), and C (dotted curve).

(dotted curve). The stimulus (i.e., the deviant tone) occurs at t � 0 ms. Inspecting the individual ensemble members

shown in Figure 2.14(a), we cannot determine which electrodes record a response to the stimulus. In Figure 2.14(b)

we show the ERPs averaged over the ensembles of measurements at each electrode. We note that for t � 0 the average

voltages recorded at all three electrodes fluctuate around 0 mV. This result is expected; preceding the stimulus, the

cortical electrical activity recorded at each electrode is seemingly random. Summing these random voltages over the

ensemble, we find an average value near 0 mV. Following the stimulus, we find that all three electrodes exhibit a

nonzero average response. We find that the responses recorded at electrodes A and B are similar; both decrease by

approximately � 20 mV near t � 50 ms and increase by approximately 80 mV for 50 ms � t � 100 ms. We note that the

average response at electrode A achieves a lesser minimum and greater maximum than that recorded at electrode B. We

also find a weaker averaged response at electrode C; at this electrode the average response decreases by approximately� 15 mV near t � 50 and increase by approximately 30 mV for 50 ms � t � 100 ms.

Using the averaged responses shown in Figure 2.14(b) we may predict the coupling between the three electrodes.

We interpret the similar responses of electrodes A and B to imply strong coupling. We could quantify this result by

computing the cross-correlation between the two averaged responses. From the conclusion that A and B are strongly

coupled, we may guess that these two electrodes possess a similar coupling relationship with electrode C. For example,

if we find that electrodes A and C are strongly coupled, we might then expect that electrodes B and C are strongly

coupled. We show in what follows that this intuition is incorrect.
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We showed in Section 2.4 that for an ensemble of data consisting of oscillatory bursts, the synchronization measure

T 
 x � n 	 η � � y  is the most accurate measure of coupling. The ECoG ERP data considered here consist of three ensembles

(recorded at electrodes A, B, and C) of oscillatory, bursting data. Therefore, we choose to analyze the coupling between

the three electrodes using the synchronization measure T 
 x � n 	 η ��� y  . We set σD in (2.14) to zero in what follows

to obtain the most conservative measure of T 
 x � n 	 η � � y  . In Figure 2.15(a) we show the synchronization measure

T 
 x � n 	 η � � y  applied to the data recorded at electrodes A and B. The solid diagonal line denotes the location of zero

time lag. The vertical and horizontal dashed lines denote the time of stimulus onset. From Figure 2.15(a) it is clear

that electrodes A and B are synchronous. We note that A and B become strongly synchronous approximately 90 ms

after the stimulus onset, and that the duration of the synchronization is longer in A than in B.

Next we show the synchronization between electrodes C and A in Figure 2.15(b). It is clear that C and A are

synchronous although less so than A and B. The synchronization is elongated in time along the C direction, and the

maximum synchronization occurs after the stimulus and below the diagonal: near 130 ms in C and 90 ms in A.

Finally in Figure 2.15(c) we show the synchronization T 
 x � n 	 η � � y  between electrodes C and B. In this case, the

synchronization is very weak. Thus, we conclude from the measure T 
 x � n 	 η ��� y  that electrodes A and B are strongly

synchronous, C and A are weakly synchronous, and C and B are not significantly synchronous.

We can interpret these results in a qualitative manner consistent with the physiology of the human cortex. That

the synchronization follows the stimulus onset in Figure 2.15(a) suggests the synchronization between electrodes A

and B is induced by the stimulus. The area of maximum synchronization in Figure 2.15(a) occurs at a physiologically

reasonable temporal location, approximately 90 ms after the stimulus onset, and the closeness of the synchronization

maximum to the diagonal suggests that electrodes A and B are synchronous with zero time lag. We may therefore

make the hypothesis that the stimulus activates the cortical regions below electrodes A and B simultaneously. This

suggests that a common input — perhaps from other cortical areas or deeper brain regions — activates both cortical

regions simultaneously. In this way we can begin to map the cortical pathway activated by a deviant auditory tone.

We present two more simulated examples similar to those in Section 2.4 to help interpret the synchronization

results for electrodes C and A, and C and B. We begin by noting that experimental ERPs are not precisely time locked

to the stimulus onset. Different paths of action potential propagation, changing states of the subject, and inherent

experimental error will vary the time at which the ERPs occur. Although the time interval between the stimulus

and the cortical response may vary, different cortical regions may still be strongly synchronous. In both simulated

examples that follow, sk � n � consists of an oscillatory burst 50 ms in duration and centered at n � 175 ms, while rk � n �
consists of an oscillatory burst 100 ms in duration, also centered at n � 175 ms. To each sk � n � and rk � n � we added

sinusoidal noise such that the SNR=10.
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To mimic the known variation in ERPs mentioned above, we consider two cases. In the first case, we include

random time shifts (up to � 20 ms) in the location of the oscillatory bursts. We do this in such a way that, for each k,

the pair of ensemble members sk � n � and rk � n � are time shifted by the same amount and in the same direction. Thus,

although the time series are not precisely time locked to the stimulus, they are precisely time locked to each other.

For example, in the first ensemble (k � 1) the oscillatory burst in s1 � n � and r1 � n � may begin at 125 ms and 150 ms,

respectively. For k � 2, the burst may begin at 115 ms and 140 ms. For k � 3, at 130 ms and 155 ms, and so on. In

each case, the onset times of the bursts in sk � n � and rk � n � differ by 25 ms. We refer to this type of shifting as uniform

shifting. In Figure 2.16(a) we show the synchronization measure T 
 x � n 	 η ��� y  where xk � n � and yk � n � are the phase space

reconstructions (with τ � 1 and d � 10) of sk � n � and rk � n � , respectively, and we have set σD 
 xk � n 	 η �  in (2.14) to

zero. We note that the T 
 x � n 	 η � � y  result for this uniformly shifted simulated data, shown in Figure 2.16(a), is similar

to the result for the experimental data shown in Figures 2.15(a) and 2.15(b); both results possess an elongated region

of synchronization centered near zero time shift.

For the second case of simulated data, we again shift the oscillatory bursts in the time series sk � n � and rk � n � by

random amounts (up to � 10 ms.) But, in this example, we do not make identical time shifts for pairs of ensemble

members. For example, in the first ensemble (k � 1), we may set the oscillatory bursts in s1 � n � and r1 � n � to begin at

125 ms and 150 ms, respectively. For k � 2, we may set the bursts to begin at 116 ms and 152 ms; for k � 3, 130 ms

and 140 ms, and so on. Thus, the time series are neither time locked to the stimulus nor to each other. We refer to this

type of shifting as random shifting. As above, we determine the phase space reconstructions xk � n � and yk � n � of sk � n �
and rk � n � , respectively, and we set σD 
 xk � n 	 η �� in (2.14) to zero. The synchronization measure T 
 x � n 	 η ��� y  shown

in Figure 2.16(b) reveals very weak synchronization between the two randomly shifted ensembles. Here, T 
 x � n 	 η ��� y 
allows one to draw the correct conclusion — if the two times series are neither time locked to the stimulus nor to each

other, they are only weakly dependent. The two ensembles of time series are not independent because both time series

respond to the stimulus at approximately the same time. This simulated result shown in Figure 2.16(b) is consistent

with the weak synchronization found between electrodes C and B and shown in Figure 2.15(c).

The qualitative reasoning and simple simulations suggest the following conclusions. The strong synchronization

between electrodes A and B may be due to simultaneous or uniformly shifted ERPs — this electrode pair may be

driven by a common source. The weak synchronization between electrodes C and B may be due to randomly shifted

ERPs; although both electrodes respond to the stimulus, they do so in an unrelated way. Finally, the intermediate

synchronization between electrodes C and A may be due to a combination of uniform shifting and small, random

shifting. Thus, this electrode pair may be weakly driven by a common source. In this way, we use the synchronization

measure T 
 x � n 	 η � � y  to establish a crude model of cortical connectivity between the three cortical regions observed

with the three electrodes. In the next section, we apply three synchronization measures to scalp EEG data collected
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from patients diagnosed with a type of dementia. We use the results to infer changes in cortical connectivity associated

with the disease.

2.6 Application: discrimination between healthy and demented subjects

The most common form of dementia, Alzheimer’s disease (AD), affects 4.5 million people in the U.S [35]. At

present, no cure for AD exists, although some medications may delay memory decline or treat behavioral and emo-

tional symptoms [36]. The primary treatment for AD is supportive care provided both to patients and their families.

In 1991, the costs of treating AD in America were estimated to exceed 85 billion dollars, and are expected to increase

dramatically during the next 25 years [37].

Although prevalent, AD is difficult to diagnose. The gold standard for diagnosis occurs post-mortem when an

autopsy reveals neurofibrillary tangles or neuritic plaques in the cortex and hippocampus. The clinical diagnosis of

AD is often accurate (in greater than 80% of cases,) yet the similarity of symptoms expressed in AD and other forms of

dementia and depression often hinders the diagnosis [38]. In addition, physicians must diagnose patients intermediate

between cognitively normal elderly individuals and those with dementia [36]. This intermediate zone is referred to as

mild cognitive impairment (MCI) and patients diagnosed with MCI are 5-10 times more likely to develop dementia

[36]. That MCI symptoms often precede AD suggests the possibility of detecting AD before its complete onset.

Early detection of AD would provide individuals more time to make special arrangements, and perhaps allow future

preventative treatments to be administered.

The scalp EEG reveals changes in cortical electrical activity associated with normal aging, MCI, and AD. The

most established of these EEG diagnostic techniques analyze changes in the power spectrum. Many researchers have

found that AD patients exhibit increased power in the θ ( � 1 � 4 Hz) and δ ( � 4 � 8 Hz) frequency bands, and decreased

power in the α ( � 8 � 12 Hz) and β ( � 13 � 28 Hz) frequency bands compared to healthy controls [38, 39, 40]. This

“slowing” of the EEG occurs across the scalp with a nearly uniform distribution. Recently researchers have shown that

measures adopted from dynamical systems theory, such as the correlation dimension, reveal decreased complexity of

EEG traces from AD patients [41, 42].

Both the power spectrum and correlation dimension are computed from EEG data collected at individual elec-

trodes; these two measures reveal changes in the spatially localized voltage produced near each electrode. Coupling

measures, on the other hand, reveal changes in the interdependence of EEG data recorded at two different electrodes.

For example, in Section 2.1.2 we defined the ensemble averaged linear coherence between two time series. Researchers

have applied linear coherence measures to EEG data and found that patients diagnosed with AD often exhibit a lower
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(a) (b)

(c)

Figure 2.15: The synchronization measure T
�
x � n � η ��� y � applied to the three electrodes pairs: (a) A versus B, (b) A

versus C, and (c) B versus C. T
�
x � n � η ��� y � was smoothed over a two-dimensional window of size 11 at each time

point. The solid diagonal line corresponds to the location of zero time lag. The horizontal and vertical dashed lines
correspond to the time of stimulus onset. For this figure there are 10 evenly spaced contour levels from 0.01 (white) to
0.19 (black). Note the region of strong synchronization from 40 ms � n � 130 ms in A and 60 ms � n � 110 ms in B.
The synchronization measure T

�
x � n � η ��� y � applied to electrodes C and A from the ECoG ERP experimental data. Note

that the synchronization is elongated in C and is weaker than the synchronization between electrodes A and B. (b) The
synchronization measure T

�
x � n � η ��� y � applied to electrodes C and B from the ECoG ERP experimental data. Note that

the synchronization is weaker than the synchronization between the other electrode pairs.
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(a) (b)

Figure 2.16: The synchronization measure T 
 x � n 	 η � � y  applied to shifted simulated data. In both figures, T 
 x � n 	 η � � y was smoothed over a two-dimensional window of size 11 at each time point. The solid diagonal line in both figures
corresponds to the location of zero time lag. For both figures there are ten evenly spaced contour levels from 0.01
(white) to 0.19 (black). (a) The synchronization measure T 
 x � n 	 η � � y  applied to uniformly shifted simulated data. The
ensembles s and r consist of oscillatory bursts with the same center time. The oscillatory bursts in each ensemble
member pair sk � n � and rk � n � are shifted in time by the same amount, up to � 20 ms, and in the same direction. (b) The
synchronization measure T 
 x � n 	 η ��� y  applied to randomly shifted simulated data. The ensembles s and r consist of
oscillatory bursts with the same center time. The oscillatory bursts in each ensemble member pair sk � n � and rk � n � are
shifted in time by different amounts, up to � 10 ms, and in different directions.
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coherence between electrode pairs than healthy controls [43]. These decreased coherence values are typically local-

ized in both frequency and location (e.g., decreased frontal cortex coupling and central cortex coupling in the θ, α, and

β bands [44], decreased temporofrontal coupling and temporoparietal coupling in the α band [40], decreased temporal

lobe coupling in the α band [45].) Recent measures of nonlinear coupling — as we discussed in Section 2.1.3 — have

been applied to EEG data collected from healthy, MCI, and AD subjects. In [46] the authors apply a synchronization

measure to EEG data collected from these three subject groups and find that cortical interactions from AD patients

decrease in the β band compared to healthy controls.

Here we collaborate with Dr. F. L. Chang at the Fort Wayne Neurological Center, and Drs. D. Hudson and M.

Cohen at UCSF-Fresno to study resting scalp EEG collected from 20 individuals clinically diagnosed to have either

no dementia (7 healthy controls, ages 62 � 14 years, we denote as H), MCI (5 subjects, ages 71 � 5 years), or AD

(8 subjects, ages 81 � 6 years.) In Section 2.6.1 we discuss the clinical diagnosis of these conditions and the data

collection procedure and in Section 2.6.2 we apply three synchronization measures to the EEG data. We show that the

synchronization between EEG time series recorded at electrodes O1 and O2 — above the left and right occipital lobes,

respectively — provides a quantitative means to discriminate AD subjects from healthy and MCI subjects. In Section

2.6.4 we discuss how the results suggest changes in cortical connectivity.

2.6.1 Clinical Diagnosis and Data Collection

Each subject was assigned a clinical diagnosis by a team of physicians at the Fort Wayne Neurological Center.

These diagnoses were based on clinical assessments, neuropsychological tests, psychometric tests, and a medical

history. As part of the assessment, scalp EEG data were collected from each subject. These data are recorded using

the standard 10-20 electrode configuration and a sampling rate of 256 Hz. During the data collection, typically lasting

30 minutes, each subject was instructed to relax and close his or her eyes. Deviations from this behavior, such as eye

movements or sleep, were noted and the associated time intervals were omitted from further analysis. In what follows

we analyze these EEG data in accordance with UCB human subjects guidelines.

2.6.2 Methods of Analysis

The goal of the analysis is to provide a concise, quantitative measure capable of distinguishing between AD, MCI,

and healthy subjects from the scalp EEG data. To do so, we apply three synchronization measures to the EEG data and

determine the nonlinear coupling between time series recorded at two, neighboring electrodes. In this subsection, we

describe the preprocessing of the data and the manipulations we perform on the results of the three synchronization
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measures. We apply these measures to the data in Section 2.6.3.

We start the analysis by choosing two neighboring electrodes (O1 and O2, say) from one subject. For convenience,

we label the time series recorded at the two electrodes x
�
t � and y

�
t � where t � � 0 	 � � � 	 T � is the time index, and T is the

total number of data points collected. We note that to derive the time (in seconds) from the time index, we multiply t

by the sampling interval 1 � 256 s. The preprocessing of x
�
t � and y

�
t � consists of three steps. First, we average reference

the data with respect to the remaining 19 electrodes; we do not include omitted electrodes (e.g., electrodes that lost

electrical contact with the scalp) in the average reference procedure. Second, we bandpass digital filter the data

between 1 Hz and 50 Hz, subtract the mean from each electrode, and scale the data to have a maximum absolute value

of one. Third, we divide x
�
t � and y

�
t � into 120, consecutive, one second intervals (256 index points per interval). We

choose these intervals from simultaneous segments of x
�
t � and y

�
t � . For example, if we choose the first segment in x

�
t �

from 256 � t � 511, then the first segment in y
�
t � is from 256 � t � 511. We label the data in each interval chosen in

this way from x
�
t � and y

�
t � as xi � t � and yi � t � , respectively. We note that the superscript i denotes the ith interval. Finally,

we label the data from x
�
t � and y

�
t � referenced, filtered, fixed zero mean, scaled, and divided into intervals, as x̃i � t �

and ỹi � t � , respectively. In this way, we create an ensemble of measurements. We note that the ensembles constructed

here differ from those analyzed in Section 2.5. In that section, the data collection procedure dictated the ensemble; we

referenced the zero time of each ensemble member to the stimulus onset. For the EEG data of interest in this section,

we extract the data from a continuous time series without time referenced to a stimulus onset.

To determine the coupling between the ensembles x̃i � t � and ỹi � t � we apply three different synchronization mea-

sures defined in Section 2.1.3. The advantage of synchronization measures over traditional techniques of time series

analysis (such as the linear coherence results in [43, 44, 40, 45]) is that synchronization measures detect nonlinear

coupling between two time series. A measure of nonlinear interdependence may be especially important when study-

ing complicated systems, such as the electrical activity produced by the human cortex. It is reasonable to assume

that, because of the nonlinear processing of single neurons and the high density of cortical connections, the EEG does

possess a nonlinear component, (i.e., the EEG cannot be modeled only as a collection of independent oscillators or

modes [47].) To apply these ideas, we must also assume that the EEG is the result of a low dimensional, deterministic

process [24]. Without these assumptions, we may still apply the synchronization measures to characterize the EEG

signal. As in Section 2.5 we do not interpret the results in terms of low dimensional dynamical systems; instead we

apply the synchronization measures to discriminate between the healthy, MCI, and AD subjects.

In what follows we apply the three synchronization measures S 
 x � y  , H 
 x � y  , and P 
 θ  to the data. To compute

S 
 x � y  or H 
 x � y  , we first embed the data x̃i � t � and ỹi � t � from interval i. The embedding procedure creates d-dimensional

vectors X̃ i � t � and Ỹ i � t � from the 1-dimensional vectors x̃i � t � and ỹi � t � , respectively. To construct X̃ i � t � and Ỹ i � t � we must
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determine the delay time τ and the embedding dimension d. Here we do not compute the AMI to find τ nor the

percentage of false nearest neighbors to find d. Instead, we compute S 
 x � y  and H 
 x � y  for different values of d and

τ and show that the results are invariant. In [42] and [41], the authors follow a similar procedure and compute the

correlation dimension for different values of d and τ. For the third measure, we compute the phase synchronization

P 
 θ  between x̃i � t � and ỹi � t � for all intervals i. We note that, for this measure, we do not embed the data.

The result of applying two of the measures — S 
 x � y  and H 
 x � y  — to x̃i � t � and ỹi � t � is the synchronization as

a function of time t and interval i. To provide a concise diagnostic measure of dementia, we make two assumptions

regarding the stationarity of the synchronization results. First, we assume that within each one second interval the

synchronization between x̃i � t � and ỹi � t � remains approximately constant. We may then average the synchronization

values over time t for fixed i. Second, we assume that the synchronization results are stationary over the 120 intervals,

and therefore average the synchronization results across intervals i. Both stationarity assumptions are likely invalid —

the electrical activity of the cortex constantly changes in response to input from, for example, environmental stimuli

and the thalamus. But, we show below that these assumptions do not prevent the goal of this work: to discriminate

between healthy, MCI, and AD subjects. The final result is two scalar values representing the averaged S 
 x � y  and

H 
 x � y  results for each subject. For the third measure, we average P 
 θ  over all intervals and over phases θ between

0 � 3 and � 0 � 3. Here we again assume stationarity of the synchronization result over the intervals. The final result is a

scalar value representing the average (over time and angles) P 
 θ  for each subject.

2.6.3 Data Analysis

Having defined the three measures, we now apply each to the EEG data. We illustrate the results with two

examples. First, we apply the three synchronization measures to the data collected at electrodes O1 and O2, located

near the left and right occipital lobes, respectively. We show that two measures — S 
 x � y  and H 
 x � y  — produce

similar results and significant (or near significant) separation between healthy and AD subjects for different embedding

parameters d and τ. We note that the third measure P 
 θ  is independent of the embedding parameters. Second, we fix

the embedding parameters d � 10 and τ � 1, and compute the synchronization between electrodes P3 and P4 using

each of the measures. In this case, we find no significant separation between the conditions. We find, but do not show,

similar insignificant separation between the three subject groups for three other pairs of interhemispheric electrodes:

C3 and C4, F3 and F4, and FP1 and FP2. We conclude that the AD subjects show decreased synchronization between

the left and right occipital lobes compared to the healthy and MCI subjects.

We start with the application of the synchronization measures to the EEG data collected at electrodes O1 and

O2. We show the results for the embedding parameters d � 10 and τ � 1 in Figure 2.17. For each of the three
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synchronization measures (S 
 x � y  , H 
 x � y  , and P 
 θ  ) we plot the results for the three subject groups (H, MCI, and

AD.) We indicate the mean value for each subject group and condition with an asterisk, and the standard deviation

by the vertical lines extending above and below each asterisk. We also list the synchronization values and standard

deviations in Table 2.1. We note that the three synchronization measures illustrated in Figure 2.17 produce similar

results. Specifically, we find that the average synchronization value for the healthy subjects exceeds the average

synchronization value for the AD subjects. The separation between these two values is statistically significant (t-means

test p � 0 � 05) for two measures: H 
 x � y  and P 
 θ  . We indicate this significant separation by drawing a small horizontal

line one standard deviation above the mean values for the healthy and AD subjects. We note that the separation is near

significance (p � 0 � 08) for S 
 x � y  . We also find that the average synchronization for the MCI subjects is less than that

of the healthy subjects and greater than that of the AD subjects. These differences are not statistically significant except

for the separation between the MCI and AD subjects computed with H 
 x � y  . We indicate this significant separation by

drawing a small horizontal line one standard deviation below the mean values for the MCI and AD subjects.

In Figure 2.18 we show the synchronization measures S 
 x � y  and H 
 x � y  computed with different embedding

parameters d. Here we fix τ � 1 and plot the synchronization results for d � 4 (in squares and dotted lines,) d � 10

(in asterisks and solid lines — as in Figure 2.17,) and d � 16 (in diamonds and dashed lines.) We find that, compared

to the d � 10 results, the mean values of S 
 x � y  decrease for d � 4 and increase for d � 16, while the values of H 
 x � y 
increase for d � 4 and decrease for d � 16. Yet the trend — that the average synchronization values for the healthy

controls exceeds those of the MCI subjects which exceeds those of the AD subjects — is preserved. We find for both

embedding parameters d � 4 and d � 16 that the average synchronization values for the healthy subjects exceeds the

average synchronization values for the AD subjects. This separation is significant for both S 
 x � y  and H 
 x � y  with

d � 4, and only for H 
 x � y  with d � 16. We indicate this significant separation by drawing a small horizontal line one

standard deviation above the mean values for the healthy and AD subjects. We note that the separation between the

healthy and AD subjects is near significance (p � 0 � 09) for S 
 x � y  with d � 16. As for the d � 10 case, the separation

between the MCI and AD subjects is statistically significant only for H 
 x � y  . We indicate this significant separation

by drawing a small horizontal line one standard deviation below the mean values for the MCI and AD subjects. Thus,

we may discriminate between the healthy and AD subjects with the synchronization measures S 
 x � y  and H 
 x � y  , and

the MCI and AD subjects with H 
 x � y  using the embedding parameters d
� � 4 	 10 	 16 � and τ � 1.

We now perform a similar analysis for the embedding parameter τ. Here we fix d � 10 and plot in Figure 2.19 the

synchronization results for τ � 1 (in asterisks and solid lines — as in Figure 2.17,) τ � 4 (in squares and dotted lines,)

and τ � 8 (in diamonds and dashed lines.) We find that, as τ increases, the values of S 
 x � y  increase and the values

of H 
 x � y  decrease. For τ � 4, the separation between the healthy and AD subjects is significant for both measures,

and the separation between the MCI and AD subjects is significant only for H 
 x � y  . For the τ � 8 case, the separation
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between the healthy and AD subjects is significant for both measures, and the separation between the MCI and AD

subjects is significant only for S 
 x � y  . In this case, the H 
 x � y  result is near significance: p � 0 � 06. We indicate these

significant separation following the prescription we use to create Figure 2.18. We note that the trend illustrated in

Figures 2.17 and 2.18, that the average synchronization values for healthy controls exceeds those for the MCI subjects

which exceeds those for the AD subjects, is violated for τ � 8. In this case, the average synchronization values for the

MCI subjects exceeds those of the healthy controls. We conclude that the synchronization measures S 
 x � y  and H 
 x � y 
discriminate between the healthy and AD subjects, and the MCI and AD, subjects for d near 10 and τ near 1. In what

follows, we fix d � 10 and τ � 1.

In Figure 2.20 we show the synchronization results computed for the EEG data collected at electrodes P3 and P4.

We plot these results in the same way as those shown in Figure 2.17. For this interhemispheric electrode pair, we find

no significant differences in the synchronization results for the three subject conditions. We find, but do not show,

similar results when we compute the synchronization between electrodes: C3 and C4, F3 and F4, and FP1 and FP2.

None of these electrode pairs possess significant differences in coupling between the three subject conditions. We

conclude that the only interhemispheric electrodes with significant synchronization differences between the healthy

and AD, and MCI and AD conditions, are electrodes O1 and O2.

Table 2.1: The value and standard deviation of the synchronization between electrodes O1 and O2 averaged over
subject groups. We mark the statistically significant separations (p � 0 � 05) between the healthy and AD subjects, and
the MCI and AD subjects with an asterisk ( � ) and double asterisk ( ��� ), respectively.

S 
 x � y  H 
 x � y  [ � , ��� ] P 
 θ  [ � ]
H 0 � 35 � 0 � 08 0 � 37 � 0 � 08 0 � 27 � 0 � 10

MCI 0 � 31 � 0 � 04 0 � 36 � 0 � 02 0 � 19 � 0 � 13
AD 0 � 28 � 0 � 05 0 � 25 � 0 � 08 0 � 15 � 0 � 5

Table 2.2: The value and standard deviation of the synchronization between electrodes P3 and P4 averaged over subject
groups. There are no statistically significant differences.

S 
 x � y  H 
 x � y  P 
 θ 
H 0 � 23 � 0 � 04 0 � 19 � 0 � 05 0 � 12 � 0 � 05

MCI 0 � 23 � 0 � 02 0 � 21 � 0 � 07 0 � 15 � 0 � 09
AD 0 � 21 � 0 � 04 0 � 16 � 0 � 02 0 � 13 � 0 � 13

2.6.4 Discussion

In Section 2.6.3 we applied three synchronization measures to EEG data collected from three subjects groups:

healthy controls, patients diagnosed with MCI, and patients diagnosed with AD. We showed that the synchronization

between the EEG data recorded at electrodes O1 and O2 decreased for the AD subjects compared to the healthy

controls. This decrease was significant for two of the measures — H 
 x � y  and P 
 θ  — and near significance for
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S 
 x � y  . We computed the S 
 x � y  and H 
 x � y  measures with different embedding parameters and showed that the

results are robust. Finally, we reported no significant differences in the synchronization values measured at other

interhemispheric electrode pairs (e.g., P3 and P4) for the three subject groups.

The methods of analysis we present differ from those used in previous studies. Here we employ measures of non-

linear coupling that operate in the time domain. A common coupling measure for the study of AD is the coherence —

a linear measure that operates in the frequency domain. Linear coherence analysis (and some nonlinear synchroniza-

tion analysis, as in [46]) reveals the coupling between EEG data within different frequency bands. Here, we bandpass

filter the EEG time series between 1 Hz and 50 Hz, and apply the three synchronization measures to the data within

this wide frequency range. Therefore, we cannot use the synchronization results to determine changes in coupling

confined to specific frequency intervals. Instead we consider the nonlinear coupling between the EEG data throughout

many frequency bands.

We may interpret the results in Section 2.6.3 in terms of the disconnection model of AD. To do so, we use the

synchronization results to infer changes in cortical connectivity. For example, we showed that the synchronization

between EEG data recorded at electrodes O1 and O2 decreased significantly for AD subjects compared to healthy

controls. We infer from this result a decreased functional connectivity, or disconnection, between between the left

and right occipital lobes. Such changes in functional connectivity may occur in many ways. At the cortex, the death

of pyramidal neurons and the associated cortico-cortical connections decreases functional connectivity. In subcortical

regions, the loss of white matter decreases functional connectivity. In this study, we infer a disconnection only between

the left and right occipital lobes. We do not detect losses in functional connectivity between other interhemispheric

regions.

We note that the synchronization results do not indicate the physiological changes associated with decreased

interdependence between the left and right occipital lobes. One method to identify these physiological changes may

be a post-mortem examination. Such examinations are the gold-standard for the diagnosis of AD. In this study, no

post-mortem examinations were performed. Thus an uncertainty results both in the clinical diagnosis and in the

interpretation of the synchronization results. Most studies that distinguish between MCI and AD suffer from this

limitation. In the future synchronization measures, combined with traditional linear measures (e.g., power spectra

and linear coherence), may provide physicians with additional diagnostic tools perhaps as reliable as the current gold-

standard.

Another method to identify the physiological changes associated with a decreased synchronization may be the

development of a mathematical model. For example, given a mathematical model of human cortical electrical activity,

one may find that a decrease in a particular model parameter (the number of synaptic connections between neurons,
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Figure 2.17: The synchronization values for the three measures S 
 x � y  , H 
 x � y  , and P 
 θ  between electrodes O1 and
O2 averaged over the three subject groups: healthy (H), mild-cognitive impairment (MCI), and Alzheimer’s disease
(AD). We plot the results for the three synchronization measures S 
 x � y  , H 
 x � y  , and P 
 θ  in the left, center, and right
of the figure, respectively. We indicate the average synchronization values by asterisks and the standard deviation
within each subject group by vertical lines above and below each asterisk. The synchronization values and standard
deviations are also listed in Table 2.1. We indicate statistically significant (p � 0 � 05) separations between the H and
AD values by drawing a small horizontal line one standard deviation above the mean synchronization values for the
healthy and AD subjects. We indicate statistically significant (p � 0 � 05) separations between the MCI and AD values
by drawing a small horizontal line one standard deviation below the mean synchronization values for the MCI and AD
subjects.

say) results in a decreased synchronization of the model dynamics. Comparing this synchronization result with those

determined from scalp EEG data, one may find that the two agree. If so, one may then associate the decreased

synchronization observed in the EEG data with a change in a model parameter (here, a change in the number of

synaptic connections.) In this way the mathematical model serves to relate the observed data to a physiological

change.

Unfortunately, a mathematical model of human cortical electrical activity that can mimic the progression of AD

does not exist. At best, the current mathematical models can approximate only the simplest cases of cortical activity.

Two of these simple cases represent pathological brain states: the transition to unconsciousness induced by anesthesia

and seizures. In the next chapter, we describe a mathematical model of the latter.
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Figure 2.18: The synchronization values S 
 x � y  and H 
 x � y  computed for different embedding parameters between
electrodes O1 and O2 averaged over the three subject groups: healthy (H), mild-cognitive impairment (MCI), and
Alzheimer’s disease (AD). Here we fix τ � 1 and set d � � 4 	 10 	 16 � . We indicate the mean values and standard
deviations for d � 4 by squares and dotted lines, respectively; for d � 10 by asterisks and solid lines, respectively; and
for d � 16 by diamonds and dashed lines, respectively. We indicate statistically significant separations between the
healthy and AD subjects, and the MCI and AD subjects in the same way as that used to create Figure 2.17.

Figure 2.19: The synchronization values S 
 x � y  and H 
 x � y  computed for different embedding parameters between
electrodes O1 and O2 averaged over the three subject groups: healthy (H), mild-cognitive impairment (MCI), and
Alzheimer’s disease (AD). Here we fix d � 10 and set τ � � 1 	 4 	 8 � . We indicate the mean values and standard
deviations for τ � 1 by asterisks and solid lines, respectively; for τ � 4 by squares and dotted lines, respectively; and
for τ � 8 by diamonds and dashed lines, respectively. We indicate statistically significant separations between the
healthy and AD subjects, and the MCI and AD subjects in the same way as that used to create Figure 2.17.
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Figure 2.20: The synchronization values between electrodes P3 and P4 averaged over the three subject groups: healthy
(H), mild-cognitive impairment (MCI), and Alzheimer’s disease (AD). We plot the results for the three synchronization
measures S 
 x � y  , H 
 x � y  , and P 
 θ  in the left, center, and right of the figure, respectively. For the three measures, we
find no statistically significant separations between the three subject groups.
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Chapter 3

Model

3.1 Introduction

In Chapter 2 we applied measures of linear and nonlinear coupling to EEG and ECoG data. We interpreted the

results to infer connectivity changes between cortical regions and to develop crude models of cortical interactions.

However, we could only speculate how these coupling results related to physiological changes within the cortex. For

example, in Section 2.5 we could not relate the change in synchronization between two cortical regions to, say, a

change in the density of synaptic connections in the cortex. To connect the EEG and ECoG data (and its analysis) to

the physiology of the cortex, we develop a mathematical model.

In this chapter, we describe a mathematical model of the mesoscopic electrical activity recorded at the human

cortex. We employ a recently developed continuum model of cortical electrical activity, which consists of a system

of stochastic partial differential equations (SPDEs.) We use this model to help us understand a pathological instance

of cortical electrical activity: that recorded during seizure. We choose to model the electrical activity of the seizing

human cortex for three reasons. First, during a seizure, the cortex enters an organized state in which many neurons act

in unison. We find an analysis of this organized state simpler than that of the typical “disorganized” cortex. Second,

physicians often record ECoG data from epileptic subjects before performing resective surgery. Thus, observational

data to compare with the model are available. Third, the electrical activity of the seizing cortex (although poorly

understood) has been studied for decades. Therefore, numerous other models exist to which we can compare the

dimensionless SPDEs.

The organization of this chapter is as follows. In Section 3.2 we discuss ictal ECoG data recorded from four
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epileptic subjects [48, 49]. In Section 3.3 we define the model equations — the dimensionless SPDEs we utilize here

— and the variable of principal interest: the excitatory mean soma potential he. In Section 3.4 we consider a simplified

version of the SPDEs that possesses neither spatial variance nor stochastic input; we call this system the dimensionless

ordinary differential equations (dimensionless ODEs). In Sections 3.4.1 and 3.4.2 we compute bifurcation diagrams

for the dimensionless ODEs at two different parameter values. We show that in both cases oscillatory activity (as

expected during a seizure) occurs. For typical parameter values, the oscillatory activity is unstable and short-lived.

For other parameter values (which may be consistent with the seizing cortex) the oscillatory activity is stable and

long-lived. In Section 3.5 we analyze the complete dimensionless SPDEs. We show how results from this system

agree with results from the simpler dimensionless ODEs, and that traveling wave solutions exist. In Section 3.6 we

compare the model solutions with the ECoG recordings, and show that the two agree in two important ways during

seizure. We conclude that, for certain parameter values, the dimensionless SPDEs are a valid model of the electrical

activity of the seizing human cortex. In Section 3.7 we show three methods for controlling and aborting seizure-like

oscillations in the model, and finally in Section 3.8 we illustrate other parameter changes that make the model “seize”

[50, 49]. Some material in this chapter is reprinted with permission from M. A. Kramer, H. E. Kirsch, and A. J. Szeri,

Journal of the Royal Society Interface, 2, 113-127, 2005.

3.2 Observational Data: ECoG Seizure Recordings

The cellular mechanisms of a seizure have been extensively studied and some general microscopic characteristics

have been deduced [51]. Preceding a seizure, thousands of individual neurons in the seizure focus (the brain region

where a seizure begins, also known as the epileptogenic zone) undergo depolarization shifts followed by an afterhyper-

polarization. As long as this behavior is confined to the seizure focus, there may be no clinical manifestation (although

this synchronous activity can be detected as an interictal spike or a sharp wave in the EEG or ECoG.) Gradually, as

the seizure develops, the magnitude of the afterhyperpolarization decreases and individual neurons generate nearly

continuous action potentials. The inhibition surrounding the seizure focus weakens, the seizure spreads to other corti-

cal neurons, and a clinical seizure occurs. Here we will not consider this microscopic behavior of individual neurons.

Nor will we consider ictogenesis (the initiation of the seizure, which may occur in deeper brain regions.) Instead,

we investigate the mesoscopic characteristics of seizure activity on the cortical surface as made manifest in subdural

ECoG recordings.

Large amounts of ECoG data are often recorded from the seizing cortex (i.e., ictal data) as part of clinical care of

patients with intractable epilepsy. These patients — whose seizures do not respond well to drug treatments — may
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undergo surgery to remove a region of cortex that is believed to contain the seizure focus. Such resective surgery offers

a chance to eliminate or ameliorate the seizures. In the process of planning such surgery, clinicians must accurately

locate the seizure focus and identify any surrounding areas of functional cortex that should be preserved to minimize

post-operative deficits. If necessary, in order to define the seizure focus more precisely with respect to structural

and functional anatomy, clinicians may implant subdural electrodes on the brain surface for extended time periods

(typically one week) in order to obtain recordings during seizures and locate the seizure onset. The electrodes are

placed over the region of cortex suspected to contain the seizure focus based on: 1) semiologic features of the patient’s

seizures (i.e., the observable features of the seizure, such as eye deviation or limb jerking), 2) scalp EEG recordings

made during typical seizures, 3) abnormalities observed in the ECoG recorded intraoperatively at the time of electrode

implantation (i.e., interictal recordings), or 4) abnormalities seen on brain images. After the electrodes are implanted

and the patient experiences his or her typical seizures, physicians locate the seizure focus through visual analysis of

the ECoG recordings and formulate the surgical plan.

In subsections 3.2.1 - 3.2.4 we consider ictal ECoG data collected from four human subjects. Each subject

suffered from intractable epilepsy and underwent electrode implantation as part of his or her care at the University of

California, San Francisco (UCSF) Epilepsy Center. For each subject, a surgeon implanted one or two 8 � 8 electrode

grids (10 mm spacing in the vertical and horizontal directions) and one or two 6-electrode subdural strips (also 10 mm

spacing.) All electrodes were 4 mm diameter platinum-iridium discs embedded in a 1 � 5 mm thick silastic sheet with

2 � 3 mm diameter exposed surfaces and 10 mm spacing between the discs. To observe multiple seizures, physicians

recorded ECoG data continuously at 400 Hz for several days from each subject, and seizing intervals were identified

by a board-certified neurologist. In all cases, UCSF and UCB human subjects guidelines were observed.

We begin the analysis of the ECoG data in Section 3.2.1. In this section, we introduce the methods of analysis

we use to calculate two quantities of interest: f0 the frequency of maximum power during seizure, and v the speed

of electrical potential propagation across the cortex during seizure. We compute these quantities for each of the

four subjects, and in Section 3.6 we compare these observational results with identical quantities derived from the

mathematical model.

3.2.1 Subject 1

The first subject we consider — Subject 1 — is a 49 year old male who had medically refractory complex partial

seizures that began with staring and manual automatisms and frequently generalized into convulsions. Prior scalp

EEG recordings had suggested that his seizures originated in the right temporal lobe, but MRI showed left mesial

temporal sclerosis, raising the possibility that his seizures arose from the left temporal lobe instead. In order to better
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(a)

(b)

Figure 3.1: ECoG data recorded from Subject 1 at two neighboring subdural electrodes (separated by 10 mm) located
on the surface of the right lateral frontal lobe. We label the time series X (lower trace in each figure) and Y (upper
trace in each figure). To ease visual comparison we subtract 400 µV from X and add 400 µV to Y . (a) Here we show
50 s of ECoG activity recorded at two electrodes. There are three regions of ECoG activity: normal ECoG activity (0
s � t � 14 s), followed by voltage suppression (14 s � t � 17 � 5 s), and seizure (t � 17 � 5 s). (b) Here we show the data
from (a) for 22 s � t � 32 s. We note that initially oscillations in X and Y have the same shape, and that oscillations in
X are of larger magnitude and appear to precede those in Y . For t � 27 s the relationship between X and Y becomes
more complicated.
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(a) (b)

Figure 3.2: The windowed power spectra (WPS) for the two ECoG time series shown in Figure 3.1. Here subfigures
(a) and (b) correspond to the time series X and Y in Figure 3.1, respectively. The WPS are plotted in logarithmic
greyscale with black and white denoting regions of high power (greater than 30 µV2) and low power (less than 0 � 03
µV2), respectively. The vertical line in the figure at t � 17 � 5 s denotes the approximate onset of seizure.

lateralize seizure onset, subdural and depth electrodes were implanted, with subdural electrode strips placed over the

left and right lateral frontal regions and the left and right subtemporal regions. In addition bilateral hippocampal depth

electrodes were placed, though we will not discuss these hippocampal recordings here. After electrode implantation,

the subject was brought to the video-telemetry unit, where his antiseizure medications were slowly withdrawn. ECoG

data were recorded continuously at 400 Hz from all electrodes for five and a half days. During this time, observations

of eight typical seizures were captured. These recordings were of good quality and were determined, based on clinical

review by board-certified clinical neurophysiologists, to show seizure onset from right medial temporal regions, with

a pattern characteristic of seizures arising from this region. The subject went on to have a right anterior temporal

lobectomy based on these clinical data.

ECoG epochs containing six of the subject’s seizures were extracted from the clinical record. (Two of the seizure

data files were corrupted and no longer available for extraction.) In Figure 3.1 we show ECoG data leading up to and

during a seizure recorded at two neighboring subdural electrodes above the right lateral frontal region. We refer to

the time series recorded at these two electrodes as X (lower curve) and Y (upper curve). The ECoG data shown in

this figure possess three notable features. First, we observe that large amplitude voltage oscillations occur during the

seizure (t � 17 � 5 s). We determine the frequency of these oscillations by computing the windowed power spectrum

(WPS) of X and Y . To compute the WPS we partition the 50 s of data plotted in Figure 3.1 into 100 overlapping

windows of 1 � 0 s duration and 0 � 5 s overlap. For example, the first window includes data for 0 � 0 s � t � 1 � 0 s, the
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Figure 3.3: The windowed cross correlation between the two ECoG time series shown in Figure 3.1. The WCC are
plotted in linear greyscale with regions of strong correlation (greater than 0 � 8) and anticorrelation (less than � 0 � 8)
denoted by black and white, respectively. The vertical line in the figure at t � 17 � 5 s denotes the approximate onset of
seizure. The horizontal line in the figure denotes the zero lag.

second 0 � 5 s � t � 1 � 5 s, the third 1 � 0 s � t � 2 � 0 s, and so on. We then multiply the data in each window by the

Hanning function and compute the power spectrum. We plot the WPS results for X and Y in Figures 3.2(a) and 3.2(b),

respectively. The horizontal axis in each figure corresponds to the center times of the windows, and the solid vertical

line to the time of seizure onset. We note, in the seconds preceding the seizure, the suppression of power at both

electrodes for all frequencies below 55 Hz. After seizure onset, the regions of largest power occur at frequencies

between 1 Hz and 10 Hz. The second notable feature in the observed data is the abrupt transition from normal ECoG

activity (for t � 14 s) to seizing activity (for t � 17 � 5 s). This can be observed both in the original time series data

(Figure 3.1(a)) and in the WPS (Figure 3.2). Lastly, we find that the oscillations recorded at the two electrodes are

slightly out of phase. One may deduce this conclusion directly from Figure 3.1(b); we note that peaks in the oscillations

in X (lower trace) appear to precede those in Y (upper trace) until t � 29 s. At this point, the relationship between the

two time series becomes more complicated. To determine how the phase relationship between these two electrodes

changes over time, we utilize a linear coupling measure defined in Section 2.1.2: the windowed cross correlation

(WCC). In a manner similar to the WPS calculation, we partition the data into overlapping windows, and compute

the cross correlation between X and Y in each window. We show the results in Figure 3.3. Following seizure onset

(denoted by the vertical line in the figure) two regions of strong correlation occur: the first from 17 � 5 s � t � 27 s, and

the second from 28 s � t � 50 s. In the first region, X leads Y (i.e., the lag time is positive) while in the second region,

X lags Y (i.e., the lag time is negative but near zero).



3.2. OBSERVATIONAL DATA: ECOG SEIZURE RECORDINGS 56

To compare the observed ECoG data with the model solutions we use the WPS and WCC results to compute two

quantities: 1) the average frequency at which the power spectrum achieves its maximum during seizure, and 2) the

average speed at which the voltage peaks propagate between two subdural electrodes during seizure. We denote these

quantities f0 (the peak frequency) and v (the propagation speed), respectively. Here we discuss the computation of f0

and v for Subject 1. We apply the same computations to determine f0 and v for the other three subjects in Sections

3.2.2 - 3.2.4.

To determine f0, we consider data collected at the same two subdural electrodes (e.g., X and Y ) for each of six

seizures recorded from Subject 1; part of one such seizure is shown in Figure 3.1. We first low pass filter the ECoG

data X and Y below 55 Hz, and then compute the WPS. For example, in Figure 3.2(a) we show the WPS for the time

series X recorded during a typical seizure. In this case the maximum power occurs between 1 Hz and 10 Hz following

seizure onset (at t � 17 � 5 s). We then calculate the average frequency of maximum power in the WPS for the duration

of the seizure (here, for 17 � 5 s � t � 50 s.) Finally, we average this frequency of maximum power over the seizures

(in this case, six.) We define this quantity — averaged over time and each seizure as f0. We list f0 and its standard

deviation for both electrodes (i.e., X and Y ) from Subject 1 in the second column of Table 3.1. We find for f0 the

values 4 � 1 � 0 � 1 Hz and 4 � 8 � 0 � 2 Hz, for X and Y , respectively.

Table 3.1: The average frequency of maximum power f0 and average propagation velocity v in I1 and I2 for the ECoG
time series data recorded from Subject 1 during seizure. We label the neighboring electrodes X and Y . We compute v
from Y to X . To compute the uncertainty in the average, we assume the uncertainties in f0 and v for each seizure are
independent and random and propagate the uncertainties in the standard way.

ELECTRODE f0 [Hz] v from b in I1 [m/s] v from b in I2 [m/s]
X 4 � 1 � 0 � 1 —- —-
Y 4 � 8 � 0 � 2 0 � 5 � 0 � 1 � 3 � 1

Propagating waves of electrical activity have been observed in numerous mammalian systems and during seizures

in rats and in cats [52, 53, 54]. Here we assume that, during each seizure, voltage peaks propagate between the two

neighboring subdural electrodes (with time series X and Y .) That this assumption is valid can be inferred from the data

shown in Figure 3.1(b). We note for 17 � 5 s � t � 27 s the similarity of the wave forms in X and Y and that peaks in X

precede peaks in Y . To determine the average propagation speed v of these voltage peaks, we first low pass filter the

time series below 55 Hz. We then compute the WCC between X and Y , as shown in Figure 3.3. At each time in the

WCC, a maximum correlation occurs for some lag time. For example, at t � 20 s, the maximum correlation occurs at

a lag of approximately 25 ms. We compute this lag at which the maximum correlation occurs for the duration of the

seizure. We find that, in general, the lag values are consistent over two temporal intervals. The first interval includes

the time of seizure onset and the ten seconds that follow. The second includes all later times (i.e., all times ten seconds

after the seizure onset until seizure termination.) For the data shown in Figure 3.3 the two time intervals over which



3.2. OBSERVATIONAL DATA: ECOG SEIZURE RECORDINGS 57

the lag of maximum correlation is consistent are: I1 � 17 � 5 s � t � 27 s, and I2 � 28 s � t � 50 s. Such intervals can

be chosen for five seizures of Subject 1. For the sixth seizure, the lag values of maximum correlation are near zero

for all times following seizure onset. Therefore, we do not include this seizure in our analysis of v. We determine v

in each interval by dividing the known electrode separation (10 mm) by the average lag in each interval and averaging

this velocity over the (in this case, five) seizures. We list v and its standard deviation for Subject 1 in the third and

fourth columns of Table 3.1. We note that for one seizure the average lag is 0 ms in I2 and therefor v is infinite. We

exclude this result from the calculation of v in I2. We find for v the values 0 � 5 � 0 � 1 m/s and � 3 � 1 m/s, in I1 and I2,

respectively. In the next three subsections, we use the techniques applied here to compute f0 and v for three additional

subjects. We summarize these results and compare them to similar quantities determined from the mathematical model

in Section 3.6.

3.2.2 Subject 2

In this section, we analyze ECoG data recorded from a 28 year old man. To help localize the seizure focus before

performing resective surgery, physicians implanted an 8 � 8 electrode grid over the left frontotemporal region and two,

6-electrode subdural strips curled under the left anterior and left posterior temporal lobe. ECoG data, recorded contin-

uously for 15 days, captured two subclinical seizures. Both seizures arose from the proximal ends of the subtemporal

strips.

To compare the observational and model results we follow the procedure in Section 3.2.1 to determine f0 and

v. For Subject 2 we analyze ECoG data recorded from one region of seizure initiation identified by the physicians;

namely, we consider the three most proximal electrodes on the subdural strip that traverses the inferior aspect of the

temporal lobe with the most distal end approximating the parahippocampal gyrus. For convenience, we label these

neighboring electrodes a, b, and c, with c the most proximal of the three. We begin the analysis by bandpass filtering

the data between 1 � 0 Hz and 55 � 0 Hz, and then computing the WPS for each electrode. We illustrate these WPS results

for the second subclinical seizure in Figure 3.4. Subfigures (a), (b), and (c) correspond to electrode labels a, b, and c,

respectively. Here we plot power in logarithmic grey scale with powers greater than 50 µV2 in black and less than 0 � 3

µV2 in white. We show time in seconds along the horizontal axis and frequency in Hertz along the vertical axis. This

subclinical seizure begins at t � 15 s; we denote this time with a (red) vertical line in each subfigure. The subclinical

seizure continues until t � 49 s; we denote the end of the subclinical seizure with a (red) vertical line in each subfigure.

We find that of the three electrodes the middle electrode — shown in Figure 3.4(b) — displays the most power (i.e.,

the darkest regions) during the subclinical seizure. We also note the abrupt decreases in power below 50 Hz both

preceding and following the subclinical seizure.
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(a) (b)

(c)

Figure 3.4: The windowed power spectra (WPS) for three ECoG time series recorded during the second subclinical
seizure of Subject 2. Subfigures (a), (b), and (c) correspond to neighboring electrodes along a subdural strip with
(c) the most proximal. The WPS are plotted in logarithmic greyscale with black and white denoting regions of high
power (greater than 50 µV2) and low power (less than 0 � 3 µV2), respectively. For the purpose of visual presentation,
we smooth the WCC results with a boxcar average of size 1 � 5 s in time and 3 Hz in frequency. The vertical (red)
lines at t � 15 s and t � 49 s denote the approximate beginning and end of the seizure. We compute the frequency of
maximum power at each electrode between the two vertical lines.
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(a) (b)

Figure 3.5: The windowed cross correlation (WCC) between the ECoG time series recorded from the second sub-
clinical seizure of Subject 2. We show in subfigures (a) and (b) the WCC between electrodes b and a, and b and c,
respectively. The WCC are plotted in linear greyscale with regions of strong correlation (greater than 0 � 8) and anti-
correlation (less than � 0 � 8) denoted by black and white, respectively. We denote the seizure onset with a solid vertical
(red) line and the interval I2 between the dashed vertical (purple) lines. The (blue) horizontal line in the figure denotes
the location of zero lag.

To compute f0, we determine the average frequency of maximum power during the subclinical seizure. We briefly

discuss this procedure for the most proximal electrode whose WPS we show in Figure 3.4(c). We start by locating the

time interval of the subclinical seizure, here 15 s � t � 49 s, between the vertical (red) lines in the figure. At each

time point within this interval, we locate the frequency of maximum power. For example, near t � 25 s, we find the

maximum power occurs at 13 Hz. We then average these frequencies of maximum power determined at each time

point over the duration of the seizure and for the two subclinical seizures. The result is f0. We repeat this calculation

for the other two electrodes and list these results in the second column of Table 3.2. We find that the mean values for

f0 lie between 5 � 2 Hz and 8 � 1 Hz with a maximum uncertainty in the mean of 0 � 4 Hz.

Table 3.2: The average frequency of maximum power f0 and average propagation velocity v in I1 and I2 for the ECoG
time series data recorded from Subject 2 during his two subclinical seizures. We label the neighboring electrodes a,
b, c, with c most proximal. We compute v from the middle electrode b. To compute the uncertainty in the average,
we assume the uncertainties in f0 and v for each seizure are independent and random and propagate the uncertainties
in the standard way. For comparison, we list the approximate values for f0 and v determined from the mathematical
model in the last row [48].

ELECTRODE f0 [Hz] v from b in I1 [m/s] v from b in I2 [m/s]
a 7 � 6 � 0 � 3 � 0 � 6 � 0 � 2 � 1 � 7 � 0 � 7
b 5 � 2 � 0 � 3 — —
c 8 � 1 � 0 � 4 7 � 12 3 � 4 � 0 � 6

Model � 10 � 2 � 2
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The second quantity we determine is the speed of wave propagation v between the middle electrode b and its two

neighboring electrodes a and c. To do so, we first bandpass filter the data between 1 � 0 Hz and 55 � 0 Hz. We then

compute the WCC between electrodes b and a, and b and c. We show the results for the second subclinical seizure in

Figure 3.5 where we plot the WCC between b and a, and b and c in Figures 3.5(a) and 3.5(b), respectively. In each

figure we plot the correlation as a function of time (in s) and time lag (in ms), and indicate the seizure onset with a

vertical (red) line, and the location of zero lag with a horizontal (blue) line. We show the correlation in linear grey

scale, with black denoting regions of correlation greater than 0 � 8 and white denoting regions of anti-correlation less

than � 0 � 8. We found in Section 3.2.1 that two intervals of wavelike character occurred in the ECoG data recorded

from that subject. The first — I1 — began at seizure onset and lasted for 10 s. The second — I2 — began 10 s after

seizure onset and ceased at seizure termination. The same appears to be true here. From Figure 3.5(a) one notes that

the WCC between b and a is not consistent with any time lag in I1 (i.e., for 15 s � t � 25 s.) Only in I2 (i.e., for

25 s � t � 49 s, between the two vertical dashed (purple) lines in Figure 3.5(a)) is the correlation between b and a

significant. For electrodes b and c — whose WCC we show in Figure 3.5(b) — we find significant correlations in both

I1 and I2.

To compute v in both intervals, we first determine the time lag of maximum correlation within each window in I1

(the interval shown between the vertical solid (red) line and the left, vertical dashed (purple) line in Figure 3.5) and in

I2 (the interval shown between the vertical dashed (purple) lines in Figure 3.5.) For example, in Figure 3.5(a) we find

that at t � 36 s in I2 the time lag of maximum correlation between electrodes b and a occurs near � 5 ms. We repeat

this calculation for all windows within each interval and average the resulting time lags of maximum correlation over

the interval. Then we divide the electrode separation (approximately 10 mm) by the average time lag to determine

v in I1 and I2. We note that here we determine only the one-dimensional component of v along the direction of the

subdural electrode grid. We perform this analysis on both subclinical seizures and average the resulting values for v.

We list the results for both electrode pairs in I1 and I2 in the third and fourth columns of Table 3.2, respectively. We

note that in I1 the magnitudes of the observational results range from 0 � 6 m/s to 7 m/s with maximum uncertainty in

the mean of 12 m/s. We find that in I2 the magnitudes of the observational results range from 1 � 7 m/s to 3 � 4 m/s with

a maximum uncertainty in the mean of 0 � 7 m/s. For both intervals, we find that v from b to a is negative, while v from

b to c is positive (although we again note the large uncertainty in I1 between electrodes b and c.) Thus, during seizure

a component of the wave appears to propagate in the proximal direction, from electrodes a to b to c.



3.2. OBSERVATIONAL DATA: ECOG SEIZURE RECORDINGS 61

3.2.3 Subject 3

The third subject we consider is 37 year old woman with an 8 � 8 electrode grid over her left frontotemporal

region, a 6-contact electrode strip over her left suborbital frontal lobe, and two, 6-contact left hippocampal depth

electrodes. Physicians recorded ECoG data continuously from this subject for five days and detected nine seizures.

Each seizure began near the distal end of both depth electrodes in the hippocampus and, approximately 15 s later, were

seen on the electrode grid on the cortical surface.

Here we consider only the electrical activity recorded by the electrode grid, since the model applies only to seizure

propagation on the cortical surface. In what follows, we investigate a 3 � 3 subgrid of electrodes located on the lateral

aspect of the middle to posterior left temporal lobe, abutting the temporo-occipital junction. To help illustrate the

location of this electrode subgrid, we show the craniotomy for this subject in Figure 3.6(a). Here the subject’s left

frontal lobe is visible at the left of the figure. We enclose six electrodes from the 3 � 3 subgrid with three yellow lines;

the other three electrodes are hidden beneath the edge of the incision.

To determine f0 we follow the procedure described for Subject 1 in Section 3.2.1. For each of the nine electrodes

in the 3 � 3 subgrid, we compute the WPS and determine the average frequency of maximum power during the seizing

interval. We repeat this analysis for eight of the subject’s seizures (we were unable extract data for the ninth seizure)

and average the results over the seizures to determine f0 at each electrode. We show the results for the 3 � 3 subgrid

in Figure 3.6(b). To orient this subgrid on the boxed region of the craniotomy, the reader may rotate Figure 3.6(b)

counterclockwise by approximately 45 � . We illustrate the results for f0 by plotting at each grid position a circle whose

radius corresponds to the mean value of f0 at the electrode. We also write the value of f0 (in Hz) and the uncertainty

in the mean within each circle. We find values for f0 between 7 � 2 Hz and 10 � 9 Hz, and a maximum uncertainty in the

mean of 0 � 2 Hz.

Now we determine v. In Sections 3.2.1 and 3.2.2, we computed the component of v in one spatial dimension —

along the direction of the subdural electrode strip — for Subject 1 and Subject 2, respectively. In this section, we

determine the components of v along the two spatial dimensions of the electrode grid for Subject 3. To do so, we

compute the WCC between each electrode of the 3 � 3 subgrid and its (three, five, or eight) neighbors. We follow

the procedure in Section 3.2.1 and determine the time lag of maximum correlation in the two intervals I1 and I2.

We average these time lags within each interval and across the eight seizures, and divide the electrode separation (10

mm in the horizontal and vertical directions, or 14 � 1 mm in the diagonal directions) by this result to compute v in I1

and I2 for each pair of neighboring electrodes. We show the results for v in I1 and I2 in Figures 3.7(a) and 3.7(b),

respectively. The spatial arrangement of the results shown in these figures and Figure 3.6(b) are identical. Here we

plot an arrow connecting each electrode — denoted by a filled black circle — with its neighbors if the uncertainty in
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(a) (b)

Figure 3.6: (a) Craniotomy for Subject 3. The left frontal lobe is visible at the left of the figure. We indicate the
location of six electrodes from the 3 � 3 subgrid between the three yellow lines. (b) Results for f0 from Subject 3
recorded from the 3 � 3 electrode subgrid on the lateral aspect of the middle to posterior left temporal lobe, abutting
the temporo-occipital junction. To orient (b) on (a), rotate (b) counterclockwise by approximately 45 � . The radius of
the circle corresponds to the mean value of f0. We write the mean and uncertainty in f0 (in Hz) within each circle.

(a) (b)

Figure 3.7: Results for v from Subject 3 recorded from the 3 � 3 electrode subgrid on the lateral aspect of the middle to
posterior left temporal lobe, abutting the temporo-occipital junction. The spatial arrangement of the results is identical
to that shown in Figure 3.6(b). If the uncertainty in v is less than ten times the magnitude of v between two electrodes,
then we draw an arrow connecting the two electrodes. We indicate the direction of v with the arrow and write the mean
value of v and its standard deviation along the line segment. If the mean value of v exceeds one standard deviation
from zero, then we draw the line segment solid and the arrowhead filled. Otherwise, we draw the line segment dashed
and the arrowhead unfilled. (a) v in I1. (b) v in I2.



3.2. OBSERVATIONAL DATA: ECOG SEIZURE RECORDINGS 63

v is less than ten times the magnitude of v between the two electrodes. For example, in Figure 3.7(a) we do not draw

an arrow between the electrode in the lower left corner and its neighbor to the right; for this electrode pair, we find

v � 3 � 96 m/s, and 96 � 3 � 10 � 30. When an arrow is drawn, we indicate the direction of v with an arrowhead,

and write the mean value of v and its standard deviation along the line segment. If the mean value of v exceeds one

standard deviation from zero, we draw the line segment solid and the arrowhead filled. Otherwise, we draw the line

segment dashed and the arrowhead unfilled. We note that large uncertainties in the mean occur for more values of v in

I1 than in I2 (i.e., we draw fewer solid arrows in Figure 3.7(a) than in Figure 3.7(b).)

We find for Subject 3 that the magnitudes of v shown in Figure 3.7(a) range from near 0 � 3 m/s to 4 � 9 m/s, with

a maximum uncertainty in the mean of 17 � 6 m/s; and shown in Figure 3.7(b) range from 0 � 2 m/s to 2 � 1 m/s, with a

maximum uncertainty in the mean of 6 � 9 m/s. An inspection of Figure 3.7(b) reveals an approximate motion of the

wave from the upper left corner to the lower right corner, or from the leftmost electrode in the boxed region of Figure

3.6(a) to the rightmost electrode (hidden below the incision.) This motion is not apparent for v in I1 as shown in Figure

3.7(a).

3.2.4 Subject 4

The fourth subject we consider is a 31 year old woman with an 8 � 8 electrode grid over her left frontotemporal

region, and two, 6-electrode subdural strips curled under her left anterior and left posterior temporal lobe. Physi-

cians recorded ECoG data from this electrode configuration for fourteen days. Three seizures were initially captured.

Midway through this recording period, the surgeon inserted an additional 6-contact depth electrode into the left hip-

pocampus. After this, three more seizures were recorded. Each seizure began in the distal end of the posterior left

subtemporal electrode strip, and then spread to the distal end of the anterior subtemporal strip (as well as to the hip-

pocampal depth electrode for the last three seizures.) After a minute delay, seizure activity appeared on the electrode

grid at the frontal portions of the superior and middle temporal gyri.

To investigate the seizing activity recorded on the electrode grid, we consider a 3 � 3 subgrid of electrodes situated

on the lateral aspects of the anterior to left temporal lobe. We indicate the location of this subgrid in the craniotomy

shown in Figure 3.8(a). Here the subject’s left frontal lobe is visible at the left of the figure. We enclose five electrodes

from the 3 � 3 subgrid with three yellow lines. We note that two of these five electrodes are hidden by a wire; the

other four electrodes from the 3 � 3 subgrid lie below the incision. To compute f0, we follow the procedure described

for Subject 3 in Section 3.2.3. We analyze the data collected during three of the subject’s seizures (we were unable

to extract the data for the other three seizures) and average the results over the seizures to compute f0. We show the

results for f0 in the 3 � 3 subgrid in Figure 3.8(b). To orient this subgrid on the boxed region of the craniotomy, the
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reader may rotate Figure 3.8(b) counterclockwise by approximately 45 � . We illustrate the f0 results by following the

plotting scheme we used to create Figure 3.6(b). We find that for Subject 4 the values of f0 range from 7 � 5 Hz to 8 � 8

Hz, with maximum uncertainty in the mean of 0 � 3 Hz.

(a) (b)

Figure 3.8: (a) Craniotomy for Subject 4. The left frontal lobe is visible at the left of the figure. We indicate the location
of five electrodes from the 3 � 3 subgrid between the three yellow lines; we note that two of the five electrodes are
hidden by a wire. (b) Results for f0 from Subject 4 recorded from the 3 � 3 electrode subgrid. To orient (b) on (a),
rotate (b) counterclockwise by approximately 45 � . The radius of the circle corresponds to the mean value of f0. We
write the mean and uncertainty in f0 (in Hz) within each circle.

To determine v we follow the procedure described for Subject 3 in Section 3.2.3. We show the results for v in I1

and I2 from Subject 4 in Figures 3.9(a) and 3.9(b), respectively. The spatial arrangement of the results in these figures

and Figure 3.8(b) are identical, and the plotting scheme follows that used to create Figure 3.7. As in Figure 3.7, we

draw arrows only between those neighboring electrodes whose uncertainty in v is less than ten times the magnitude of

v. We indicate the direction of v with an arrowhead and write the mean value of v and its standard deviation along the

line segment. If the mean value of v exceeds one standard deviation from zero, we draw the line segment solid and the

arrowhead filled. Otherwise, we draw the line segment dashed and the arrowhead unfilled. We find that the magnitudes

of v range from 0 � 1 m/s to 13 � 9 m/s with a maximum uncertainty in the mean of 48 � 3 m/s in I1, and from 0 � 1 m/s to

24 m/s with a maximum uncertainty in the mean of 99 � 6 m/s. An inspection of Figure 3.9(b) reveals an approximate

propagation of the waves to the center of the subgrid. This propagation is not apparent for v in I1 as shown in Figure

3.9(a).

In this section we applied the WPS and WCC to ECoG data recorded from four human subjects during seizure to

compute f0 and v. We summarize these results in Table 3.5 of Section 3.6. In the next section, we define a mathematical
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(a) (b)

Figure 3.9: Results for the 3 � 3 electrode subgrid recorded from Subject 4. The spatial arrangement of the results
is identical to that shown in Figure 3.8(b). If the uncertainty in v is less than ten times the magnitude of v between
two electrodes, then we draw an arrow connecting the two electrodes. We indicate the direction of v with the arrow
and write the mean value of v and its standard deviation along the line segment. If the mean value of v exceeds one
standard deviation from zero, then we draw the line segment solid and the arrowhead filled. Otherwise, we draw the
line segment dashed and the arrowhead unfilled. (a) v in I1. (b) v in I2.

model of the electrical activity of the seizing human cortex: the dimensionless SPDEs. We study a simplified version

of the model in Section 3.4 and the complete model in Section 3.5. We compare the observed and simulated results

for f0 and v in Section 3.6 and show how the two agree.

3.3 Model: Dimensionless SPDEs

An ideal model of the human cortex would describe the electrical behavior of each individual neuron and its

surrounding extracellular environment. This discrete model — applied over the entire three-dimensional cortex —

would contain over 1010 dynamical variables and would be intractable. Fortunately, the physiology of the cortex (e.g.,

dense local connections) and numerous experimental results suggest neurons act in populations or assemblies [5, 55].

Moreover, most methods for observing the human cortex (e.g., the ECoG time series of interest in this chapter) record

the summed electrical activity from populations of order 105 cortical neurons [3]. For these reasons, researchers have

developed continuum or mean field models of cortical electrical activity.

One of the earliest mean field models of cortical electrical activity was developed by H. Wilson and J. Cowan in

[13]. In this work the authors described the properties of neural populations in close spatial proximity. To do so they
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defined a system of differential equations to approximate the percentage of excitatory and inhibitory cells that fire per

unit time in a large population. They simplified the mathematical model by performing a temporal coarse graining

of the dynamical variables. The result was to average out rapid temporal variations on a time scale less than the

absolute refractory period of the neurons. Thus, for a refractory period of 2 ms, we cannot use this model to simulate

frequencies greater than 500 Hz. Recent experimental work has shown such high frequency oscillations (up to 650

Hz) occur and are functionally important [56].

Here we utilize a mean field model of cortical electrical activity in current use. The model — a system of

SPDEs — was introduced in [57], where the authors included stochastic input to the system of PDEs first stated by

D. Liley, P. Cadusch, and J. Wright (LCW) in [58]. These SPDEs (and the related ordinary differential equations

— ODEs) have been successfully applied to study the electrical properties of the anesthetized human cortex (i.e.,

the anesthetodynamic model of cortical function) and the alpha rhythm. In a series of recent papers researchers have

shown that the model equations predict changes in the scalp EEG of anesthetized patients consistent with experimental

results [57, 59, 60, 61, 62].

Before we present the equations that define the dimensionless SPDEs model, we briefly outline its development.

A detailed discussion may be found in [63]. LCW developed the system of PDEs by deducing a mathematical model of

the spatially averaged soma membrane potentials (he and hi) of excitatory and inhibitory cortical neural populations,

respectively. To do so they performed a heuristic average of microscopic elements (e.g., individual neurons) over

columnar volumes (perpendicular to the cortical surface) whose diameter was chosen to lie below the spatial resolution

of EEG or ECoG recordings. We note that this averaging over space — and not over time — distinguishes the LCW

model from that of Wilson and Cowan. The resulting spatially averaged neuron forms the fundamental unit of the

model; it is similar to the KO set of Freeman in that both include neuronal and non-neuronal components (e.g., glial

cells) [64]. We again note that the derivation is heuristic. The authors do not begin with, say, the electrical activity of

an individual neuron and deduce a mean field approximation.

The spatially averaged neuron, studied in isolation, is uninteresting; the dynamical variables he and hi decay

to stable fixed points. To approximate cortical activity, one must include interactions between neural populations.

These interactions occur through action potential — or spike — input from one neural population to another. LCW

include such interactions in two ways both motivated by cortical physiology. Specifically, they assume: (1) local

feedback and feedforward connections within and between excitatory and inhibitory neural populations, and (2) long

range corticocortical connections that synapse on both excitatory and inhibitory populations. For simplicity and lack

of detailed experimental results, LCW assume homogeneous and isotropic corticocortical connections that decrease

exponentially with distance. They also include terms to describe extracortical input (e.g., input from the thalamus) to
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the cortical neurons. This input is quite general; it affects the excitatory and inhibitory populations with both excitatory

and inhibitory input.

Having defined the spatially averaged neuron and stated the permitted interactions between these neurons, the

description of the LCW model is nearly complete. What remains is to define the relationship between the spike output

and soma membrane potentials. To do so, they assume that the mean firing rate Se (or Si) of an excitatory (or inhibitory)

local population is a function of the mean soma membrane potentials he (or hi.) We note that here the term “mean”

denotes a spatial — not a temporal — average. LCW make the typical approximation for the mean firing rates; they

fix Se and Si to sigmoidal functions of he and hi, respectively, and include parameters to describe the surrounding

physiological environment.

The resulting mesoscopic model (with the addition of stochastic input) consists of fourteen, first-order, coupled,

nonlinear SPDEs [61]. Two of these SPDEs describe the changes in voltage recorded at the excitatory and inhibitory

neural populations, four describe the changing corticocortical connections, and eight describe the evolution of current

inputs. By solving the SPDEs in [61] numerically, one computes solutions for all fourteen variables as functions of

space and time. One of these variables, he, is the spatially averaged excitatory soma membrane potential. Researchers

have demonstrated that the deviation of he from rest is proportional to the sign-reversed value of the extracellular local

field potential (LFP). Because the ECoG represents the spatially averaged LFP, we assume that he is linearly related

to the ECoG [63]. In this way, the model variable he is related to the observational ECoG data. In what follows

we compare he calculated in numerical solutions to the SPDEs with ECoG data recorded during seizure. We show

that increasing the subcortical excitatory input to the model cortex produces behavior in he that mimics ECoG data

recorded from the seizing cortex.

We note that the SPDEs model used here differs from other mathematical theories of cortical electrical activity,

such as those stated in [65, 66, 67], in two ways. First, the SPDEs include corticocortical excitatory to inhibitory con-

nections which are known to exist and are essential for cortical stability [63]. Second, the time courses of the excitatory

and inhibitory postsynaptic potentials recorded at the soma are described by a third order differential equation [62].

Lower order descriptions of the inhibitory postsynaptic potentials are theoretically found unable to support widespread

alpha band activity. Because the SPDE model has been shown to approximate both alpha band and anesthetized human

cortical activity recorded in experiment, we employ the model here.

Before beginning our analysis of the model equations, we nondimensionalize the SPDEs and associated functions.

To do so we replace each dynamical variable, as well as space x and time t, with its dimensionless counterpart. For

example, we replace he (the population mean soma voltage in [61]) with h0
e h̃e, where h0

e
� hrest

e
� � 70 mV and h̃e is

dimensionless. The main advantage of recasting the equations in dimensionless form is a reduction in the number of
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parameters. There are 20 parameters in the dimensionless SPDEs; in the original SPDEs there are 29. We find for the

dimensionless SPDEs:

∂h̃e

∂t̃
� 1 � h̃e 	 Γe � h0

e � h̃e
�
Ĩee 	 Γi � h0

i � h̃e
�
Ĩie (3.1a)
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� 1 � h̃i 	 Γe � h0

e � h̃i
�
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�
Ĩii (3.1b)
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The 8 dynamical variables in this system (h̃e, h̃i, Ĩee, Ĩei, Ĩie, Ĩii, φ̃e, and φ̃i) are functions of dimensionless space and time,

x̃ and t̃, respectively. We illustrate the connections between these dynamical variables in Figure 3.10, and define the

dimensionless variables and parameters in Tables 3.3 and 3.4, respectively. Each variable and parameter is expressed

in terms of its dimensional counterparts from [61]. In these tables, we have made the notational simplifications in

agreement with the values used in [61]: τe
� τi

� τ, Smax
e

� Smax
i

� Smax, and hrest
e

� hrest
i

� hrest.

We also define the dimensionless sigmoid transfer functions:

S̃e
�
h̃e � �

1

1 	 exp
� � g̃e 
 h̃e � θ̃e ��

(3.2a)

S̃i
�
h̃i � �

1

1 	 exp
� � g̃i 
 h̃i � θ̃i �� 	 (3.2b)

and the dimensionless stochastic input terms:

Γ̃1
� αee

�
Pee ξ1

�
x̃ 	 t̃ � (3.3a)

Γ̃2
� αei

�
Pei ξ2

�
x̃ 	 t̃ � (3.3b)

Γ̃3
� αie

�
Pie ξ3

�
x̃ 	 t̃ � (3.3c)

Γ̃4
� αii

�
Pii ξ4

�
x̃ 	 t̃ � � (3.3d)
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Figure 3.10: A schematic of the eight dynamical variables (boxed) and the four subcortical inputs (Pee, Pei, Pie, Pii).
The variables are defined in Table 3.3; they appear in the dynamical equations (3.1). We indicate the interactions
between the variables using arrows. A schematic of the cortical macrocolumn may be found in Figure 2 of [58].

The terms in (3.3) represent the noise that arises from subcortical inputs to the cortex. Here the ξk are Gaussian

distributed white noise sources with zero mean and δ-function correlations. This assumption of Gaussian white noise

is typical for the model [57, 61], although physiologically shaped brown noise is more appropriate [62]. In numerical

simulations, the ξk are approximated as,

ξk � x̃ � t̃ ��� R � m � n ��
∆x̃∆t̃

� (3.4)

where x̃ � m∆x̃ and t̃ � n∆t̃ (m � n integers), specify space and time coordinates on a lattice with (dimensionless) grid

spacings, ∆x̃ and ∆t̃, respectively. Here we set αee � αei � αie � αii � α as in the stochastic simulations of the

spatioadiabatic one-dimensional cortex in [61].

In what follows, we first study a simplified ordinary differential equations (ODEs) version of the dimensionless

model in Section 3.4. Our methods differ from previous discussions. We do not make the assumption that some

variables equilibrate much faster than others (the slow-membrane or adiabatic approximation [57].) Nor do we apply

techniques of stochastic calculus (such as the Ornstein-Uhlenbeck equation) to the linearized SPDEs [61]. Instead, we

approach the SPDEs from a dynamical systems perspective and employ ideas and tools from bifurcation theory. In

Section 3.5 we consider the complete dimensionless SPDEs. We show by an analysis of linear stability how the results

from the simplified dimensionless ODEs relate to the dynamics of the dimensionless SPDEs with no stochastic input.

We then compute three numerical solutions to the dimensionless SPDEs and in Section 3.6 we compare the model and

observational results for f0 and v.
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3.4 Simulations: Dimensionless ODEs

Our goal in this chapter is to determine whether the dimensionless SPDEs in (3.1) can be used to model the

mesoscopic electrical activity observed on the seizing cortical surface, as discussed in Section 3.2. However, the

size of the system (14 first order differential equations, and 20 parameters), the stochastic input in (3.1c)-(3.1f), and

the spatial dependence in (3.1g) and (3.1h) make this a challenging model. Therefore, to gain what insight we can

from a simpler model, we ignore for the moment the spatial dependence and stochastic input in (3.1). The resulting

equations form a system of ordinary differential equations which we call the dimensionless ODEs. There are many

tools available for the study of ODEs; here we shall use AUTO (continuation and bifurcation software for ordinary

differential equations) to determine fixed points, their stability type, limit cycles, and bifurcations in the phase portraits

[68].

During a seizure the cortex typically enters a state of hyperexcitation, manifest in ECoG data through large

amplitude oscillations [69]. This activity corresponds to spatially coherent oscillations in the variable he (or h̃e.)

In this direction, we investigate whether oscillations in he occur in the dimensionless ODEs due to changes in the

excitatory parameters. We note that different types of seizures produce different oscillatory patterns in EEG and

ECoG recordings [70, 71]. Here we seek to model the seizing cortex in a qualitative way suggestive of the typical

ECoG data shown in Figure 3.1. Specifically, we require that: 1) the model produce stable oscillations in he, 2) the

frequency of the oscillations agree (roughly) with clinical observations, and 3) the transition to oscillatory behavior

occur abruptly.

The general statement that increased excitation (or decreased inhibition) incites cortical seizure activity masks

the numerous associated physiological changes that occur in the seizing neuronal assemblies [72, 51]. At the cellular

level these physiological changes are observed in experiment and can be compared to results computed from detailed

computational models of a single neuron [73]. How the cellular mechanisms or single neuron models relate to meso-

scopic seizure recordings or continuum models is not clear (although see [10].) Seizures induced in animal models

allow mesoscopic ECoG recordings and some control over parameters related to continuum models. For example, in

[74], W. Freeman discusses electrocortical data recorded from a seizing animal’s olfactory bulb. He compares these

recordings with his KIII model of the olfactory system and finds that a parameter connecting excitatory subsets of the

model must increase to induce seizures. Analogies between such animal models and human seizure activity can be

made, but, as for the cellular models, these relationships are not clear.

In our analysis, we initially vary only two parameters, Pee and Γe, both related to the excitation of the model.

We choose to vary these parameters for two reasons. First, as mentioned previously, the general claim that increased
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excitation incites seizures is well known. Thus, we select two parameters related to the excitation of the model.

Second, an increase in the level of the membrane potential of a neuronal population is thought to be an important

control factor in inducing seizures [75, 51]. We will show that increases in Γe raise the excitatory mean soma potential

he of the stable fixed points; a similar results holds for Pee but is not shown. In what follows, we fix the remaining 18

dimensionless parameters at the typical values shown in Table 3.4. In terms of dimensional variables, the dimensionless

parameter Pee is: 1) directly proportional to pee (the subcortical excitatory spike input to the excitatory neurons of

the cortex), and 2) inversely proportional to Smax (the maximum firing rate induced by the soma voltage). Thus an

increase in Pee represents either an increase in the subcortical excitation of the cortex or a decrease in the maximum

firing rate. To model an increase in excitatory input (from a subcortical region, such as the thalamus) to the cortex,

the parameter Pee is increased. The dimensionless parameter Γe is: 1) directly proportional to Smax and Ge (the

peak excitatory postsynaptic potential — EPSP), and 2) inversely proportional to γe (the EPSP neurotransmitter rate

constant) and � hrev
e � hrest � (the magnitude of the difference between the excitatory reversal and resting potentials.)

Thus an increase in Γe represents either an increase in peak EPSP amplitude or maximum firing rate, or a decrease in

the difference between the excitatory reversal and resting potentials or the EPSP neurotransmitter rate constant. The

latter corresponds to an increase in the EPSP duration. We note that the typical values of Pee and Γe are 11 � 0 and

1 � 42 � 10 � 3, respectively; see Table 3.4.

It is perhaps easier to interpret the parameters Pee and Γe directly from (3.1). The parameter Pee only appears in

(3.1c); this parameter controls the strength of the (nonstochastic) excitatory subcortical input to excitatory neurons

in the cortex. The parameter Γe appears in (3.1a) and (3.1b), and controls the influence of excitatory input on the

mean soma membrane potentials. For example, when Γe is large the effect of the excitatory inputs (Ĩee and Ĩei) on

the potentials (h̃e and h̃i) is increased. Here we assume that the effect of the excitatory inputs is independent of the

postsynaptic neuron (i.e., Γ̃ee
� Γ̃ei

� Γ̃e.) In Section 3.8, we relax this (and other) assumptions. We will show that

solutions of the model equations agree qualitatively with ECoG data recorded from the seizing cortex when: Pee is

dramatically increased, and Γe is slightly decreased.

In what follows, we compute bifurcation diagrams and numerical solutions of the dimensionless ODEs at two

values of Pee. We first consider the results for Pee
� 11 � 0 (the typical value) and show that oscillations in he occur but

are unstable and short lived. We then show that for Pee
� 548 � 066 (nearly 50 times the typical subcortical excitation)

he undergoes large amplitude, stable oscillations, and that similar oscillations occur over a wide range of parameter

values. The results in each case are compared to the clinical data discussed in Section 3.2.



3.4. SIMULATIONS: DIMENSIONLESS ODES 72

3.4.1 Example: Dimensionless ODES at Pee � 11 � 0

In the first example, we fix Pee at its typical (dimensionless) value of 11 � 0 and vary the parameter Γe. We plot in

Figure 3.11(a) he for the fixed points of the dimensionless ODEs versus the parameter Γe. We note that in this figure

we plot the dimensional variable he (with units mV) which is related to h̃e by the scale factor h0
e

� � 70 mV. The solid

lines and dashed line in Figure 3.11(a) correspond to the stable and unstable fixed points of the dimensionless ODEs,

respectively. We note that an increase in Γe produces an increase in both curves of the stable fixed point value of he

(i.e., increased steady state values of the spatially averaged excitatory soma membrane potential.)

The S-shape and stability of the fixed points is similar to that discussed in [61] and [57]. In those works, the

authors varied the (dimensional) inhibitory neurotransmitter rate constant γi. Here, the parameter Γe is inversely

proportional to the (dimensional) excitatory neurotransmitter rate constant γe. We have found, but do not show, similar

bifurcation diagrams for the dimensional SPDEs with γi � γi � λ or γe � γeλ and parameter λ varied between 0 � 1 and

1 � 5.

In addition to the saddle node bifurcations of fixed points, the dimensionless ODEs at Pee
� 11 � 0 also undergo a

Hopf bifurcation at Γe
� 1 � 20 � 10 � 3. (We note this represents a 15% decrease in the typical value of Γe

� 1 � 42 �

10 � 3.) We mark this Hopf bifurcation in Figure 3.11(a) with an asterisk and show how the eigenvalues change near

this Hopf bifurcation in Figure 3.11(b). As we approach the Hopf bifurcation along the curve of unstable fixed points,

we find a transition from one positive, real eigenvalue to two. This transition occurs at the saddle node bifurcation

near Γe
� 1 � 09 � 10 � 3. As we continue past the saddle node bifurcation, the two real, positive eigenvalues approach

and collide, acquire nonzero imaginary parts, and become a complex conjugate pair. Then, as we continue along the

curve of unstable fixed points toward the Hopf bifurcation, the imaginary parts of both eigenvalues increase and the

real parts approach zero. At the Hopf bifurcation, the pair of complex conjugate eigenvalues crosses the real axis.

We are particularly interested in Hopf bifurcations because, at a Hopf bifurcation, the dynamics of he can change

from stationary behavior to oscillatory behavior. To illustrate the oscillatory behavior of he near the Hopf bifurcation

we compute a numerical solution to the dimensionless ODEs near the Hopf bifurcation at Γe
� 1 � 21 � 10 � 3 and

Pee
� 11 � 0. We choose the initial conditions so that the dynamics begin just outside the basin of attraction of the stable

fixed point and compute the trajectory using a fourth-order Runge-Kutta method with a time step of 0 � 4 ms. We plot in

Figure 3.11(c) (dimensional) he as a function of dimensional time t. For 0 s � t � 9 � 5 s, he oscillates at approximately

8 Hz. The amplitude of the oscillations steadily increases until t � 9 � 5 s at which point he abruptly moves to the stable

fixed point near � 84 mV. We show this transition with finer resolution in Figure 3.11(d).

We have shown that for Pee
� 11 � 0 the dynamics of he undergo a Hopf bifurcation at Γe

� 1 � 20 � 10 � 3. Near
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(a) (b)

(c) (d)

Figure 3.11: (a) Bifurcation diagram for the dimensionless ODEs at Pee
� 11 � 0. As the dimensionless parameter Γe

is varied, the stable (solid curves) and unstable (dashed curves) fixed points in he of the dimensionless ODEs are
shown. The asterisk denotes the Hopf bifurcation. There are two saddle-node bifurcations also visible in the figure.
(b) The eigenvalues near the Hopf bifurcation. We plot the real and imaginary parts along the horizontal and vertical
axes, respectively. The arrowheads indicate how the eigenvalues change as we approach the Hopf bifurcation along
the curve of unstable fixed points in (a). (c) Numerical solution to the dimensionless ODEs at Γe

� 1 � 21 � 10 � 3 and
Pee

� 11 � 0, near the Hopf bifurcation shown in (a). Dimensional he is plotted as a function of dimensional time t. The
oscillations in he increase in amplitude until the oscillations cease and he � � 84 mV. (d) The transition from transient
oscillatory motion in he to the fixed point at finer resolution.
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(a) (b)

Figure 3.12: (a) Bifurcation diagram for the dimensionless ODEs at Pee
� 548 � 066. The parameter Γe is varied and

the stable (solid curves) and unstable (dashed curve) fixed points in he are shown. The asterisks denote the two Hopf
bifurcations. The dash-dot lines denote the maximum and minimum values of he achieved during a stable limit cycle.
The dotted lines denote the maximum and minimum values of he achieved during an unstable limit cycle. The branch
of limit cycles is born and dies in two subcritical Hopf bifurcations; two saddle-node bifurcations of limit cycles
lead to large amplitude stable oscillations with sudden onset. (b) Numerical solution to the dimensionless ODEs at
Γe

� 0 � 96 � 10 � 3 and Pee
� 548 � 066, near the rightmost Hopf bifurcation in (a). Dimensional he is plotted as a function

of dimensional time t. The oscillations in he occur at a frequency near 7 � 5 Hz and are stable to perturbations.

the Hopf bifurcation there exist transient oscillations in he that increase in amplitude until the dynamics undergo a

transition to a stable fixed point near � 84 mV. We have not shown but note that adding noise to the system decreases

the time of the transient oscillations. These unstable oscillations in he do not mimic the electrical activity of the

seizing cortex where the oscillations maintain a large amplitude and are necessarily stable to incessant perturbations

from other cortical, as well as deeper, brain regions.

3.4.2 Example: Dimensionless ODEs at Pee � 548 � 066

In this subsection we consider an example more closely related to the seizing cortex. To increase the excitation

of the model cortex, we fix Pee
� 548 � 066 (nearly 50 times the typical value.) This can be interpreted as increased

excitatory input from deeper brain regions to the cortex, say. As in Section 3.4.1, we vary the parameter Γe and plot in

Figure 3.12(a) the bifurcation diagram in he for the dimensionless ODEs. The solid curves and dashed curve in Figure

3.12(a) correspond to stable and unstable fixed points of the dimensionless ODEs, respectively, and the asterisks to

Hopf bifurcations. We note that an increase in Γe produces an increase in both curves of stable fixed points of he.

There are additional curves in Figure 3.12(a) absent from Figure 3.11(a). These curves indicate the extremal values
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and stability type of the limit cycles born in the Hopf bifurcations. The dash-dot lines in Figure 3.12(a) represent the

maxima and minima of he achieved during a stable limit cycle. The dotted lines represent the maxima and minima of

he achieved during an unstable limit cycle. Thus, for 0 � 67 � 10 � 3 � Γe � 0 � 96 � 10 � 3, the dynamics of he feature a

stable limit cycle of large amplitude. These dynamics possess a subHopf/fold cycle type of bifurcation, or equivalently,

the dynamics undergo elliptic bursting [76]. We note that a 32% decrease in the typical value of Γe
� 1 � 42 � 10 � 3 is

required to enter this range. The stable, oscillatory behavior of he satisfies one of our criteria for modeling the seizing

cortex.

To illustrate the stable oscillations in he for 0 � 67 � 10 � 3 � Γe � 0 � 96 � 10 � 3, we compute a numerical solution to

the dimensionless ODEs at Γe
� 0 � 96 � 10 � 3 and Pee

� 548 � 066 using the fourth-order Runge-Kutta method with a

time step of 0 � 4 ms. In Figure 3.12(b) we plot he (with dimensions mV) as a function of dimensional time t. After an

initial transient, he is entrained by a large amplitude limit cycle with a dominant frequency near 7 � 5 Hz. We note that

these oscillations are not sinusoidal. The frequency of the he oscillations roughly agrees with the clinical observations

from a seizing human subject shown in Figure 3.1.

To summarize, we have shown two bifurcation diagrams for the dimensionless ODEs and found that the number

of limit points and Hopf bifurcations differ. For Pee
� 11 � 0, shown in Figure 3.11(a), there are two limit points at

Γe
� 6 � 23 � 10 � 3 and Γe

� 1 � 09 � 10 � 3, and one Hopf bifurcation at Γe
� 1 � 20 � 10 � 3. For Pee

� 548 � 066, shown

in Figure 3.12(a), there is one limit point at Γe
� 0 � 78 � 10 � 3 and two Hopf bifurcations at Γe

� 0 � 66 � 10 � 3 and

Γe
� 0 � 96 � 10 � 3. To determine how the limit points and Hopf bifurcations depend upon the two parameters, we

plot the location of each limit point and Hopf bifurcation as a function of Γe and Pee in Figure 3.13(a). In this

figure, we plot the limit points (solid curve), Hopf bifurcations (dotted curve), and codimension two bifurcations

(asterisks) for � 2000 � Pee � 9000 and 0 � 0 � Γe � 0 � 004. The only true intersections of the limit point curve and

Hopf bifurcation curve occur at the codimension two bifurcations; other crossings in this figure (e.g., near Pee
� 500 � 0

and Γe
� 1 � 0 � 10 � 3) result from the projection of the full dynamics to the two dimensional 
 Γe 	 Pee  -plane. We note

that for Pee � 600 � 0 no limit points occur in the dynamics, and for Γe � 3 � 0 � 10 � 3 no Hopf bifurcations occur.

We can compare the results of the two-parameter variation shown in Figure 3.13(a) with the bifurcation diagrams

shown in Figures 3.11(a) and 3.12(a). We plot in Figure 3.13(b) the locations of the limit points and Hopf bifurcations

over a limited range of Pee and extended range of Γe. In addition, we plot thin, horizontal lines at Pee
� 11 � 0 (lower

horizontal line) and Pee
� 548 � 066 (upper horizontal line.) We find that the lower line at Pee

� 11 � 0 crosses the limit

point curve twice (at 1 � 1 � 10 � 3 and 6 � 2 � 10 � 3) and the Hopf bifurcation curve (at 1 � 2 � 10 � 3) once — in agreement

with the number and location of limit points and Hopf bifurcations shown in Figure 3.11(a). In a similar way, we find

that the upper line at Pee
� 548 � 066 in Figure 3.13(b) crosses the Hopf bifurcation curve twice (at 0 � 66 � 10 � 3 and
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(a) (b)

Figure 3.13: The values of the limit points (solid curve) and Hopf bifurcations (dotted curve) as functions of the
parameters Γe and Pee. We denote the two codimension two bifurcations with asterisks. (a) The full parameter range,
including unphysical negative values of Pee. (b) A limited parameter range in Pee and extended range in Γe. We plot
thin, horizontal lines at Pee

� 11 � 0 and Pee
� 548 � 066.

0 � 96 � 10 � 3) and the limit point curve once (at 0 � 78 � 10 � 3), in agreement with the number and position of limit points

and Hopf bifurcations shown in Figure 3.12(a).

We also show in Figure 3.13(b) the location of the codimension two bifurcation at Γe
� 2 � 98 � 10 � 3 and Pee

� 53 � 2.

We mark this point with an asterisk. To the left of this codimension two bifurcation one eigenvalue of the limit point

is positive, one is zero, and the rest are negative — thus the limit point is unstable. For the Hopf bifurcation, two of

the eigenvalues form a complex conjugate pair with zero real part and the rest are negative. As the dynamics approach

the codimension two bifurcation from the left (i.e., decreased Pee and increased Γe) the positive eigenvalue of the limit

point approaches zero. In addition, the purely imaginary complex conjugate pair of eigenvalues of the Hopf bifurcation

approach zero along the imaginary axis. At the codimension two bifurcation, the largest eigenvalue of the limit point

reaches zero and the purely imaginary eigenvalues of the Hopf bifurcation coalesce at the origin. Here the dynamics

linearized at the limit point or Hopf bifurcation possesses two zero eigenvalues; this defines the codimension two

bifurcation of Takens-Bogdanov type [77]. To the right of this point (i.e., for Γe � 2 � 98 � 10 � 3 and Pee � 53 � 2) only

a stable limit point remains (with one zero eigenvalue and the rest negative.) A second Takens-Bogdanov bifurcation

occurs at Γe
� 2 � 13 � 10 � 3 and Pee

� � 1215 � 6; see Figure 3.13(a). We do not consider this bifurcation because the

negative value of Pee is unphysical.

At the codimension two bifurcation shown in Figure 3.13(b), where Γe
� 2 � 98 � 10 � 3 and Pee

� 53 � 2, the distance

between the Hopf bifurcation and limit point reaches zero. To examine how the frequency of the limit cycle born at the
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Figure 3.14: (a) The frequency f of the limit cycles born in the Hopf bifurcation as a function of Γe along the curve of
Hopf bifurcation near the codimension two point shown in Figure 3.13(b). As Γe � 2 � 98 � 10 � 3 a codimension two
bifurcation occurs and the frequency of the limit cycles approaches zero. (b) The frequency f of the limit cycles born
in the Hopf bifurcations as a function of the two parameters Pee and Γe. We mark the codimension two bifurcations
with asterisks. We plot the projection of frequency versus Γe on the f -Γe plane, and the projection of frequency versus
Pee on the f -Pee planes as dashed lines.

Hopf bifurcation depends upon this distance, we follow the Hopf bifurcation along the solid curve in Figure 3.13(b)

for 2 � 8 � 10 � 3 � Γe � 3 � 0 � 10 � 3 We plot in Figure 3.14(a) the frequency f of the limit cycle born in the Hopf bifur-

cation as a function of Γe along the curve of Hopf bifurcations. We find that, as Γe approaches the Takens-Bogdanov

bifurcation and the separation between the Hopf bifurcation and limit point approaches zero, f also approaches zero

(or the period approaches infinity) as expected.

Away from the codimension two point, we find that the frequency f of the limit cycles born in the Hopf bifurca-

tions depends on both parameters Pee and Γe. To illustrate this, we show in Figure 3.14(b) the value of f at both Hopf

bifurcations as a function of Pee and Γe. We indicate the codimension two points (where f � 0) with asterisks, and

show the projections onto the f -Pee and f -Γe planes. We find that the limit cycles born in the Hopf bifurcations have

frequencies ranging from 0 Hz to 12 � 8 Hz.

The analysis we show in Figure 3.13(a) does not indicate the stability of the limit cycles born in the Hopf bi-

furcations, the basins of attraction of the Hopf bifurcations, nor the frequency of the oscillations. Because the true

environment of the human cortex is continually changing (for example, in response to sensory stimuli) we require that

stable oscillatory activity in he occur over extended regions of the parameters Pee and Γe. To determine the extent

of the stable oscillations in he, we compute numerical solutions to the dimensionless ODEs for 11 � 0 � Pee � 1000 � 0

and 0 � 5 � 10 � 3 � Γe � 1 � 4 � 10 � 3 using the fourth-order Runge-Kutta method with a time step of 0 � 4 ms. We then
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Figure 3.15: (a) The difference between the maximum and minimum achieved by (the dimensional) he in solutions of
the dimensionless ODEs for parameters Pee and Γe. The difference is plotted in linear greyscale with white representing
a 0 mV difference and black representing a 50 mV difference. The dark region corresponds to stable oscillations of
he and broadens as Pee is increased. The parameter values used to create Figure 3.12(b) (Γe

� 0 � 96 � 10 � 3 and Pee
�

548 � 066) are near the center of this figure. (b) The frequency of oscillations in he in solutions of the dimensionless
ODEs for parameters Pee and Γe. The frequency is plotted in greyscale with white representing 0 Hz (no oscillations)
and black representing 9 Hz and larger.

determine the difference between the maximum and minimum achieved by the solution he after transient behavior

has decayed. If he approaches a fixed point, then the maximum and minimum are nearly equal and their difference

approaches zero. But, if he is entrained by a limit cycle (see, for example, Figure 3.12(b)) then the difference between

the maximum and minimum achieved by he is nonzero. In Figure 3.15(a) we plot the difference between the maximum

and minimum achieved by he as a function of the parameters Pee and Γe. The difference is plotted in greyscale with

white representing a 0 mV difference and black representing a 50 mV difference. We find that oscillations in he (repre-

sented by the dark region in Figure 3.15(a)) extend over a broad range of parameter values beginning near Pee
� 250 � 0

and Γe
� 1 � 3 � 10 � 3. We note that the amplitudes of the oscillations do not approach zero at the boundaries of the

dark region in Figure 3.15(a).

To determine the approximate frequency of oscillations in he, we again compute numerical solutions to the di-

mensionless ODEs over the same parameter range and implementing the same numerical method used to create Figure

3.15(a). We then compute the power spectrum of he after transient behavior has decayed and determine the frequency

of maximum power. We note that the frequency resolution of this calculation is 0 � 5 Hz, and that the power spectra

possess a single, well-defined peak. We show the results of this calculation in Figure 3.15(b). Here white represents a

frequency of 0 Hz and black represents frequencies of 9 Hz and higher.
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The regions of oscillatory activity in he, shown in Figures 3.15(a) and 3.15(b), illustrate the parameter values at

which the dimensionless ODEs “seize.” We note that increasing Pee, and thus raising the subcortical excitatory input

to the model cortex, enlarges the region of Γe over which oscillations in he occur and increases the frequency of these

oscillations.

3.5 Simulation: Dimensionless SPDEs

We have considered in some detail the dimensionless ODEs. For example, we have shown in Section 3.4.2 that

the dimensionless ODEs undergo a Hopf bifurcation near Pee
� 548 � 066 and Γe

� 0 � 96 � 10 � 3, and that oscillations in

he persist over a broad region of parameter values. Unfortunately, there is no direct conclusion that the analysis of this

simplified system allows one to draw for the complete dimensionless SPDEs. The stochastic inputs or the spatially

distributed dynamics may destroy the interesting features we observed in the dimensionless ODEs. Here we shall

examine whether the full dimensionless SPDEs exhibit similar oscillatory behavior. We will consider three examples.

For each example, we compute numerical solutions to the dimensionless SPDEs using the Euler-Maruyama algorithm

with fixed steps in space and time, 14 mm and 0 � 1 ms, respectively [78]. We consider only one spatial dimension

x̃; the system can now be visualized as describing a line of closely spaced electrodes, such as the strip of subdural

electrodes described in Section 3.2. In each example, we enforce periodic boundary conditions in space, fix Γe and α

(representing the noisy input from subcortical sources to the cortex) to be uniform in x̃ and t̃, and vary the spatial and

temporal dependence of Pee. In the first example, we set the stochastic input α � 0 and consider the linear stability

of the spatially uniform state for Pee
� 548 � 066 fixed and Γe varied. We compare the linear stability results with

numerical solutions of the dimensionless SPDEs and show that the two agree. In the second example, we solve the

dimensionless SPDEs for Pee Gaussian in space and constant in time. In the third, we solve the dimensionless SPDEs

for Pee Gaussian in space and nonuniform in time. We compare in Section 3.6 the results of these simulations with the

clinical seizure data.

We start by setting the stochastic input α � 0 and considering the linear stability of the uniform steady state. To
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do so, we first introduce six new variables (J̃ee 	 J̃ei 	 J̃ie 	 J̃ii 	 ψ̃e 	 ψ̃i) and write (3.1) as fourteen PDEs first-order in time.

∂h̃e

∂t̃
� 1 � h̃e 	 Γe � h0

e � h̃e
�
Ĩee 	 Γi � h0

i � h̃e
�
Ĩie (3.5a)

∂h̃i

∂t̃
� 1 � h̃i 	 Γe � h0

e � h̃i
�
Ĩei 	 Γi � h0

i � h̃i
�
Ĩii (3.5b)

∂Ĩee

∂t̃
� J̃ee (3.5c)

∂J̃ee

∂t̃
� � 2TeJ̃ee � T 2

e Ĩee 	 Te � Nβ
e S̃e

�
h̃e � 	 φ̃e 	 Pee 	 Γ̃1

�
(3.5d)

∂Ĩei

∂t̃
� J̃ei (3.5e)

∂J̃ei

∂t̃
� � 2TeJ̃ei � T 2

e Ĩei 	 Te � Nβ
e S̃e

�
h̃e � 	 φ̃i 	 Pei 	 Γ̃2

�
(3.5f)

∂Ĩie

∂t̃
� J̃ie (3.5g)

∂J̃ie

∂t̃
� � 2TiJ̃ie � T 2

i Ĩie 	 Ti � Nβ
i S̃i

�
h̃i � 	 Pie 	 Γ̃3

�
(3.5h)

∂Ĩii

∂t̃
� J̃ii (3.5i)

∂J̃ii

∂t̃
� � 2TiJ̃ii � T2

i Ĩii 	 Ti � Nβ
i S̃i

�
h̃i � 	 Pii 	 Γ̃4

�
(3.5j)

∂φ̃e

∂t̃
� ψ̃e (3.5k)

∂ψ̃e

∂t̃
� � 2λeψ̃e � λ2

eφ̃e 	 ∂2φ̃e

∂x̃2 	 λeNα
e

∂S̃e
�
h̃e �

∂t̃
	 λ2

eNα
e S̃e

�
h̃e � (3.5l)

∂φ̃i

∂t̃
� ψ̃i (3.5m)

∂ψ̃i

∂t̃
� � 2λiψ̃i � λ2

i φ̃i 	 ∂2φ̃i

∂x̃2 	 λiN
α
i

∂S̃e
�
h̃e �

∂t̃
	 λ2

i Nα
i S̃e

�
h̃e � � (3.5n)

(3.5o)

Next we define the 14 � dimensional vector u � � h̃e 	 h̃i 	 Ĩee 	 J̃ee 	 Ĩei 	 J̃ei 	 Ĩie 	 J̃ie 	 Ĩii 	 J̃ii 	 φ̃e 	 ψ̃e 	 φ̃i 	 ψ̃i � and write (3.5) as,

∂u
∂t̃

� G
�
u 	 ∂

2u
∂x̃2 	 P � 	 (3.6)

where G is the vector representation of the right-hand side of (3.5), and P is a vector containing the 20 parameters.

We express the linear approximation to the dynamics in (3.6) about the uniform steady state as,

∂u
∂t̃

� D0
�
u � (3.7)
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Here D0 is the Jacobian of G evaluated at the uniform steady state for all parameters fixed at the typical values except

Pee
� 548 � 066 and Γe. To study the response of the linear dynamics to Fourier mode perturbations, we define the wave

vector,

u
�
x̃ 	 t̃ � � u0 exp

�
ıqx̃ 	 σt̃ � � (3.8)

Here u0 is the value of each dynamical variable (h̃e, h̃i, Ĩee, J̃ee, Ĩei, J̃ei, Ĩie, J̃ie, Ĩii, J̃ii, φ̃e, ψ̃e, φ̃i, and ψ̃i) in the uniform

state solution. We note that these uniform states correspond to the fixed points of the dimensionless ODEs (shown for

he
� � 70 mV � h̃e in Figure 3.12(a), for example) with J̃ee

� J̃ei
� J̃ie

� J̃ii
� ψ̃e

� ψ̃i
� 0. The spatial and temporal

dependence of u occurs in the exponential. The parameters q and σ correspond to the complex (dimensionless)

wavelength and frequency, respectively. To determine the stability of the uniform state to Fourier mode perturbations

we substitute (3.8) into (3.7) and solve for σ as a function of q and Γe. The resulting values of σ correspond to the

eigenvalues of D0. Of the 14 values for σ, we focus on the one with largest real part, which we denote Max
�
σ � . In

Figure 3.16 we plot Max
�
σ � as a function of q for four values of Γe. At Γe

� 0 � 970 � 10 � 3, Max
�
σ � � 0 for all q. Thus,

at this value of Γe, the uniform state is stable to the Fourier mode perturbations. For Γe
� 0 � 961 � 10 � 3, Max

�
σ � � 0

and largest at q � � 6. Here, the uniform state is unstable to Fourier-mode spatial perturbations in the positive bands

of Max
�
σ � surrounding q � � 6. We note that at q � � 6 the eigenvalue Max

�
σ � is complex with imaginary part� 3 � 28. Therefore, the instability is oscillatory in time, and is called a Type I0 linear instability [79]. We compute

the (dimensionless) temporal frequency and (dimensionless) velocity from σ and q � σ, respectively, and determine the

corresponding dimensional quantities 13 Hz and 3 � 8 m/s, respectively. At Γe
� 0 � 957 � 10 � 3, we find an instability

sets in at q � 0, and the uniform state itself becomes unstable. Here the imaginary part of Max
�
σ � at q � 0 is � 3 � 03.

Thus a spatially uniform perturbation will set the uniform state oscillating in time. This is called a Type III0 linear

instability [79]. We note that the value of Γe at the Type III0 instability (determined from the dimensionless SPDEs

with α � 0) corresponds to the value of Γe at the rightmost Hopf bifurcation determined from the dimensionless

ODEs— see Figure 3.12(a). In this way, the linear stability analysis relates the dimensionless SPDEs model to the

simpler dimensionless ODEs model. Finally, we show in Figure 3.16 the value of Max
�
σ � for Γe

� 0 � 955 � 10 � 3. Here

the uniform state is unstable to Fourier-mode perturbations for wavelengths � 10 � 5 � q � 10 � 5.

To confirm the results of the linear stability analysis, we compute numerical solutions to the dimensionless SPDEs.

For this analysis, we fix all of the parameters at the typical values, except Pee
� 548 � 066 and Γe, both of which we

make uniform in space and constant throughout the duration of each computation. In the three numerical solutions that

follow, we perturb the uniform steady state by setting α � 0 � 001 at x � 350 mm for the initial 10 ms of the simulation;

otherwise, we set α � 0 � 0. For the first two simulation results, we plot (dimensional) space on the horizontal axis,

(dimensional) time on the vertical axis, and the value of he in linear greyscale with values of he
� � 55 mV and

he
� � 52 mV shown in white and black, respectively. We show in Figure 3.17(a) the numerical solution of the
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Figure 3.16: The eigenvalues of the linearized PDEs with largest real part — Max
�
σ � — as a function of the (dimen-

sionless) wave vector q. The value of Pee
� 548 � 066 is the same for all curves. The value of Γe differs for each curve;

we indicate the value of Γe to the right of the maximum of each curve. Max
�
σ � becomes positive for Γe � 0 � 96 � 10 � 3.

dimensionless SPDEs for Γe
� 0 � 970 � 10 � 3. We find that oscillations initially occur in he, but quickly decay, in

agreement with the linear stability analysis. In Figure 3.17(b), we plot the numerical solution of he for Γe
� 0 � 961 �

10 � 3. Here we find that oscillations persist in he. These oscillations appear as the repeated light and dark ridges in

Figure 3.17(b). We note that these oscillations occur in both time and space; careful inspection reveals the ridges are

tilted with respect to the horizontal. We calculate the wave speed along each ridge for 100 mm � x � 330 mm and 50

ms � t � 440 ms, and find v � � 3 � 0 � 0 � 8 m/s. We also compute the temporal frequency of maximum power for fixed

spatial positions between 224 mm and 476 mm. We find f0
� 12 � 0 � 0 � 7 Hz. Both results v and f0 are in approximate

agreement with the linear stability analysis.

In Figure 3.17(b) we illustrate the initial, transient state of the dynamics where the linear approximation (3.7) is

valid. Continuing the numerical integration, we find that standing waves (SW) develop in the dynamics. We show

these SW in Figures 3.18(a) and 3.18(b). The colorscale we use in both figures is identical to that used in Figure

3.17(b). We find that the SW increase in amplitude until traveling waves (TW) dominate the dynamics. We show this

transition in Figure 3.18(c). Here we plot the value of he in linear greyscale over space-time with he
� � 100 mV in

white and he
� 0 � 0 mV in black. Initially the TW exhibit oscillations in both space and time. In the final state, shown

in Figure 3.18(d), we find that the TW oscillate only in time.

As a last check of the linear stability analysis, we consider numerical solutions to the dimensionless SPDEs for

Pee
� 548 � 066 and Γe

� 0 � 955 � 10 � 3. We note that this value of Γe corresponds to the uppermost curve shown in

Figure 3.16. To compute this numerical solution, we chose as initial conditions the uniform steady state values of

the dimensionless SPDEs for Γe
� 0 � 970 � 10 � 3 and α � 0 � 0 for all space and time (i.e., no stochastic input.) We

determined these uniform steady state values numerically. We then set Γe
� 0 � 955 � 10 � 3 and solved the dimension-
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(a) (b)

Figure 3.17: Numerical solution to the dimensionless SPDEs with Pee
� 548 � 066, and periodic boundary conditions

in space. Space (in mm) and time (in ms) are plotted along the horizontal and vertical axes, respectively. The value of
he is plotted in linear greyscale over space-time with he

� � 55 mV in white and he
� � 52 mV in black. We perturb

the dynamics by setting the noise term α � 0 � 001 at x � 350 mm for 10 ms. We set α � 0 � 0 otherwise. (a) Here
Γe

� 0 � 970 � 10 � 3. The oscillations in he are transient. (b) Here Γe
� 0 � 961 � 10 � 3. Traveling waves develop in he

with speed � 3 � 0 � 0 � 8 m/s and temporal frequency of 12 � 0 � 0 � 7 Hz.

less SPDEs in the standard way. The initial conditions (determined at Γe
� 0 � 970 � 10 � 3) act as spatially uniform

perturbations to the steady state values of the dimensionless SPDEs for Γe
� 0 � 955 � 10 � 3. In Figure 3.19(a), we plot

this numerical solution of he for Γe
� 0 � 955 � 10 � 3 and no stochastic input (i.e., α � 0 � 0.) We plot (dimensional)

space on the horizontal axis, (dimensional) time on the vertical axis, and the value of he in linear greyscale with values

of he
� � 100 mV and he

� 0 mV shown in white and black, respectively. After an initial transient, we find that

he oscillates in time but not in space; the black and white ridges in the figure are horizontal. In Figure 3.19(b), we

again plot the numerical solution of he for Γe
� 0 � 955 � 10 � 3. But, in this simulation we include weak stochastic

input (α � 0 � 0002) uniform in space and time. We note that for the typical parameter values Γe
� 1 � 42 � 10 � 3 and

Pee
� 11 � 0, a stochastic input of α � 0 � 0002 results in a standard deviation of 0 � 13 mV in he. The initial conditions

used to compute this solution are identical to those used to create Figure 3.19(a). We find that he oscillates in both

space and time; the light and dark ridges in this figure tilt toward increasing x.

We can employ the linear stability analysis to understand the results shown in Figures 3.19(a) and 3.19(b). For

Γe
� 0 � 955 � 10 � 3, we show in Figure 3.16 that the uniform steady state is unstable to a spatially uniform perturbation

(i.e., Max
�
σ � � 0 at q � 0) and that a Type III0 instability occurs. In the computation we use to create Figure 3.19(a),

the initial conditions act as spatially uniform perturbations to this uniform steady state, and we find that temporal

(but not spatial) oscillations occur in he. This corresponds to the Type III0 instability determined from the linear
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(a) (b)

(c) (d)

Figure 3.18: Continuation of the numerical solutions shown in Figure 3.17(b). (a)-(b) Here we show value of he for
3600 ms � t � 6000 ms in linear greyscale over space-time with he

� � 55 mV in white and he
� � 52 mV in black.

A pattern of standing waves occurs. (c)-(d) Here we show value of he for 6000 ms � t � 7200 ms and 8400 ms� t � 9600 ms in linear greyscale over space-time with he
� � 100 mV in white and he

� 0 � 0 mV in black. Here
traveling waves dominate the dynamics.
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(a) (b)

Figure 3.19: Numerical solution to the dimensionless SPDEs with Pee
� 548 � 066, Γe

� 0 � 955 � 10 � 3, and periodic
boundary conditions in space. Space (in mm) and time (in ms) are plotted along the horizontal and vertical axes,
respectively. The value of he is plotted in linear greyscale over space-time with he

� 0 mV in black and he
� � 100

mV in white. Both figures start with the same initial conditions. (a) Here α � 0 � 0. Oscillations in he occur in time, but
not in space. (b) Here α � 0 � 0002. Oscillation in he occur in both time and space.

analysis. To create Figure 3.19(b) we add stochastic input to the dynamics. This destroys the spatially uniformity of

the perturbation. We therefore expect the uniform state to destabilize in a Type I0 linear instability, and both spatial

and temporal waves to occur in he. We indeed show that this occurs in Figure 3.19(b).

We have shown in numerical simulations that stable TW occur in the model dynamics. We expect that near a Hopf

bifurcation on the line with periodic boundary conditions both TW and SW occur, and that at most one can be stable

[80]. We showed in Figures 3.18(b) and 3.18(c) an example of transient SW in the model dynamics. Here we show

another example of SW in the dynamics and that these waves are unstable to small perturbations. To do so we compute

a numerical solution to the dimensionless SPDEs with Pee
� 548 � 066, Γe

� 0 � 961 � 10 � 3 — near the Hopf bifurcation

in the ODEs. We have already computed the linear stability analysis of the uniform state at these parameter values

and found that the uniform state is unstable. We showed this result in Figure 3.15 (the second curve from the bottom.)

To produce a SW in the dynamics we first set the noise to zero (α � 0 � 0), and make the boundary conditions periodic.

As initial conditions we set he to be a sinusoidal perturbation of the uniform state with period 199 mm and amplitude

5 mV. We note that this period corresponds to the (dimensionless) wavelength q � 8 � 8 defined in (3.8) and that this

value lies near the rightmost positive value of Max[σ] we show in Figure 3.15. We calculate the solution for 8000 s

and show the results for the last 2000 s in Figure 3.20(a). Here we plot he in linear greyscale with values of he
� � 55

mV in white and he
� � 54 mV in black. We find a standing wave pattern with spatial period 199 mm (identical to the

initial perturbation,) temporal period near 75 ms, and amplitude less than 1 mV.
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(a) (b)

(c)

Figure 3.20: Numerical solutions to the dimensionless SPDEs with Pee
� 548 � 066 and Γe

� 0 � 961 � 10 � 3. (a) Standing
waves. The last 2000 ms of a numerical simulation lasting 8000 ms with no stochastic input. We set the initial
conditions in he to be sinusoidal with period 199 mm (one-third of the entire spatial domain.) The value of he is
plotted in linear greyscale with he

� � 55 mV in white and he
� � 54 mV in black. (b) Noise destroys the standing

waves. As initial conditions we choose the values of the fourteen dynamical variables at the end of the simulation
(t � 2000 ms) shown in (a) and fix α � 0 � 0002. The value of he is plotted in linear greyscale with he

� � 60 mV in
white and he

� � 50 mV in black. (c) Continuation of (b). The value of he is plotted in linear greyscale with he
� � 100

mV in white and he
� 0 � 0 mV in black. Stable TW persist.



3.5. SIMULATION: DIMENSIONLESS SPDES 87

(a) (b)

Figure 3.21: Numerical solutions to the dimensionless SPDEs with Pee
� 548 � 066, Γe

� 0 � 961 � 10 � 3, and initial
conditions fixed by the final values (at t � 2000 ms) of the simulation shown in Figure 3.20(c). (a) α � 0 � 002. TW
persist. (b) α � 0 � 005. Careful inspection reveals transient traveling waves.

To test the stability of the SW, we add low amplitude noise to the dynamics shown in Figure 3.20(a). We use

the same parameter values and boundary conditions as those used to create the SW pattern, and set the noise term

α � 0 � 0002. We show the results of this numerical simulation in Figure 3.20(b). Here we plot he in linear greyscale

with values of he
� � 60 mV in black and he

� � 50 mV in white. On this scale, the SW near t � 0 ms are not visible.

We find that after an initial transient, TW of large amplitude develop near t � 1800 ms. We show the continuation of

this simulation in Figure 3.20(c). Here we plot he in linear greyscale with values of he
� � 100 mV in black and he

� 0

mV in white. In this figure the TW are clear.

To show that the TW are stable, we increase the noise term by a factor of 10 (i.e., we set α � 0 � 002) and continue

the simulation shown in Figure 3.20(c) where the stochastic input was weak. (We continue the simulation by using the

fourteen variables at the last time step (t � 2000 ms) in Figure 3.20(c) as initial conditions for the fourteen variables

in this simulation.) We show the results in Figure 3.21(a); we find that the TW persists. When we fix α � 0 � 005

(an increase in the noise by a factor of 25) and continue the simulation with weak stochastic input, we find that noise

dominates the dynamics. We show this result in Figure 3.21(b). Careful inspection reveals transient TW that propagate

to the left and the right. Thus, even with large stochastic input, (rough) TW still persist.

We conclude that both TW and SW occur near the Hopf bifurcation. We find that the SW are unstable to weak

stochastic inputs which perturb the SW to a TW. We have computed numerous realizations (here and in the rest



3.5. SIMULATION: DIMENSIONLESS SPDES 88

Figure 3.22: Numerical solution to the dimensionless SPDEs with parameters: Γe
� 0 � 87 � 10 � 3, α � 0 � 001, Pee

a Gaussian function in space with maximum 548 � 066 at x � 350 mm and full width at half maximum 46 mm, and
periodic boundary conditions in space. Space (in mm) and time (in ms) are plotted along the horizontal and vertical
axes, respectively. The value of he is plotted in linear greyscale with he

� � 100 mV in white and he
� 0 � 0 mV in

black. Waves in he travel outward from the region of hyperexcitation near x � 350 mm with approximate speed 1 � 2
m/s and approximate frequency 7 � 5 Hz.

of this work) of the dimensionless SPDEs, and found many occurrences of TW. In this section, we showed that

the TW are stable to much larger (by a factor of 10 to 25) stochastic inputs than are the SW. In our application of

interest — modeling the human cortex — we expect stochastic input always occurs. This input may represent a true

stochastic process (e.g., the diffusion of synaptic vesicles across a synaptic cleft) or an approximation to an unknown

deterministic process. We conclude that TW — which are robust to stochastic input — are more important than the

unstable SW for modeling cortical electrical activity during seizure.

Having computed the linear stability analysis for four values of Γe, we state three important results. First, the

agreement between the linear stability analysis with the numerical simulations instills confidence that the numerical

calculations are correct. Second, in the linear stability analysis we relate the solutions of the simplified dimensionless

ODEs to uniform state solutions of the dimensionless SPDEs. We find that a Hopf bifurcation in the dimensionless

ODEs correspond to a destabilization of the uniform state in the dimensionless SPDEs. Third, we use the linear

stability analysis to identify the types of instabilities (Type I0 and Type III0) that develop. In what follows we compare

the frequency ( � 12 Hz) and wave speed ( � 3 m/s) determined here with the clinical ECoG data. Before doing so, we

compute two more numerical solutions to the dimensionless SPDEs for different spatial and temporal distributions of

Pee.

We start by computing numerical solutions to the dimensionless SPDEs for Pee nonuniform in space and constant

in time. Here we set Pee to be a Gaussian function in x with maximum P �ee
� 548 � 066 at x � 350 mm, full width at

half maximum of 46 mm, and minimum Pee
� 11 � 0. The localized region of hyperexcitation near x � 350 mm may
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be thought of as the seizure focus in our simple model. We solve the dimensionless SPDEs with Γe
� 0 � 87 � 10 � 3,

α � 0 � 001 (both uniform in space and time) and show the solution in Figure 3.22. We find that localized oscillations

(the dark ridges in Figure 3.22) emerge from the region of hyperexcitation near x � 350 mm, travel outward with

approximate speed 1 � 2 m/s and approximate frequency 7 � 5 Hz, and then dissolve in the regions of lower excitation,

where Pee � 11 � 0. This localized oscillatory activity is more representative of a localized seizure than the global

oscillations illustrated in Figure 3.17(b). We note that this pattern of spatially confined traveling waves is also found

to occur in other dynamical systems with spatially uniform parameter values [81, 82].

In the final example, we compute numerical solutions to the dimensionless SPDEs for Pee nonuniform in space

and time. As in the previous example, we fix Γe
� 0 � 87 � 10 � 3 and α � 0 � 001 (both uniform in space and time.) But,

unlike the previous example, we vary Pee in time. At t � � 0 	 5000 � ms, we fix Pee
� 11 � 0 uniform in space. For 500 ms� t � 5000 ms, we set Pee to be a Gaussian function in x with maximum P �ee at x � 350 mm, full width at half maximum

of 46 mm, and minimum Pee � 11 � 0. At t � � 500 	 1000 	 1500 	 2000 	 2500 � ms we increase P �ee in steps of 100 so

that P �ee
� � 110 	 210 	 310 	 410 	 510 � , respectively. These increases are marked by the solid vertical lines in Figure

3.23(a). We then decrease P �ee in steps of 100 so that for t � � 3000 	 3500 	 4000 	 4500 � ms, P �ee
� � 410 	 310 	 210 	 110 � ,

respectively. These decreases are marked by the dashed lines in Figure 3.23(b). We show in Figure 3.23 that localized

oscillations in he (the dark ridges) begin at t � 1900 ms, where P �ee
� 310. The frequency of these oscillations increase

when we increase P �ee to 510 at t � 2500 ms. Then, as we decrease P �ee between 3000 ms � t � 5000 ms, the oscillations

in he decrease in frequency and eventually disappear.

Waves in continuum models of the human cortex are not new. In [61], the authors investigate the dimensional

SPDEs and show that spatial modes develop when the corticortical e � i diffusivity dominates the corticortical e �

e diffusivity. In [83] the authors show that spatiotemporal patterns (reminiscent of the seizing cortex) occur in a

continuum model of cortical electrical activity with a single inhomogeneous connection. By adjusting the extent of

this inhomogeneous connection, the stability of the spatiotemporal patterns changes. Also, in [52] the authors show

how traveling waves may develop in a model derived from the physiology of a neocortical slice.

Waves in continuum models of the human cortex are not new. In [61], the authors investigate the dimensional

SPDEs and show that spatial modes develop when the corticocortical e � i diffusivity dominates the corticocortical

e � e diffusivity. In [83] the authors show that spatiotemporal patterns (reminiscent of the seizing cortex) occur in a

continuum model of cortical electrical activity with a single inhomogeneous connection. By adjusting the extent of

this inhomogeneous connection, the stability of the spatiotemporal patterns changes. Also, in [52] the authors show

how traveling waves may develop in a model derived from the physiology of a neocortical slice.

The last example provides a crude model for the evolution of the seizing cortex. At normal levels of subcortical
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(a) (b)

Figure 3.23: Numerical solution to the dimensionless SPDEs with parameters Γe
� 0 � 87 � 10 � 3, α � 0 � 001, and

periodic boundary conditions in space. At t � � 0 	 5000 � , Pee
� 11 � 0 uniform in space. For 500 ms � t � 5000

ms Pee is a Gaussian function in space with maximum P �ee at x � 350 mm and full width at half maximum 46
mm. In subfigure (a), the maximum P �ee

� � 110 � 0 	 210 � 0 	 310 � 0 	 410 � 0 	 510 � 0 � at t � � 500 	 1000 	 1500 	 2000 	 2500 �
ms, respectively. These increases in P �ee are denoted by the solid vertical lines. In subfigure (b), the maximum
P �ee

� � 410 � 0 	 310 � 0 	 210 � 0 	 110 � 0 � at t � � 3000 	 3500 	 4000 	 4500 � ms, respectively. These decreases in P �ee are de-
noted by the dashed vertical lines. Space (in mm) and time (in ms) are plotted along the vertical and horizontal axes,
respectively. The value of he is plotted in linear greyscale with he

� � 100 mV in white and he
� 0 � 0 mV in black.

Waves in he are localized in space and time to the region of hyperexcitation near x � 350 mm for 1800 ms � t � 3800
ms.
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excitation (Pee
� 11 � 0) there exist only disorganized spatiotemporal fluctuations in he and no pathological oscillatory

activity. Only when P �ee exceeds a threshold level do localized oscillations in he appear. As the subcortical excitation is

increased further, the frequency of the oscillations increases. Then, as P �ee is decreased, the oscillations slow and even-

tually disappear. In the next section we compare frequencies and waves speeds determined here for the dimensionless

ODEs and dimensionless SPDEs to those determined from the clinical ECoG data.

3.6 Results

In Section 3.2 we analyzed ECoG data recorded from four human subjects during seizure, and in Sections 3.3 - 3.5

we determined numerical solutions to a continuum model of cortical electrical activity. We compared the observational

and model results by computing two quantities: f0 and v. To summarize the observational results, we average f0 and

the magnitude of v over the electrodes considered for each subject (i.e., over two electrodes for Subject 1, three

electrodes for Subject 2, and nine electrodes for Subject 3 and Subject 4.) We tabulate these results in Table 3.5. We

also list the results for the simulated data in Table 3.6. We note that, in general, the results of the simulations agree

with the observed data for f0 (within a factor of two) and v in I1 and I2 (within a factor of four.)

The first goal in this chapter was to consider the potential of the SPDEs to provide a model of the mesoscopic

electrical activity on the seizing cortex. In our analysis of the dimensionless ODEs we have shown that there do

exist limit cycles in he associated with Hopf bifurcations in the dynamics. We have also shown that the simpler

dimensionless ODEs suggest behavior in the complicated dimensionless SPDEs that is consistent with the clinical

seizure data. Specifically, we have shown that at typical parameter values Γe
� 1 � 42 � 10 � 3 and Pee

� 11 � 0, a reduction

in Γe (to Γe
� 1 � 20 � 10 � 3) produced oscillatory behavior in he. But this oscillatory behavior was transient and did not

produce the large amplitude, stable oscillations characteristic of the seizing cortex. Moreover, this oscillatory behavior

occurred at a single value of Γe. Thus the parameter values of the model cortex would have to be carefully tuned to

reach this point.

To increase the excitability of the model cortex and make it “seize”, we increased Pee. We show in Figures 3.12(a)

and 3.15(a) that for Pee � 250 � 0 there exist stable, large amplitude limit cycles in he over a wide range of Γe. We show

in Section 3.5 that these oscillations are associated with traveling wave dynamics in the dimensionless SPDEs. Thus

to produce behavior in he consistent with that observed in the seizing cortex, we must: 1) increase Pee, and 2) decrease

Γe in the dimensionless SPDEs. In dimensional terms, we must increase the subcortical excitation pee or decrease the

maximum firing rate Smax, and we must increase the EPSP neurotransmitter rate constant γe or the difference between

the reversal and resting potentials � hrev
e � hrest � , or decrease the peak excitatory postsynaptic potential Ge or Smax.



3.6. RESULTS 92

That we must decrease Γe to induce a seizure seems counterintuitive. We expect that an increase in the strength

of excitatory inputs would promote seizing activity. But, the decrease in Γe, from 1 � 42 � 10 � 3 to 0 � 87 � 10 � 3 used

to create Figure 3.23, represents only a 39% change. The change in Pee required to induce a seizure is much larger;

we show in Figure 3.23 that this parameter must increase by at least 2700%. We may interpret the changes in these

two parameters required for seizure induction following the models in [75]. Alterations of the epileptic brain, due to

genetic or environmental (e.g., injury) effects, for example, predispose it to seizures. In modeling the epileptic cortex

we may interpret this predisposition as a permanent (model I) or a gradual (model II or model III) change of a model

parameter. The results shown in Figure 3.23 illustrate the latter case; with Γe fixed, a gradual increase in Pee induces

seizing activity in he. Because the change in Pee is gradual and effects the dynamics of he we could try to anticipate

these types of seizures. We may also interpret these results following the model I framework. For example, consider a

permanent increase of Pee from 11 � 0 to 310 � 0. When modeling the cortical activity of any individual (either healthy or

epileptic), we may assume that the model parameters undergo routine fluctuations in their normal values. In healthy

individuals (with the typical parameter value Pee
� 11 � 0) a small negative fluctuation in the model parameter Γe may

induce a harmless, transient oscillation (like that shown in Figure 3.11) but not a seizure. This same fluctuation in

Γe will cause the predisposed epileptic cortex to seize. In this case, the increased value of Pee allows the dynamics

to cross the separatrix (or boundary) between the normal and seizing states [84]. Thus, only a small change in Γe is

necessary to produce pathological oscillations in he. Because a random fluctuation in Γe induces the seizure, these

types of seizures cannot be anticipated. From the results presented here we suggest a large change in Pee and a small

change in Γe may provide a model of the seizing cortex.

In Tables 3.5 and 3.6 we compute two results, the average peak frequency f0 and the average propagation speed

v, derived from clinical ECoG recordings and solutions to the SPDEs. We find that the values derived from the

observational and model data approximately agree ( f0 within a factor of 2, and v in I1 within a factor of 4) but note

the following important issues. First, the subdural electrode strips and electrode grids used in the clinical recordings

consist of electrodes separated by 10 mm. Thus, the spatial sampling of the cortex is poor and we cannot observe

detailed wave behavior in the voltage. It may be true that two electrodes lie on either side of a sulcus (a groove or

furrow in the cortex); the precise electrode locations are not known. It may also be true that a wave in electrical

potential is propagating obliquely with respect to the shortest path between two electrodes. Future recordings that

utilize high density electrode grids with small inter-electrode spacing would provide better results to compare with

the theory. Second, the lead/lag relationships determined from the WCC are ambiguous. For example, we showed in

Figure 3.3 that for 17 � 5 s � t � 27 s, the oscillations at electrode X lead the oscillations at electrode Y by approximately

25 ms. During this interval, these time series are nearly sinusoidal with a well defined frequency near 4 Hz; see the

data in Figure 3.1(b) or the WPS in Figure 3.2. The cross correlation of two sinusoids is itself a sinusoid, and therefore
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ambiguous; although we suggest X leads Y by approximately 25 ms, it is also true that Y leads X by approximately

225 ms (the period of the 4 Hz cycle minus 25 ms.) We chose the case X leads Y for two reasons: 1) the amplitude

of oscillations in X is bigger than in Y , and 2) a correlation at 25 ms between two closely spaced electrodes is more

reasonable than a correlation of 225 ms. It does not seem possible to resolve this ambiguity of the cross correlation.

Third, we have assumed that the same voltage wave front passes through neighboring electrodes. If the wave source

lies between two electrodes, this assumption is incorrect. Smaller electrode spacing may help locate the wave source

more accurately. Fourth, given such a complicated model (14 nonlinear first order stochastic differential equations and

20 parameters) we could, perhaps, produce any desired behavior in he by properly tuning the parameters. Here we

chose to adjust two parameters, both related to the excitation of the model cortex; in this way, we used the physiology

of the seizing cortex to constrain the adjustable parameters in the model. In Section 3.8 we show other parameter

changes that results in seizure-like oscillations in the model. Finally, we do not mean to suggest that the SPDEs

provide an accurate model of all human cortical seizure activity. Here we have only compared the model results with

data collected from four subjects, and shown that the model and observational data agree in an approximate way.

Although confounding factors exist both in the model and observations, these results still illustrate an important

use of the SPDEs and other continuum models: establishing links between the known ECoG data and unknown

cortical physiology. In most clinical analysis no attempt is made to link the changes observed in ictal ECoG time

series with corresponding changes in cortical physiology. Continuum models of cortical electrical activity allow

one to consider such links in a quantitative way. This is especially important for human cortical data, where invasive

procedures are inappropriate. For example, in [84] the authors consider an ODE model of the corticothalamic network;

unlike the SPDEs model presented here, these models explicitly include the interactions of cortical neurons with the

thalamus. The authors show that the model can produce the 3 � Hz spike wave characteristic of absence seizures and

how the model parameters relate to the period of the seizures. In this chapter we relate the emergence of pathological

oscillations in the measured cortical voltage to changes in two parameters: a small decrease in Γe and a large increase

in Pee. In this way, we suggest a link between the ECoG data and the physiology of the cortex. In the next section, we

use the mathematical model to suggest two methods for aborting seizure-like oscillations in the dynamics.

3.7 Bifurcation control of the seizing cortex

In Section 3.6 we established the validity of the dimensionless SPDEs as an approximate model of the electrical

activity of the seizing human cortex. We compared two quantities — f0 and v — determined from ictal ECoG data

recorded from four human subjects and from the results of the dimensionless SPDEs, and showed that the observed and
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simulated results agree. We concluded that the model system — derived from human cortical physiology — provides

an accurate approximation to the propagation of electrical signals in the seizing human cortex. In this section, we use

the dimensionless SPDEs to explore two methods for controlling the seizing cortex.

For most epileptics invasive, electrical control is unnecessary. Unfortunately, an estimated 20% of people with

epilepsy do not respond to medications prescribed to control seizures [85]. For these patients, treatment options are

more invasive. Some patients may choose to undergo resective surgery, in which surgeons remove the epileptogenic

zone. When the epileptogenic zone includes eloquent cortex (e.g. motor or speech cortex) resective surgery may

not be safe, and the patient must consider alternative treatments. Brain electrical stimulation (BES) represents an

important new treatment for intractable epilepsy. The most common — and only FDA approved — BES method is

vagus nerve stimulation. In this method, electrodes (attached to a battery powered computer implanted subcutaneously

on the patient’s chest wall) periodically deliver electrical pulses to the vagus nerve. This chronic stimulation of the

vagus nerve is thought to affect brain regions (e.g., the thalamus) that might, in theory, increase cortical inhibition

and thereby lessen or modulate seizures. Other, as yet experimental, BES methods target brain regions such as the

cerebellum, caudate nucleus, and thalamus. The physiological mechanisms by which these BES methods prevent or

reduce seizures are unknown.

Seizures may also be aborted by direct electrical stimulation of the cortex. For example, cortical afterdischarges

(seizure-like activity elicited by direct cortical electrical stimulation used for brain mapping) may be arrested by

applying brief bursts (0 � 3 s � 2 � 0 s) of pulse stimulation (0 � 3 ms duration biphasic pulses delivered 50 times per second

at 1 � 0 mA � 15 � 0 mA) to the cortex [86, 87]. Others have found that biphasic pulses delivered at high frequencies

(e.g., 200 Hz in [88]), moderate frequencies (e.g., 50 Hz in [89]), and low frequencies (e.g., 0 � 9 Hz in [89]) can

reduce seizure activity. However, not all stimulation frequencies are appropriate. Moderate frequency (5 Hz � 20 Hz)

stimulation delivered for 5 s � 12 s may, in fact, increase baseline epileptiform activity [90].

For cortical BES, there may exist optimal stimulation sites, transducers, and parameters for terminating seizures.

Of course, the most important consideration for physicians and researchers is patient safety. Animal models of epilepsy

may allow researchers to explore different BES methods that may pose unacceptable risks to human subjects. For

example, in [91] the authors show that small, uniform electric fields — directed from the soma to the apical dendrites —

transiently suppress epileptiform activity in rat hippocampal slices in vitro. An improvement to this method is reported

in [92], where the authors apply time varying electric fields via a continuous, proportional feedback algorithm to rat

hippocampal slices in vitro. They find that this feedback controller reduces seizure-like activity with more success

than the uniform electric fields.

Our goal in this section is a theoretical exploration of new BES techniques. In what follows, we apply two feed-
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back controllers — a proportional controller and a differential controller, — to the dimensionless SPDEs. Others have

employed mathematical systems to model the effects of BES [93, 94]. In those works, the authors considered the ac-

tivity of individual neurons and networks of neurons. Here we study the model of mesoscale cortical electrical activity

defined in Section 3.3. In subsection 3.7.1 we apply the linear proportional feedback controller to the (dimensionless)

model variable h̃e — the spatially averaged soma membrane potential of excitatory cortical neurons. We show that,

when the controller gain exceeds a threshold value, the controller suppresses seizure-like oscillations occurring in the

dynamics. The controller works through control of bifurcations; to make the discussion precise we utilize the taxon-

omy introduced in [76]. We discuss the types of bifurcations that both produce (subHopf/fold cycle) and destroy the

large amplitude, stable oscillations characteristic of a seizure. In subsection 3.7.2 we apply a differential controller

to the dynamics. Here we do not attempt to apply rigorous control theory. (The literature is vast; see, for example,

[95].) Instead, we illustrate the effects of each controller on the bifurcations present in the dynamics. We show that

both controllers suppress seizure-like oscillations — although bifurcation analysis is not as readily performed for these

controllers. In Section 3.7.4 we discuss the results and possible future applications.

In what follows, in the interest of simplicity, we do not employ the full dimensionless SPDEs. Instead, we ignore

the spatial dependence and stochastic input of the dimensionless SPDEs, and consider a simpler system of ODEs.

We examined these dimensionless ODEs in Section 3.4 to gain insight into the complete system and in Section 3.5

found that Hopf bifurcations in the dimensionless ODEs correspond to traveling waves in the complete dimensionless
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SPDEs. We state the dimensionless ODEs here:

∂h̃e

∂t̃
� 1 � h̃e 	 Γe � h0

e � h̃e
�
Ĩee 	 Γi � h0

i � h̃e
�
Ĩie (3.9a)

∂h̃i

∂t̃
� 1 � h̃i 	 Γe � h0

e � h̃i
�
Ĩei 	 Γi � h0

i � h̃i
�
Ĩii (3.9b)

∂Ĩee

∂t̃
� J̃ee (3.9c)

∂J̃ee

∂t̃
� � 2TeJ̃ee � T 2

e Ĩee 	 Te � Nβ
e S̃e

�
h̃e � 	 φ̃e 	 Pee

�
(3.9d)

∂Ĩei

∂t̃
� J̃ei (3.9e)

∂J̃ei

∂t̃
� � 2TeJ̃ei � T 2

e Ĩei 	 Te � Nβ
e S̃e

�
h̃e � 	 φ̃i 	 Pei

�
(3.9f)

∂Ĩie

∂t̃
� J̃ie (3.9g)

∂J̃ie

∂t̃
� � 2TiJ̃ie � T 2

i Ĩie 	 Ti � Nβ
i S̃i

�
h̃i � 	 Pie

�
(3.9h)

∂Ĩii

∂t̃
� J̃ii (3.9i)

∂J̃ii

∂t̃
� � 2TiJ̃ii � T 2

i Ĩii 	 Ti � Nβ
i S̃i

�
h̃i � 	 Pii

�
(3.9j)

∂φ̃e

∂t̃
� ψ̃e (3.9k)

∂ψ̃e

∂t̃
� � 2λeψ̃e � λ2

eφ̃e 	 λeNα
e

∂S̃e
�
h̃e �

∂t̃
	 λ2

eNα
e S̃e

�
h̃e � (3.9l)

∂φ̃i

∂t̃
� ψ̃i (3.9m)

∂ψ̃i

∂t̃
� � 2λiψ̃i � λ2

i φ̃i 	 λiN
α
i

∂S̃e
�
h̃e �

∂t̃
	 λ2

i Nα
i S̃e

�
h̃e � � (3.9n)

These fourteen differential equations are similar to those in (3.5) except that we have ignored the spatial derivatives

in (3.5l) and (3.5n), and the stochastic inputs (Γ̃1, Γ̃2, Γ̃3, and Γ̃4) in (3.5d), (3.5f), (3.5h), and (3.5j). In what follows

we apply a linear and differential feedback controller to the dynamics in subsections 3.7.1 and 3.7.2, respectively. We

show that both controllers can prevent seizures (i.e., the large amplitude oscillations illustrated in Figure 3.12(b)) from

occurring in the dynamics.

3.7.1 Linear controller

We could attempt to control the model system through many different methods; a controller may depend on any

of the 14 variables or 20 parameters, and may apply to any of the 14 differential equations in (3.9). Here we employ
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practical considerations to constrain the form of the controller. Most of the model variables and parameters (e.g., φ̃e

— the corticocortical input to excitatory cortical neurons, or Nα
e — the total number of synaptic connections from

distant excitatory neurons to excitatory cortical neurons) are difficult to observe and perhaps impossible to manipulate

in practice. The main observable in the model is h̃e which is proportional to the (dimensional) voltage he recorded in

the ECoG. In practice, it is possible to manipulate cortical voltages through applied electric fields: an applied electric

field polarizes the excitatory (i.e., pyramidal) neurons and thus alters the transmembrane potentials [96, 97]. Following

these practical considerations, we implement a controller that depends only on the variable h̃e and effects only (3.9a).

We must still choose the form of the controller. In this section, we set the controller to be linear in h̃e. Linear

feedback controllers have been shown to ameliorate seizures in rat hippocampal brain slices in vitro [92]. To apply the

linear controller, we redefine (3.9a) as,

∂h̃e

∂t̃
� 1 � h̃e 	 Γe � h0

e � h̃e
�
Ĩee 	 Γi � h0

i � h̃e
�
Ĩie 	 ah̃e 	 (3.10)

where the controller is the last term in the equation, and the parameter a represents the controller gain.

To determine how the controller affects the dynamics, we compute bifurcation diagrams of (3.9) with (3.9a)

replaced by (3.10). We compute each bifurcation diagram with all parameters fixed at the typical values (listed in

Table 3.4) except for Pee and Γe. In each bifurcation diagram, we plot the (dimensional) variable he as a function of

the (dimensionless) parameter Γe. We note that the typical values of Pee and Γe are 11 � 0 and 1 � 42 � 10 � 3, respectively.

In the next subsection we consider the “hyper-excited” model for which we set Pee
� 548 � 066 (at nearly fifty times

the typical value.) We will show that, without the feedback controller, the variable he undergoes large amplitude

oscillations characteristic of a seizure at a pathological combination of parameters. However, by setting an appropriate

value for the controller gain a it is possible to abort these oscillations.

The pathological case of hyper-excitation: Pee
� 548 � 066

Here we set the parameter Pee
� 548 � 066; we found in Section 3.6 that this value of Pee produced dynamics in he

similar (in frequency and wave speed) to ictal ECoG data. We showed in Figure 3.12(a) a bifurcation diagram of (3.9)

without the applied controller (i.e., a � 0 in (3.10).) We found two Hopf bifurcations in that figure and determined

that the model “seizes” — large amplitude oscillations occur in he — for values of Γe between the two saddle node

bifurcations of limit cycles (i.e., 0 � 67 � 10 � 3 � Γe � 1 � 1 � 10 � 3.) We show these large amplitude oscillations in he in

Figure 3.12(b).

Having considered the uncontrolled dynamics (a � 0 � 0), we now consider the controlled case. In Figure 3.24 we
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(a) (b)

Figure 3.24: Bifurcation diagrams for the uncontrolled and controlled dynamics with pathological hyper-excitation
(Pee

� 548 � 066). (a) The parameter Γe is varied and the stable fixed points (solid curves), unstable fixed points (dashed
curves), and Hopf bifurcations (asterisks) in he for the uncontrolled dynamics (a � 0 in black) and linearly controlled
dynamics (a � 0 in color) are shown. (b) The Hopf bifurcations (asterisks) and maxima and minima in he achieved
during the stable (solid curves) and unstable (dotted curves) limit cycle oscillations as Γe is varied. We plot the
uncontrolled dynamics in black and the controlled dynamics in color. Both subfigures use the following color scheme:
black a � 0 � 0, red a � � 0 � 1, orange a � � 0 � 5, light green a � � 1 � 0, dark green a � � 1 � 67, blue a � � 1 � 86, and
purple a � � 1 � 96. For (a), the curves progress from rightmost and least in he for a � 0 � 0, to leftmost and greatest in
he for a � � 1 � 96. For (b), the right Hopf bifurcation of each curve (i.e., the Hopf bifurcation of greater Γe) progress
from the right of the figure for a � 0 � 0 to the left of the figure for a � � 1 � 86.
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show the bifurcation diagrams of (3.9) with (3.9a) replaced by (3.10) for six values of the gain a. To help visualize these

results, we plot in Figure 3.24(a) only the stable and unstable fixed points as solid and dashed curves, respectively, and

denote the Hopf bifurcations as asterisks. We plot the results for the uncontrolled dynamics in black, and the controlled

dynamics in color. We note that the bifurcation diagram for the uncontrolled dynamics is also shown in Figure 3.12(a).

The colors in Figure 3.24 correspond to the controller gain as follows: red a � � 0 � 1, orange a � � 0 � 5, light green

a � � 1 � 0, dark green a � � 1 � 67, blue a � � 1 � 86, and purple a � � 1 � 96. We find that for small negative gains the

two Hopf bifurcations originally separated by 0 � 28 � 10 � 3 in Γe, separate further; for a � � 1 � 0 (the light green curve

— fourth from the top) the separation between the Hopf bifurcations is 0 � 55 � 10 � 3. As we reduce a toward � 1 � 96,

the Hopf bifurcations approach one another and coalesce. At a � � 1 � 96 (the purple curve — the uppermost curve) no

Hopf bifurcations occur and only stable fixed points remain.

To investigate the limit cycles born in the Hopf bifurcations, we plot in Figure 3.24(b) the maxima and minima

of he achieved during the stable (solid curves) and unstable (dotted curves) limit cycles. We note that the solid curves

in this figure correspond to the extrema of stable limit cycles, and not to stable fixed points. The color scheme is

identical to that in Figure 3.24(a); the black and color curves correspond to the uncontrolled and controlled dynamics,

respectively. We denote the Hopf bifurcations with asterisks; the values of the Hopf bifurcations are identical in

Figures 3.24(a) and 3.24(b). We find that for a � � 0 � 1 (the red curve — second from the right) both Hopf bifurcations

are subcritical; the limit cycles born in both Hopf bifurcations are unstable. At a � � 0 � 5 (the orange curve — third

from the right), the left Hopf bifurcation at Γe
� 0 � 32 � 10 � 3 is supercritical, and the right Hopf bifurcation at Γe

�

0 � 83 � 10 � 3 remains subcritical. The stabilities of the limit cycles born in the two Hopf bifurcations are preserved

for more negative gains. For a � � 1 � 86 (the blue curve of smallest extent in he), the two Hopf bifurcations are close

in both he and Γe, and the amplitudes of the limit cycles are small. Finally, for a � � 1 � 96 we find that neither the

subcritical nor supercritical Hopf bifurcations remain. The transition between the state with two Hopf bifurcations (as

for a � � 1 � 86) and no Hopf bifurcations (as for a � � 1 � 96) can be quite involved (see, for example, Figure 4.6 of

[98].) One might investigate the details of this transition by determining the normal form of the dynamics near the

values of a and Γe at which the Hopf bifurcations approach (i.e., near a � � 1 � 864 and Γe
� 0 � 273 � 10 � 3.) Of course,

this calculation would be quite involved for the system of ODEs stated in (3.1). Here we are not concerned with the

bifurcations that eliminate the Hopf bifurcations. Instead, our goal is more practical and modest: the elimination of

seizure-like oscillations from the dynamics.

We now consider how the left Hopf bifurcations shown in Figures 3.24(a) and 3.24(b) change from subcritical to

supercritical. We plot in Figure 3.25 bifurcation diagrams for values of the gain a between � 0 � 44 (the leftmost curve)

and � 0 � 40 (the rightmost curve.) For a � � 0 � 40, the Hopf bifurcation is subcritical. The unstable limit cycle born in

this Hopf bifurcation undergoes a saddle node bifurcation and stabilizes. We note that this saddle node bifurcation of
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Figure 3.25: The bifurcation diagrams near the Bautin bifurcation for the hyper-excited (Pee
� 548 � 066) dynamics. For

the five curves, we fix a ��� 0 � 44, � 0 � 43, � 0 � 42, � 0 � 41, and � 0 � 40, going from left to right in the figure. We show
the Hopf bifurcations (asterisks) and maxima and minima achieved in the unstable (dotted curves) and stable (solid
curves) limit cycles. We denote the saddle node bifurcations of limit cycles with filled circles. The Bautin bifurcation
occurs near the leftmost curve (a ��� 0 � 44.)

limit cycles — or fold limit cycle bifurcation — occurs in the figure at the intersection of the dotted and solid curves

(i.e., near � 65 mV and � 72 � 5 mV for a ��� 0 � 40.) We mark the saddle node bifurcations of limit cycles with filled

circles. As we decrease the gain, the fold limit cycle bifurcation approaches the subcritical Hopf bifurcation. Near

a ��� 0 � 44, the fold limit cycle bifurcation and subcritical Hopf bifurcation coalesce in a co-dimension two Bautin

bifurcation. As a result, the controlled system (for values of the gain � 1 � 96 � a
� � 0 � 44) is of the subHopf/Hopf

bursting type [76].

Our goal in implementing the feedback controller is to eliminate large amplitude oscillations in h̃e (i.e., seizures)

from the model dynamics. We have used the results shown in Figures 3.24(a) and 3.24(b) to suggest that the Hopf

bifurcations approach and coalesce near a ��� 1 � 96. To further illustrate this result, we plot in Figure 3.26 the value of

Γe for each Hopf bifurcation as a function of the gain a. At a � 0 we mark with asterisks the two Hopf bifurcations for

the uncontrolled dynamics. As we decrease the gain a, the Hopf bifurcations initially separate in Γe. Near a ��� 0 � 4
a Bautin bifurcation occurs (denoted by a square) and one Hopf bifurcation (the lower one in this figure) becomes

supercritical. We indicate the subcritical and supercritical Hopf bifurcations as dotted and solid curves, respectively.

As we decrease a further past the Bautin bifurcation, the two Hopf bifurcations approach and at a ��� 1 � 96 neither

Hopf bifurcation remains. Thus, for values of the gain a � � 1 � 96, we expect no large amplitude, limit cycle dynamics.

To show how the controller effects the dynamics, we compute a numerical solution to (3.9) with (3.9a) replaced

by (3.10). Here we use the same parameters (Pee
� 548 � 066 and Γe

� 0 � 8 	 10 
 3) and algorithm (fourth-order Runge-

Kutta with time step 0 � 4 ms) we used to create Figure 3.12(b). In that figure, we fixed a � 0 � 0. Here we set a ��� 1 � 96
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Figure 3.26: Two parameter continuation of the Hopf bifurcations for the hyper-excited (Pee
� 548 � 066) cortex. We

plot the value of Γe for each Hopf bifurcation as a function of the gain a. We mark the two Hopf bifurcations from the
uncontrolled dynamics (a � 0 � 0) with asterisks. The solid and dotted curves denote supercritical and subcritical Hopf
bifurcations, respectively. In creating this figure, we compute the criticality for only a sample of Hopf bifurcations
and deduce a change in criticality only at the Bautin bifurcation labeled with the square. We note that for a � � 1 � 96
neither Hopf bifurcation remains; we label this point with a triangle. We do not indicate how the transition from two
Hopf bifurcations to none occurs.

for 1 s � t � 3 s, and a � 0 � 0 otherwise. We plot the results in Figure 3.27. Initially, in the uncontrolled state, he

undergoes large amplitude oscillations. At t � 1 s, we turn on the controller and within 0 � 2 s the oscillations cease and

he approaches a stable fixed point. When we turn off the controller at t � 3 s, oscillations in he immediately develop.

We note that Gluckman et al find a similar seizure-after-release effect in their experimental work on rat hippocampal

slices [92].

With the simple linear feedback controller, we cannot avoid the seizure-after-release phenomenon. Upon changing

from the controlled (e.g., a � � 1 � 96) to the uncontrolled (a � 0 � 0) dynamics, the bifurcation diagram reverts to that

shown in Figure 3.12(a). Because we have kept the parameters Pee
� 548 � 066 and Γe

� 0 � 8 � 10 � 3 fixed, he becomes

entrained by the large amplitude, stable limit limit cycle shown in Figure 3.12(b). To eliminate the seizure-after-release

phenomenon, we could change one of these parameters before returning to the uncontrolled state. For example, we

could increase Γe from 0 � 8 � 10 � 3 to 1 � 3 � 10 � 3 while the controller was active. Then, upon disabling the controller,

he would approach a stable fixed point instead of entering a stable limit cycle. We discuss this mechanism further in

Section 3.7.4. In the next subsection, we set Pee to the typical value of 11 � 0 and show how the controller effects the

model dynamics.
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Figure 3.27: Numerical solution to the dimensionless ODEs with the applied linear controller. We set parameters to
the pathological values Pee

� 548 � 066, Γe
� 0 � 80 � 10 � 3, and the controller gain a � � 1 � 96 for 1 s � t � 3 s, and

a � 0 � 0 otherwise. We plot dimensional he as a function of dimensional time t. At t � 1 s (indicated by the left vertical
dashed line) the active controller rapidly terminates the oscillations in he. At t � 3 s (indicated by the right vertical
dashed line) the controller becomes inactive and oscillations immediately develop.

The case of normal excitation: Pee
� 11 � 0

In the previous section we showed that the linear controller can eliminate oscillations in the (dimensional) model

variable he. To induce these oscillations, we increased the parameter Pee to nearly fifty times its normal value (i.e., we

set Pee
� 548 � 066.) We now set Pee to its typical value (i.e., Pee

� 11 � 0) and show how the controller effects the normal

model dynamics. This case is of practical importance; should the controller incorrectly activate during normal brain

activity, it must not induce a seizure.

To start, we fix Pee
� 11 � 0 and compute bifurcation diagrams of (3.9) with (3.9a) replaced by (3.10). In Figure

3.28(a) we plot the stable (solid curves) and unstable (dashed curves) fixed points and Hopf bifurcations (asterisks) for

five values of the gain a. We denote the values of a as follows: black a � 0 � 0, red a � � 0 � 3, orange a � � 1 � 0, light-

green a � � 1 � 96, and purple a � � 2 � 2. We note that the color scheme in Figures 3.24(a) and 3.28(a) are different.

For a � 0 � 0, the black curve, we find only one Hopf bifurcation at Γe
� 1 � 21 � 10 � 3. At a � � 0 � 3 (the red curve,) a

second Hopf bifurcation appears at Γe
� 2 � 07 � 10 � 3. As we decrease the gain a to � 1 � 0 and � 1 � 96, we find that the

two Hopf bifurcations approach in Γe and neither Hopf bifurcation remains at a � � 2 � 2.

The Hopf bifurcations shown in Figure 3.28(a) affect the dynamics differently. To illustrate these effects, we plot

in Figure 3.28(b) the maxima and minima achieved by he during stable (solid curves) and unstable (dotted curves)

limit cycles. For a � 0 � 0 (the black asterisk without limit cycles,) the Hopf bifurcation is supercritical. The unstable
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(a) (b)

Figure 3.28: Bifurcation diagrams for the uncontrolled and controlled typical (Pee
� 11 � 0) dynamics. (a) The param-

eter Γe is varied and the stable fixed points (solid lines), unstable fixed points (dashed lines), and Hopf bifurcations
(asterisks) in he for the uncontrolled dynamics (a � 0 in black) and linearly controlled dynamics (a � 0 in color) are
shown. (b) The Hopf bifurcations (asterisks) and maxima and minima in he achieved during the stable (solid curves)
and unstable (dotted curves) limit cycle oscillations as Γe is varied. We plot the uncontrolled dynamics in black and
the controlled dynamics in color. Both subfigures use the following color scheme: black a � 0 � 0, red a � � 0 � 3, orange
a � � 1 � 0, light-green a � � 1 � 96, and purple a � � 2 � 2. For (a), the curves progress from rightmost and least in he

for a � 0 � 0, to leftmost and greatest in he for a � � 2 � 2. For (b): the Hopf bifurcation without a limit cycle denotes
the a � 0 � 0 case, the two subcritical Hopf bifurcations without a saddle node bifurcation of limit cycles denotes that
a � � 0 � 3 case, the subcritical and supercritical Hopf bifurcations connected by saddle node bifurcation of limit cycles
of large amplitude denotes that a � � 1 � 0 case, and the subcritical and supercritical Hopf bifurcations connected by
saddle node bifurcation of limit cycles of smaller amplitude denotes that a � � 1 � 96 case.
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Figure 3.29: Bifurcation diagram for the controlled dimensionless ODEs at Pee
� 11 � 0 and gain a � � 0 � 3. The

parameter Γe is varied and the stable (solid curve) and unstable (dashed curve) fixed points in he are shown. The
asterisks denote the two Hopf bifurcations. The dotted curves denote the maximum and minimum values of he achieved
during the unstable limit cycles. Both unstable limit cycles intersect the curve of unstable fixed points and terminate
in a global bifurcation. The bifurcation diagram in this figure corresponds to red curves shown in Figures 3.28(a) and
3.28(b).

limit cycle born in this Hopf bifurcation increases in amplitude, and immediately crosses the branch of unstable fixed

points in he. This transition is so abrupt that we cannot show the unstable limit cycle branch in Figure 3.28(b). We

illustrated the dynamics near this Hopf bifurcationin Figure 3.11(c). In that figure, we plotted a numerical solution

to (3.9) with Γe
� 1 � 21 � 10 � 3, near the Hopf bifurcation and no stochastic input. We found that oscillations in he

increased in amplitude until he reached a threshold value. Upon reaching this threshold, the oscillations in he ceased

and the dynamics approached a stable fixed point. These low amplitude, transient oscillations do not mimic the large

amplitude, persistent oscillations we observe in ECoG data recorded during seizure. Thus we do not require that the

controller eliminate this low amplitude, oscillatory behavior and its subsequent transition to a stable fixed point.

With this understanding of the uncontrolled (a � 0 � 0) dynamics, we now consider the controlled behavior. For

a � � 0 � 3 (the red curves plotted in Figures 3.28(a) — second from the bottom — and 3.28(b)), we find two Hopf

bifurcations, one at Γe
� 1 � 13 � 10 � 3 — near the Hopf bifurcation found for the a � 0 � 0 case — and the other at

Γe
� 2 � 07 � 10 � 3. Both Hopf bifurcations are subcritical and produce unstable limit cycles. The limit cycles increase

in amplitude and intersect the curve of unstable fixed points. To illustrate this behavior, we show in Figure 3.29 the

complete bifurcation diagram for gain a � � 0 � 3. We note that the (red) curves in this figure correspond to the (red)

curves shown in Figures 3.28(a) and 3.28(b). The Hopf bifurcations give rise to unstable limit cycles. The amplitudes

and periods of the oscillations (dotted curves) increase until the limit cycles reach the branch of unstable fixed points

(dashed curves) near Γe
� 1 � 25 � 10 � 3 and Γe

� 2 � 02 � 10 � 3. At these intersections the oscillations in he cease in a

global bifurcation and he approaches a stable fixed point, similar to the results found for the a � 0 � 0 case and shown in
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Figure 3.30: Two parameter continuation of the Hopf bifurcations for the cortex with typical excitation (Pee
� 11 � 0.)

We plot the value of Γe for each Hopf bifurcation as a function of the gain a. We mark with asterisks the Hopf
bifurcation present in the uncontrolled dynamics (a � 0 � 0) and a Hopf bifurcation that appears at a � � 0 � 2. The
solid and dotted curves denote supercritical and subcritical Hopf bifurcations, respectively. We label the the Bautin
bifurcation with a square. We note that for a � � 2 � 15 neither Hopf bifurcation remains; we label this point with a
triangle. We do not indicate how the transition from two Hopf bifurcations to none occurs.

Figure 3.12(a). Thus, for small negative gains, the controlled dynamics enter unstable, low amplitude limit cycles, not

the high amplitude stable limit cycles characteristic of a seizure. As we decrease a further we find, but do not show, that

the Hopf bifurcation with a lower value of he undergoes a Bautin bifurcation near a � � 0 � 75. The stable limit cycles

born in the supercritical Hopf bifurcations undergo a saddle node bifurcation of limit cycles with the unstable limit

cycles born in the subcritical Hopf bifurcation. We illustrate this limit cycle behavior in Figure 3.28(b) for a � � 1 � 0

(orange curve — large amplitude, stable oscillation) and a � � 1 � 96 (light-green curve — moderate amplitude, stable

oscillations). We note that with gain a � � 1 � 96 the controller successfully terminates seizures in the hyper-excited

(Pee
� 548 � 066) model cortex as we show in Figure 3.27. Unfortunately, the same controller and gain induces large

amplitude stable oscillations in he characteristic of seizures for Pee
� 11 � 0, the typical value of subcortical excitation.

To summarize how the Hopf bifurcations depend on the gain a and parameter Γe for Pee
� 11 � 0 (the typical value),

we plot in Figure 3.30 the value of Γe for each Hopf bifurcation as a function of the gain a. We create this figure and

Figure 3.26 in a similar way. Namely, we determine whether the Hopf bifurcations are subcritical (dotted curves) or

supercritical (solid curve) by computing the limit cycle stability at a sample of points. At a � 0 � 0, we find only one

Hopf bifurcation at Γe
� 1 � 21 � 10 � 3 marked with an asterisk. Decreasing a, we find a second Hopf bifurcation at

a � � 0 � 2. This Hopf bifurcation undergoes a Bautin bifurcation (marked by a square) at a � � 0 � 75 and the limit

cycle stabilizes. The supercritical and subcritical Hopf bifurcations approach and coalesce at a � � 2 � 15. We note that

the apparent crossing of the subcritical Hopf bifurcations at a � � 0 � 45 results from projecting the dynamics onto this

two-dimensional space.
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(a) (b)

Figure 3.31: The difference between the maximum and minimum achieved by (the dimensional) he in solutions of
the dimensionless ODEs for parameters Pee and Γe. The difference is plotted in a linear color (grey) scale with white
representing a 0 mV difference and purple (black) representing a 50 mV difference. (a) Gain a � 0 � 0, the uncontrolled
system. The dark region corresponds to stable, seizure-like oscillations in he and broadens as Pee is increased. (b)
Gain a � � 1 � 96. Stable, seizure-like oscillations in he occur for Pee � 11 � 0 (the typical value of Pee) but at lower than
the typical value of Γe.

We have shown that with gain a � � 1 � 96, the controller eliminates seizures from the hyper-excited (Pee
� 548 � 066)

model cortex. Unfortunately, the same controller induces seizures in the model cortex with typical excitation (Pee
�

11 � 0.) We do not consider such a controller successful. Should the controller activate during near-normal activity —

requiring a 40% decrease in the typical value of Γe — the controller may induce a seizure. To avoid this unwanted

behavior, we set the gain a � � 2 � 4. At this gain, we do not find any Hopf bifurcations in the hyper-excited or typical

dynamics; see Figures 3.26 and 3.30. To verify this result, we compute numerical solutions to the dimensionless

ODEs for 11 � 0 � Pee � 1000 � 0, 0 � 11 � 10 � 3 � Γe � 1 � 4 � 10 � 3, and a � 0 � 0, a � � 1 � 96, and a � � 2 � 2. We use the

fourth-order Runge-Kutta method with a (dimensional) time step of 0 � 4 ms. We then determine the difference between

the maximum and minimum achieved by the solution he after transient behavior has decayed. If he approaches a fixed

point, then the maximum and minimum are nearly equal and their difference approaches zero. But, if he is entrained

by a limit cycle then the difference between the maximum and minimum achieved by he is nonzero. In Figure 3.31(a)

we fix a � 0 � 0 and plot the difference between the maximum and minimum achieved by he as a function of the

parameters Pee and Γe. Here white represents a 0 mV difference and purple (or black) a 50 mV difference. We find

that oscillations in he (represented by the color (or dark) regions in Figure 3.31(a)) extend over a broad range of

parameter values beginning near Pee
� 250 � 0 and Γe

� 1 � 3 � 10 � 3. These regions of oscillatory activity in he illustrate

the parameter values at which the dimensionless ODEs “seize.” We note that Figure 3.31(a) is identical to Figure
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3.15(a) except in color. We reproduce the figure here for comparison with Figure 3.31(b) in which we show the results

of a similar computation with the gain a � � 1 � 96. The color scheme is identical to that in Figure 3.31(a). We note that

oscillations develop at smaller values of Pee and Γe. We find, but do not show, that no seizure-like oscillations occur

when we fix the gain a � � 2 � 4. Thus we conclude that the linear feedback controller with gain a � � 2 � 4 eliminates

seizures in the hyper-excited (Pee � 11 � 0) model cortex and does not induce seizures in the model cortex with typical

excitation (Pee � 11 � 0).

3.7.2 Differential controller

We have shown in Section 3.7.1 how we can use a feedback controller linear in he to halt seizures in the model

cortex. Although successful in the model, the linear controller would fail in practice. To prevent tissue damage a

controller should inject charge balanced currents (e.g., biphasic pulses [99]) into the cortex. The linear controller

we discuss in Section 3.7.1 violates this important restriction. Instead, with a � � 1 � 96, say, the active controller

establishes a constant voltage across the cortical tissue. We show an example of this in Figure 3.27. For 1 s � t � 3

s, the controller maintains he at � 51 mV and therefore establishes a constant voltage of a h̃e
� 
 � 1 � 96  � 
 � 51

mV  � 100 mV across the cortical tissue. This constant voltage requires a constant — not a charged balanced —

continuous, current. In practice, the constant current produced by the linear controller would create unacceptable

damage to cortical tissue [99].

To implement a controller that avoids damaging cortical tissue, we consider a differential controller. In [94],

the authors apply a differential controller to a population of neurons interacting through global coupling. They find

that, once initiated, the controller rapidly suppresses synchronous activity and decays to the noise level. We note

that in Figure 3 of [94] the controller value appears to oscillate around zero and is suggestive of a charge balanced

intervention.

To apply a differential controller to (3.9), we set (3.9a) to:

∂h̃e
�
t �

∂t̃
� 1 � h̃e

�
t � 	 Γe � h0

e � h̃e
�
t � � Ĩee

�
t � 	 Γi � h0

i � h̃e
�
t � � Ĩie

�
t � 	 b 
 h̃e

�
t ��� h̃e

�
t � τ �  � (3.11)

Here we explicitly state the time dependence in square brackets following each variable. The last term on the right

hand side of (3.11) represents the controller; b denotes the controller gain, and τ the delay time. By introducing the

differential controller, we change the system of ODEs in (3.9) into a system of delay differential equations (DDEs.)

One may compute bifurcation diagrams for the DDEs (see, for example [100]) but we will not do so here. Instead we

compute numerical solutions and response diagrams to the DDEs and show how the differential controller affects the
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Figure 3.32: Numerical solution to the dimensionless DDEs with the applied differential controller. We set parameters
to the pathological values Pee

� 548 � 066, Γe
� 0 � 80 � 10 � 3, and the controller gain b � � 10 � 0 for 1 s � t � 3 s, and

b � 0 � 0 otherwise. We plot the model results for dimensional he as a function of dimensional time t in the lower curve.
We plot the dimensional value of the differential controller in the upper curve. At t � 1 s (indicated by the left vertical
dashed line) the active controller rapidly terminates the oscillations in he. At t � 3 s (indicated by the right vertical
dashed line) the controller becomes inactive and oscillations soon return.

dynamics. We will show that the differential controller can stop the model dynamics from seizing with minimal net

intervention.

We start by computing a numerical solution to (3.9) with (3.9a) replaced by (3.11). We fix the model parameters to

the typical values except for Pee and Γe which we set to the pathological values: Pee
� 548 � 066 and Γe

� 0 � 80 � 10 � 3.

We fix the delay time of the controller τ � 20 ms and vary the gain b as follows: for 1 s � t � 3 s we set b � � 10 � 0;

otherwise b � 0 � 0. We compute the numerical solution using a fourth order Runge-Kutta method with time step of 0 � 4

ms and show the results in Figure 3.32. We plot in the lower curve the model results for the dimensional he, and in the

upper curve the value of the controller (i.e., the last term on the right hand side of (3.11).) For t � 1 s, the controller is

inactive and the model “seizes.” At t � 1 s we activate the differential controller and its voltage quickly increases to

a maximum value of 190 mV (outside of the range shown in this figure.) The controller halts the seizure and, within

one second, he approaches a fixed point. Soon afterward, the applied voltage delivered by the controller approaches

zero, but continues to act weakly on the dynamics. Upon deactivating the controller at t � 3 s, he drifts from the steady

value and becomes entrained in the limit cycle behavior characteristic of the seizure-after-release effect.

We have shown in Figure 3.32 that the differential controller with gain b � � 10 � 0 can halt seizures in the model

cortex. We now consider response diagrams for the controlled dynamics with different values of the gain b. To

compute each response diagram, we fix the parameters at the typical values except for Pee
� 548 � 066 (the pathological

value) and Γe chosen from the range 0 � 3 � 10 � 3 � Γe � 1 � 3 � 10 � 3. For each value of Γe we solve the dimensionless

DDEs using a fourth order Runge-Kutta method with time step of 0 � 4 ms and total time of 1600 ms. We then compute
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Figure 3.33: Response diagrams for the uncontrolled and differential controlled dynamics with pathological hyper-
excitation (Pee

� 548 � 066). The parameter Γe is varied and the stable fixed points (solid curves) and stable limit cycles
(dot-dash curves) are shown. We plot the uncontrolled dynamics in black and the controlled dynamics in color where:
red b � � 2 � 5, light green b � � 5 � 0, and blue b ��� 10 � 0. The amplitudes of oscillation are largest for b � 0 � 0 and
decrease for b ��� 2 � 5 and b ��� 5 � 0. We find no oscillation for b ��� 10 � 0. The curves of fixed points nearly overlap.

the maximum and minimum achieved by he during the last 400 ms of the solution. If the dynamics approach a fixed

point, then the maximum and minimum of he are equal. Otherwise, (e.g., if the dynamics enter a limit cycle) then the

maximum and minimum are unequal. We repeat this computation for different values Γe that deviate from the current

value by 0 � 01 	 10 
 3. We note that the response diagram is similar to the bifurcation diagrams shown in Section 3.7.1.

An important difference is that, in the response diagrams, we can only show stable (not unstable) fixed points and limit

cycles.

We show the response diagrams in Figure 3.33. We plot in black the response diagram for the uncontrolled

(b � 0 � 0) dynamics. Where the maximum and minimum of he are equal, we plot black solid curves; otherwise we

plot dot-dash curves. Here we find two curves of stable fixed points (the black, solid curves) and two curves of stable

oscillations (the black, dot-dash curves largest and smallest in he.) The stable oscillations occur for 0 � 65 	 10 
 3 �

Γe
� 1 � 1 	 10 
 3. We note the similarity between the black curves shown in this response diagram and the stable fixed

points and limit cycles shown in Figure 3.12(a). As we decrease the gain b to � 2 � 5 (the red curves) and � 5 � 0 (the

light green curves) we find that the stable oscillations — represented by the dot-dash lines — decrease in amplitude,

and that the branches of stable fixed points extend over more of Γe. In the figure we have vertically offset the curves of

stable fixed points to allow visual comparison; these curves are nearly identical in he throughout the regions of overlap

in Γe. At b ��� 10 � 0 (the blue curves) we find no stable oscillations in the dynamics; we only find two curves of stable

fixed points. We conclude that the differential controller with delay time τ � 20 ms and gain b � � 10 � 0 can prevent

seizure-like oscillations in the model cortex with pathological hyper-excitation (Pee
� 548 � 066).
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Figure 3.34: The difference between the maximum and minimum achieved by (the dimensional) he in solutions of
the dimensionless DDEs for parameters Pee and Γe. For the differential controller the delay time τ � 20 ms and gain
b � � 5 � 0. The difference is plotted in a linear color (gray) scale with white representing a 0 mV difference and purple
(black) representing a 50 mV difference. The stable “seizure” oscillations of he broaden as Pee is increased.

To show that the differential controller is robust to changes in the model parameters Pee and Γe, we compute

two numerical solutions to the dimensionless DDEs over the parameters 11 � 0 � Pee � 1000 � 0 and 0 � 11 � 10 � 3 � Γe �
1 � 4 � 10 � 3. In the first solution, we fix the delay time of the differential controller τ � 20 ms and the gain b � � 5 � 0. We

then follow the same procedure and implement the same color scale as we used to create Figures 3.31(a) and 3.31(b).

We have shown the uncontrolled dynamics (b � 0 � 0) in Figure 3.31(a), and found that oscillatory activity (denoted by

the color (or dark) regions) extends over a wide range of parameter space. In Figure 3.34 we show the results for the

controlled dynamics with gain b � � 5 � 0. We find that oscillations remain over the same region of parameter space,

although with lower amplitude. For b � � 10 � 0, we find no oscillations in he for any values of Pee and Γe.

We have shown that the differential controller, like the linear controller, can halt seizures in the model cortex

over a wide range of parameter values. The differential controller provides two important improvements to the linear

controller. First, the applied voltage delivered by the differential controller quickly approaches zero. After he achieves

the stable value (near � 60 mV in Figure 3.32) the controller may remain active with only minimal effect on the tissue.

Second, the applied voltage delivered by the differential controller fluctuates around zero. For the results shown

in Figure 3.32, the net voltage applied by the controller is 14 mV. This voltage is much smaller — and much less

damaging to cortical tissue — than that delivered by the linear controller. Here we have only considered a cursory

exploration of the differential controller parameters (delay time τ and gain b.) A more detailed analysis may reveal a

set of optimal parameters that further improve the differential controller over the linear controller.
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Figure 3.35: Numerical solution to the controlled dimensionless SPDEs with parameters: Γe
� 0 � 87 � 10 � 3, α � 0 � 001,

and Pee and b both Gaussian functions in space, each with an extremum at x � 350 mm and a full width at half the
extremum of 46 mm. The boundary conditions are in periodic in space. Space (in mm) and time (in ms) are plotted
along the horizontal and vertical axes, respectively. The value of he is plotted in linear greyscale with he

� � 100 mV
in white and he

� 0 � 0 mV in black. For t � 500 ms, waves in he travel outward from the region of hyper-excitation
near x � 350 mm. At t � 500 ms (indicated by a horizontal dashed line,) we activate the differential controller —
we set the minimum of the gain b0

� � 10 � 0 and τ � 20 ms. The traveling waves in he cease until we deactivate the
controller at t � 1000 ms (indicated by a horizontal dashed line.)

3.7.3 Control of stochastic partial differential equations

We have shown in Sections 3.7.1 - 3.7.2 how two different controllers can terminate seizure-like oscillations of

the model equations (3.9). We chose this system of ODEs as a simplification of the complete mathematical model

(3.1). In this section we include the spatial dependence and stochastic input of the model and apply the differential

controller (described in Section 3.7.2) to the complete system of SPDEs.

To compute a numerical solution to (3.1) we fix all of the parameters at the typical values except for Γe and Pee.

We set Γe
� 0 � 8 � 10 � 3 uniform in space, and Pee Gaussian in space with a maximum of 548 � 066 at x � 350 mm, a

full width at half maximum of 46 mm, and a minimum of 11 � 0. We choose this Gaussian profile for Pee to construct

a region of hyper-excitation localized in space; we think of this region as the epileptogenic zone in the model. We

apply the differential controller to (3.1a) and set the controller delay time to τ � 20 ms and the gain b to be Gaussian

in space with a minimum b0 at x � 350 mm, a full width at half minimum of 46 mm, and a maximum of b � 0 � 0.

We vary the minimum of the gain b0 as follows: b0
� � 10 � 0 for 500 ms � t � 1000 ms, and b0

� 0 � 0 otherwise.

We note that the controller is only active for 500 ms � t � 1000 ms. We compute numerical solutions to (3.1) using

the Euler-Maruyama algorithm with fixed steps in space and time, 14 mm and 0 � 1 ms, respectively, and boundary

conditions periodic in space [78].

We show the results in Figure 3.35. We plot the (dimensional) value of he in linear gray scale, with white
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representing � 100 mV and black representing 0 � 0 mV, as a function of (dimensional) space and time. For t � 500

ms, we find that waves — represented by the dark ridges — emanate from the region of hyper-excitation at x � 350

mm. These waves travel outward to less excited (Pee � 11 � 0) spatial regions and there decay. We showed in Section

3.6 that the speed and temporal frequency of these waves agree with observed ECoG data recorded from four human

subjects during seizure. At t � 500 ms, we activate the controller. Almost immediately, the traveling wave solutions

cease and he fluctuates around a stable value at each point in space. During the time interval of active control, the

mean and standard deviation of he at x � 350 mm are � 70 mV and 2 mV, respectively. At t � 1000 ms, we deactivate

the controller and the traveling waves solutions reappear.

We conclude that the differential controller can abort seizures in the complete system of SPDEs (3.1). Here

we only consider one instance of the dimensionless SPDEs, with Pee and b both Gaussian in space. We find that

the controller halts the traveling waves in he characteristic of a seizure. Like the controlled dimensionless ODEs,

the controlled dimensionless SPDEs exhibit the seizure-after-release effect. Upon deactivation of the controller at

t � 1000 ms, the traveling wave solutions develop. To avoid this effect, we suggest that a more effective controller

would manipulate an additional model parameter (e.g., increase Γe or decrease Pee) before returning to the uncontrolled

b � 0 � 0 state.

3.7.4 Discussion

In this section we explored two methods for controlling the large amplitude, stable “seizure” oscillations in he.

In Section 3.7.1 we applied a linear feedback controller to the model. We showed that with a gain of a � � 2 � 4 the

controller prevented seizures in the hyper-excited cortex (Pee � 11 � 0) and did not induce seizures in the typical cortex

(Pee � 11 � 0.) Unfortunately, the linear controller fails in one important aspect of practical importance: the linear

controller establishes a large net voltage across the cortex. To correct for this, we applied a differential controller to

the model in Section 3.7.2. We showed that the differential controller can also halt seizures in the hyper-excited cortex

and establishes only a small net voltage across the cortex. Finally, in Section 3.5 we applied the differential controller

to an example of the SPDEs. We showed that the controller can abort the traveling waves of excitation characteristic

of seizures in the complete model.

In our discussions of Figures 3.27 and 3.32 we noted that upon cessation of the linear and differential controllers

seizures soon develop. Therefore, the controller must continually act on the system to prevent the seizure from occur-

ring. Such a controller would require a large power source. Moreover, prolonged voltage control, even at low voltages,

may damage the cortex [99]. To prevent (not just temporarily halt) a seizure, the controller must affect another model

parameter. We showed in Section 3.3 that seizures occur in the model after a change in two parameters: Pee and Γe.
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A successful strategy employing linear feedback control would allow the controller to also effect Γe. To prevent a

seizure, this new controller would first activate the voltage feedback controller and then slowly decrease Γe until the

dynamics reach a safe range outside of the subHopf/fold cycle bifurcation. This controller operating on he and Γe

would avoid the seizure-after-release effect.

These results lead us to propose an implantable seizure control device acting via two mechanisms. Immediately

after seizure initiation, a voltage controller activates and temporarily halts the seizure. A chemical controller then

activates and injects a drug either systemically or locally, into the brain. After the drugs take effect — perhaps a few

minutes later — the voltage controller may be shut off without inducing a seizure. We suggest that the effect of the

voltage controller is an immediate arrest of the seizure, while the effect of the second, chemical controller is prevention

of seizure-after-release.

Using the model as a guide, we may propose the type of drugs to be injected by the chemical controller. For

example, benzodiazepines (BZ) act to enhance the action of GABA at GABAA receptors (see Section 4.4 of [58]

and note the change of notation.) In the model system, BZ may effect the dimensionless parameter Γe through the

dimensional parameter Gi — the mean peak amplitude of the postsynaptic potential induced by a single presynaptic

spike from an inhibitory neuron at the synapses of a cortical neuron; see Table 3.4 and Table 1 of [61]. An improved

understanding of how drugs (such as BZ) relate to the model parameters may reveal how drugs affect the brain and

allow the development of new therapies.

We have not considered several important practical issues in developing BES methods. First, to apply responsive

cortical BES one must detect a seizure. An optimal seizure detection algorithm is an important and unresolved research

topic [101, 102]. Second, the dimensionless ODEs are not an exact model of human cortical electrical activity. Finding

an adequate controller for the model is, of course, not enough to justify clinical experiments. By changing the model

parameters, one may develop a mesoscale model for electrical activity in, say, rat cortex where model results may be

more readily tested. Finally, we have not considered whether the electrical stimulation induced by the two controllers

will damage cortical tissue. To do so approximately, we assume: a uniform cortical conductivity of 0 � 15 S/m [103],

a cortical thickness of 5 mm, an applied voltage of 100 mV, and a pulse duration — here, half the oscillation period

— of 0 � 1 s. Using these assumptions, we calculate an estimate of the charge per phase injected by the controller

of 7 � 5µC. If we further assume that the area of the stimulation electrode is 1 cm2 (large enough to cover a broad

epileptogenic zone,) then the charge density — defined as the charge per phase divided by the electrode surface area

— is 7 � 5µC / cm2. This combination of charge per phase and charge density satisfies stimulation induced safety

limits (see Figure 9.1 of [99] and [104].) To confirm this result a more detailed analysis, perhaps involving multiple

stimulation electrodes and a model of the human brain, is required [105].
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Many exciting prospects exist for future epilepsy treatments. As seizure detection and localization algorithms

improve, therapies may become more localized in both space and time. Similarly, as brain models improve, more

effective and robust therapies may be developed. In time, mathematical models may aid in developing an implanted

microprocessor that would detect cortical seizures and deliver electrical impulses and drug therapies to specific brain

regions. In the next section, we describe other parameter changes that both induce and prevent seizure-like oscillations

in the mathematical model.

3.8 Additional routes to seizure

In Section 3.6 we compared f0 and v determined from observed data in Section 3.2 and simulated data in Sections

3.3-3.5. We found that, in general, the results for f0 and v agree. Having validated the mathematical model in this

way, we now consider other parameter changes that result in seizure-like oscillations in the model dynamics. To do

so, we follow the procedure in Section 3.4 and compute numerical solutions to a simplified model: the dimensionless

ODEs. In Section 3.4 we computed numerical solutions to the dimensionless ODEs and showed that seizures result

from changes in two model parameters: an increase in Pee and a decrease in Γe. We considered changes in these two

parameters because both affect the excitation of the model cortex. In what follows, we now consider whether other

parameter changes can result in seizure-like oscillations in he. To do so, we keep Pee increased to nearly 50 times

its typical value (Pee
� 548 � 066.) Therefore, the excitatory cell populations still receive strong, subcortical excitatory

input; we call this model cortex “hyper-excited.” We then vary those parameters affecting connectivity between cell

populations (i.e, within and between the excitatory and inhibitory populations.) To examine all types of connectivity,

we relax several assumptions made in Sections 3.3 and 3.5. In those sections, we assumed that connections between

neuronal populations were independent of the postsynaptic population. For example, in Section 3.4, we defined the

parameter Γe as the influence of excitatory input on both excitatory and inhibitory postsynaptic cell populations. A

change in Γe, therefore, affected excitatory and inhibitory populations equally. To allow more general connectivity

changes, we replace Γe with two parameters: Γee and Γei. The new parameter Γee defines the influence of excitatory

input on postsynaptic excitatory populations, and the new parameter Γei defines the influence of excitatory input on

postsynaptic inhibitory populations. We perform similar changes to three other model parameters (Γi, Nβ
e , and Nβ

i )

that effect connectivity between neuronal populations. We define the eight new parameters and list the typical values

in the second and fifth columns of Table 3.7, respectively.

Having established the validity of the model and defined the eight new parameters, we now determine which

parameter changes result in seizure-like oscillations in the dynamics. To do so, we fix seven of the new parameters at
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the typical values, change one parameter by a small amount, and compute a numerical solution to the dimensionless

ODEs. We compute the numerical solutions here, and in what follows, using a fourth-order Runge-Kutta method

with time step of 0 � 4 ms. We find that the variable he — the dimensional observable variable we compare to the

ECoG data — either approaches a steady state value, or undergoes large amplitude oscillations. If he approaches

a steady state value, we change the same parameter by a small amount and compute another numerical solution to

the dimensionless ODEs. We continue this procedure until the parameter becomes implausible (e.g., negative) or he

undergoes oscillations. If a small change in the parameter results in oscillations in he, then we say that this parameter

induces a seizure in the model. In the last column of Table 3.7, we list the percentage change in each parameter

necessary to induce seizure-like oscillations in he.

We illustrate the results of this analysis in Figure 3.36. In this figure, we show a schematic of the mathematical

model similar to Figure 3.10. The eight rectangular boxes represent the 8 model (dimensionless) variables (h̃e, h̃i,

Ĩee, Ĩei, Ĩie, Ĩii, φ̃e, and φ̃i) we define in Table 3.3. We again note that the dimensional variable he is related to the

dimensionless variable h̃e by a simple scaling: he
� � 70 mV � h̃e. The arrows represent connections between the

variables, and between the variables and subcortical inputs (Pee, Pei, Pie, and Pii at the bottom of the figure.) Because

we have increased Pee by nearly 500%, we color its connection to Ĩee in gold. To make the model “seize” we change the

parameters listed in the second column of Table 3.7 one at a time. We label the connections affected by each of these

parameters in the figure. For example, to alter the strength of connection from h̃e to Ĩee we change the parameter Nβ
ee.

We find that seizure-like oscillations result in h̃e (or he) when we decrease Nβ
ee by 28%. We indicate that a decrease

in Nβ
ee results in a seizure by coloring this connection and label green. We find that the model dynamics “seize” as

we increase or decrease each of the eight parameters. We indicate the direction of change in Figure 3.36; we find that

seizure-like oscillations results in he when we increase the strength of the connections colored in red or decrease the

strength of the connections colored in green. We note that seizures result in the model from an increased connectivity

between the two cell populations (i.e., between the excitatory and inhibitory populations,) and a decreased connectivity

within each population (i.e., within the excitatory population or within the inhibitory population.)

So far we have discussed how to make the model “seize” by changing the dimensionless parameters listed in

the second column of Table 3.7. We now discuss the relationship between these parameter changes in the model

and physiological changes in the cortex. To do so, we first define each dimensionless parameter in terms of the

dimensional quantities listed in Table 3.4. We list these definitions in the third column of Table 3.7. We note that the

four parameters Nβ
ee, Nβ

ei, Nβ
ie, and Nβ

ii have no dimensional counterparts; each of these parameters represents a true

dimensionless quantity: the mean number of synapses.

The dimensional definitions of Γee, Γei, Γie, and Γii are more complicated. Each contains four new quantities: G jk,
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Figure 3.36: A schematic representation of the connections between the 8 (dimensionless) variables (h̃e, h̃i, Ĩee, Ĩei, Ĩie,
Ĩii, φ̃e, and φ̃i) and the 4 subcortical inputs (Pee, Pei, Pie, Pii) in the model. We indicate the interactions between the
variables using arrows and label the eight connections that affect the connectivity within and between the excitatory
and inhibitory cell populations. We have increased Pee by 500%; we denote this increase with the gold arrow. To induce
seizures in the hyper-excited model dynamics, we may increase the strength of any single one of the red connections
or decrease the strength of any single one of the green connections by the amounts shown in Table 3.7.

γ jk, hrev
jk , and hrest

k ; where j � � e 	 i � and k � � e 	 i � ; as well as Smax and the exponential exp 
 1  . Here too we assume

that the parameters depend on the postsynaptic neuron. For example, we define the neurotransmitter rate constants γ jk

with two subscripts. The first ( j) defines the presynaptic neuron and the second (k) defines the postsynaptic neuron.

Other researchers who investigate the dimensionless SPDEs model do not make this assumption [61]. We allow this

parameter (as well as the parameters G jk, Nβ
jk, hrest

k , and hrev
jk ) dependence on the postsynaptic neuron to explore more

specific behavior in the model. We also assume that the cell resting potential hrest
k depends only on the postsynaptic

neuron k. A change in a dimensionless parameter can result from a change in any of the dimensional parameters of

which it is comprised. For example, to decrease the dimensionless parameter Γee and induce seizure-like oscillations

in the model dynamics, we can: decrease Gee or Smax, or increase γee or the difference � hrev
ee � hrest

e � . We list these

dimensional quantities, their definitions, and the direction of change necessary to produce seizing dynamics in the

model in Table 3.8. We include the parameters Nβ
ee, Nβ

ei, Nβ
ie, and Nβ

ii in this table, although these parameters are

dimensionless.

We illustrate the changes in the dimensional quantities listed in Table 3.8 in Figure 3.37. We show in this figure

a cartoon representation of the local connections between the two cell populations. (By local connections we mean

connections established within a small spatial neighborhood, not long-range, corticocortical connections.) We draw

the excitatory and inhibitory populations as rectangles on the left and right of Figure 3.37, respectively. The popu-
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Figure 3.37: A cartoon of two interconnected neuronal populations (excitatory — EX — on the left and inhibitory —
IH — on the right) and 16 physiological parameters. The filled circles denote synapses (Nβ

jk), the colored triangles
denote peak amplitudes of the postsynaptic potentials (G jk), and the vertical colored arrows denote the rate constants
(γ jk). We also indicate the voltage difference between the reversal and resting potential by the label � ∆h jk � . To induce
seizure-like oscillations in the model dynamics, we must either increase the red parameters or decrease the green
parameters.

lations establish feedback and reciprocal synaptic connections. We draw these connections leaving the bottom of the

excitatory population and the top of the inhibitory population. We illustrate the number and strength of the synapses

formed by each connection with a filled circle labeled Nβ
jk and a filled triangle labeled G jk, respectively. Inside the

rectangular label for each population we show the rate constants γ jk with vertical arrows and the voltage differences

� hrev
jk � hrest

k � � � ∆h jk � in text. The rate constants incorporate the time course of somatically recorded postsynaptic spike

activity in a neuron due to the combined effects of passive dendritic cable delays and neurotransmitter kinetics, such as

excitatory AMPA and inhibitory GABA [63]. The voltage differences scale the synaptic input by the reciprocal of the

magnitude difference between the reversal and resting potentials. We color the labels for Nβ
jk, G jk, and γ jk, and the text

� ∆h jk � to indicate changes in each quantity that result in seizing dynamics. To induce a seizure in the model dynamics

we may increase the red-colored dimensional parameters or decrease the green-colored dimensional parameters.

3.8.1 Discussion

We suggest two methods for inducing seizure-like oscillations in the dimensionless ODEs. First, we may in-

crease the (dimensionless) strength of connections between the excitatory and inhibitory cell populations (the inter-

population connectivity.) We illustrate these connections in Figure 3.36 with red lines. Second, we may decrease the
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(dimensionless) strength of connections within the excitatory cell population or within the inhibitory cell population

(the intra-population connectivity.) We illustrate these connections with green lines in Figure 3.36. We conclude that

strong interactions between the excitatory and inhibitory cell populations result in seizure-like oscillations in the model

dynamics.

To allow an easier comparison of the model results with observational data, we define each dimensionless param-

eter in terms of its dimensional components. We list these definitions in the third column of Table 3.7. To allow more

general types of connectivity than what we considered in Section 3.4 we assume that the parameters depend upon the

postsynaptic cell population (i.e., the values differ for synapses terminating on an excitatory or inhibitory postsynaptic

cell.) We illustrate the results for the dimensional parameters in Figure 3.37. We find that seizure-like oscillations

can result from both increases (shown in red) or decreases (shown in green) in the model parameters. In words, to

induce a seizure in the model dynamics, we may increase the number of synapses or the strength of each synapse from

excitatory to inhibitory or inhibitory to excitatory populations. Or we may decrease the number of synapses or the

strength of each synapse from excitatory to excitatory or inhibitory to inhibitory populations. Or we may increase the

rate at which excitatory (inhibitory) input travels from dendrite to soma in excitatory (inhibitory) populations. Or we

may decrease the rate at which excitatory (inhibitory) input travels from dendrite to soma in inhibitory (excitatory)

populations. Or we may increase the difference between the reversal potential associated with excitatory synaptic ac-

tivity on excitatory cells and the excitatory cell rest potential. Or we may increase the difference between the reversal

potential associated with inhibitory synaptic activity on inhibitory cells and the inhibitory cell rest potential. Or we

may decrease the difference between the reversal potential associated with excitatory synaptic activity on inhibitory

cells and the inhibitory cell rest potential. Or we may decrease the difference between the reversal potential associated

with inhibitory synaptic activity on excitatory cells and the excitatory cell rest potential. We summarize these results

in Table 3.8.

To verify these model results one might perform the following experiment. First, choose the parameter of interest

and identify a pharmacological agent to manipulate the parameter in cortex. For example, in [57] the authors associate

increased propofol (an anesthetic) concentration with a reduction in the dimensional model parameter γi — the neu-

rotransmitter rate constant. Then, administer the pharmacological agent to the subject (increasing the concentration

with time, say) and record the resulting ECoG data. Finally, compare these observational data with the model results

calculated for changing values of the parameter of interest.

Here we are interested in parameter changes that may result in a seizure. The experiment proposed above —

administering a pharmacological agent to induce a seizure in a human subject — is risky. Instead, to gain what insight

we can, we consider briefly what evidence already exists in the literature for the influence of pharmacological agents



3.8. ADDITIONAL ROUTES TO SEIZURE 119

or pathological mechanisms on seizure propagation. In doing so we shall attempt, perhaps naively and on purely

theoretical grounds, to connect these agents or mechanisms with the foregoing discussion of our mathematical model.

The value of such an undertaking at this early stage of model development is in clarifying thoughts about the action

of agents or mechanisms and their relationship to our model. In what follows we compare the model predictions

determined here with two pathological mechanisms thought to induce seizures: disinhibition and enhanced excitatory

and inhibitory synaptic transmission.

In the disinhibition model, decreased inhibitory drive results in hyper-excitability of the tissue (for a critical

review, see [106].) One mechanism by which disinhibition may result is known as the dormant basket cell hypothesis

(dbch). In the dbch, seizures result from inactive inhibitory interneurons (e.g., basket cells in CA1 hippocampal slices

from rat [107].) These inhibitory interneurons are not themselves impaired; instead, the inhibitory interneurons are

disconnected from their excitatory afferents. Without excitation, the inhibitory interneurons become dormant and

cease to inhibit excitatory neurons. An appropriate input to the resulting disinhibited (and thus hyper-excited) network

induces a seizure.

Although our mathematical model describes cortical seizure propagation — not hippocampal seizure genesis —

we compare the dbch with the model as an example and as a starting point. To relate the dbch and our model, we

interpret the hypothesis to affect a model parameter: we associate the dormancy with a decrease in Nβ
ei — the number

of excitatory synapses received by inhibitory cells. Yet we have shown that an increase in Nβ
ei (all else held constant)

produces seizure-like oscillations in the model dynamics. Therefore we find that, when we interpret the dbch as a

decrease in the parameter Nβ
ei, the resulting dynamics of the dimensionless SPDEs do not seize.

We do not mean to suggest that the dbch is incorrect, just that it seems our model does not support the dbch as

an explanation of cortical seizure propagation. This may be because the rules of hippocampal seizure genesis do not

apply to cortical seizure propagation, and vice-versa. We have only shown that if we interpret the dbch as a decrease

in Nβ
ei the model dynamics exhibit no seizure-like oscillations. In determining this result, we have made two important

assumptions about the dimensionless ODEs model. First, we set the parameter Pee to 50 times its typical value (to

“hyper-excite” the model cortex.) Second, we associate the dbch with a decrease in parameter Nβ
ei. Of course, both

assumptions may be incorrect. Moreover, the dimensionless ODEs model (and the complete dimensionless SPDEs

model) provides only a crude approximation to the true dynamics of the seizing cortex. Although simple, we find the

model useful in making our assumptions explicit.

As a second mechanism for the induction of seizures, we consider an enhancement of excitatory and inhibitory

synaptic connections. To produce such an enhancement researchers administer the proconvulsant 4-aminopyridine

(4-AP) to the tissue of interest. The effect of 4-AP is to enhance both excitatory and inhibitory synaptic transmission,
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perhaps by enhanced neurotransmitter release at the presynaptic cells [108]. The result is an increased connectivity

within the cell network. We relate these physiological changes to changes in the model parameters that increase the

network connectivity, namely: an increase in G jk — the mean peak amplitude of the postsynaptic potential induced by

a presynaptic population j on postsynaptic population k — or Nβ
jk — the number of local synapses from presynaptic

population j to postsynaptic population k. We have found in model simulations that seizures result from increased

inter-population connectivity (i.e., increases in Gei, Gie, Nβ
ei, and Nβ

ie) and decreased intra-population connectivity

(i.e., decreases in Gee, Gii, Nβ
ee, and Nβ

ii .) This would be supported by the 4-AP model if 4-AP acts to increase inter-

population connectivity more strongly than intra-population connectivity.

We again note the limitations of the model predictions. First, the model (although mathematically quite involved)

provides only a crude approximation to the true dynamics of the seizing cortex. Second, we assume a 500% increase

in the parameter Pee (to “hyper-excite” the model cortex.) Third, we assume a relationship between pharmacological

agent 4-AP and model parameters G jk and Nβ
jk. A more robust analysis may prove or disprove these relationships, and

perhaps suggest new parameters required in the model.

We have shown in Section 3.8 how to induce seizure-like oscillations in the dimensionless ODEs and, in this

subsection, how these model results compare to other proposed seizure mechanisms. We conclude by suggesting how

the analysis in Section 3.8 applies to epilepsy treatments. We note that to prevent a seizure from occurring in the model

dynamics, we may decrease the strength of the red connections (the inter-population connectivity) or increase the

strength of the green connections (the intra-population connectivity) shown in Figure 3.36. These changes correspond

to a decrease in the red (dimensional) parameters or an increase in the green (dimensional) parameters of Figure 3.37.

We find that changes in many dimensional parameters (G jk, Nβ
jk, γ jk, hrest

jk , and hrest
jk ) may prevent seizures in the

model dynamics. This result may be useful in the development of antiseizure medications to which patients do not

develop tolerances. For example, we might develop treatments that target different physiological parameters (and

different pathways in Figure 3.37) so as not to exploit and perhaps desensitize any single pathway in particular.

To suggest how analysis of the dimensionless SPDEs model may relate to experimental results, we consider

benzodiazepines (BZ). BZ are an important class of anticonvulsant drugs that act to enhance the action of GABA at

GABAA receptors. We follow [63] and assume that the effect of BZ are to increase the model parameters Gie or Gii —

the mean peak IPSP induced on excitatory and inhibitory postsynaptic cells, respectively. We have shown in Section

3.8 that an increase of Gie induces seizure-like oscillations in the model dynamics. The observed anticonvulsant effects

of BZ would be consistent with the model if it acts to increase Gii rather than Gie. We again note that to determine this

result we make important assumptions (e.g., a 500% increase in Pee) about the crude mathematical model. Analysis of

the relationships between anticonvulsant medications and model parameters may eventually suggest how these drugs
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produce their therapeutic effects.
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Symbol Definition Description

h̃e �i he �i

�

hrest Population mean soma dimensionless electric potential

Ĩee �ie Iee �ie γe

��

Ge exp

�

1

�

Smax �

Total e � e, i � e input to excitatory synapses

Ĩei �ii Iei �ii γi

��

Gi exp

�

1

�

Smax �

Total e � i, i � i input to inhibitory synapses

φ̃e �i φe �i

�

Smax Long range (corticocortical) input to e,i populations

t̃ t

�

τ Dimensionless time

x̃ x

��

τṽ

�

Dimensionless space

Table 3.3: Dynamical variable definitions for the dimensionless SPDEs neural macrocolumn model. The dimensionless variables (left column) are
defined in terms of the dimensional symbols (middle column) found in Table 1 of [61]. The variables are described in the right column. Subscripts
e and i refer to excitatory and inhibitory.
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Symbol Definition Description Typical Value
e � i (As subscript) excitatory, inhibitory cell populations

Γe �i
Ge �i exp

�

1

�

Smax

γe �i

�

hrev
e � i

� hrest

� Influence of input on the mean soma membrane values 1 � 42 � 10

� 3, 0 � 0774

h0
e �i hrev

e �i

�

hrest Dimensionless cell reversal potential � 0 � 643, 1 � 29

Te �i τγe �i Dimensionless neurotransmitter rate constant 12 � 0, 2 � 6

λe �i τṽΛee �ei Dimensionless characteristic corticocortical inverse-length scale 11 � 2, 18 � 2

Pee �ie pee �ie

�

Smax Subcortical input to e population 11 � 0, 16 � 0

Pei �ii pei �ii

�

Smax Subcortical input to i population 16 � 0, 11 � 0

Nα
e �i — Total number of synaptic connections from distant e populations 4000, 2000

Nβ
e �i — Total number of local e and i synaptic connections 3034, 536

g̃e �i ge �i hrest Dimensionless sigmoid slope at inflection point � 19 � 6, � 9 � 8

θ̃e �i θe �i

�

hrest Dimensionless inflection-point for sigmoid function 0 � 857, 0 � 857

Table 3.4: Parameter values for the dimensionless SPDEs neural macrocolumn model. The dimensionless symbols (first column) are defined in
terms of the dimensional variables (second column) found in Table 1 of [61]. The variables are described in the third column and typical values
are shown in the fourth column.
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Table 3.5: The results for f0 and the magnitude of v (in I1 and I2) averaged over the electrodes considered for each
subject (i.e., two electrodes for Subject 1, three electrodes for Subject 2, and nine electrodes for Subject 3 and Subject
4.) We label the average quantities � f0 � and ��� v � � . To compute the uncertainty in the average, we assume the
uncertainties in f0 for each seizure are independent and random and propagate the uncertainties in the standard way.

Subject � f0 � [Hz] � � v � � in I1 � � v � � in I2
1 4 � 5 � 0 � 1 0 � 5 � 0 � 1 3 � 1
2 7 � 1 � 0 � 4 4 � 12 2 � 6 � 0 � 9
3 8 � 76 � 0 � 05 2 � 2 1 � 2 � 0 � 4
4 8 � 1 � 0 � 1 2 � 6 � 3 4 � 4

Table 3.6: The peak frequency f0 and wave speed v determined for the model solutions of he.
Simulation f0 v

ODE (Figure 3.12(b)) 7 � 5 Hz —
PDE (Figure 3.17(b)) � 12 � 0 Hz � 3 � 0 m/s

PDE (Figure 3.22) 7 � 5 Hz 1 � 2 m/s
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OLD NEW DIMS DEFINITION TYPICAL ∆

Γe

Γee
Gee exp

�

1

�

Smax

γee

�

hrev
ee

� hrest
e

� influence of excitatory input on the mean soma membrane values of excitatory neurons 1 � 42 � 10

� 3 � 12%

Γei
Gei exp

�

1

�

Smax

γei

�

hrev
ei

� hrest
i

� influence of excitatory input on the mean soma membrane values of inhibitory neurons 1 � 42 � 10
� 3 �

28%

Γi

Γie
Gie exp

�

1

�

Smax

γie

�

hrev
ie

� hrest
e

� influence of inhibitory input on the mean soma membrane values of excitatory neurons 0 � 0774

�

14%

Γii
Gii exp

�

1

�

Smax

γii

�

hrev
ii

� hrest
i

� influence of inhibitory input on the mean soma membrane value of inhibitory neurons 0 � 0774 � 22%

Nβ
e

Nβ
ee — number of local excitatory synapses on excitatory neurons 3034 � 28%

Nβ
ei — number of local excitatory synapses on inhibitory neurons 3034

�

39%

Nβ
i

Nβ
ie — number of local inhibitory synapses on excitatory neurons 536

�

12%

Nβ
ii — number of local inhibitory synapses on inhibitory neurons 536 � 19%

Table 3.7: Definitions of dimensionless parameters effecting connectivity between excitatory and inhibitory neural populations in the dimensionless
ODEs. The original parameters in the first column are listed in Table 3.4. We list the symbols for the new parameters in the second column and
define these parameters in terms of dimensional components from [61], and in words in the third and fourth columns, respectively. We write the
typical value in the fifth column, and the percentage change in the typical parameter value necessary to induce seizure-like oscillations in the
hyper-excited model cortex (i.e., Pee

� 548 � 066) in the last column.
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PARAMETER DEFINITION ∆ FOR SEIZURE

Gei �ie mean peak amplitude of the PSP induced by a single presynaptic spike from an

�

(excitatory, inhibitory) neuron at the synapses of an (inhibitory, excitatory) postsynaptic neuron

Gee �ii mean peak amplitude of the PSP induced by a single presynaptic spike from an

�
(excitatory, inhibitory) neuron at the synapses of an (excitatory, inhibitory) postsynaptic neuron

Nβ
ei �ie the number of local (excitatory, inhibitory) synapses on (inhibitory, excitatory) neurons

�

Nβ
ee �ii the number of local (excitatory, inhibitory) synapses on (excitatory, inhibitory) neurons

�

γee �ii the neurotransmitter rate constant for (EPSPs, IPSPs) to travel from the

�

dendrites to the soma of an (excitatory, inhibitory) neuron

γei �ie the neurotransmitter rate constant for (EPSPs, IPSPs) to travel from the

�

dendrites to the soma of an (inhibitory, excitatory) neuron

�

hrev
ee �ii

� hrest
e �i

�

the difference between the reversal potential associated with (excitatory, inhibitory) synaptic activity

�

on (excitatory, inhibitory) cells and the (excitatory, inhibitory) cell rest potential

�

hrev
ei �ie

� hrest
i �e

�

the difference between the reversal potential associated with excitatory, inhibitory) synaptic activity

�

on (inhibitory, excitatory) cells and the (inhibitory, excitatory) cell rest potential

Smax the maximum value of the sigmoid transfer function that maps the

� �

soma voltage to average output spike rate

Table 3.8: Definitions of dimensional parameters affecting connectivity between excitatory and inhibitory neural populations in the dimensionless
ODEs. We define each parameter in words in the second column. We indicate the direction of change in each parameter necessary to induce
seizure-like oscillations in the hyper-excited model cortex (i.e., Pee

� 548 � 066) in the last column. Here PSP stands for postsynaptic potential,
EPSP for excitatory postsynaptic potential, and IPSP for inhibitory postsynaptic potential.
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Chapter 4

Conclusion

We undertook two objectives in this thesis. First, in Chapter 2 we defined seven measures of interdependence

between two time series and applied each measure to simulated data computed from the coupled Henon map and

coupled Rössler oscillators in Sections 2.2 and 2.3, and to simulated data that consisted of bursts of oscillatory activity

in Section 2.4. We showed that of the seven measures only T 
 x � y  captured the appropriate coupled (and uncoupled)

behavior in each case. In Section 2.5 we applied T 
 x � y  to ECoG data recorded from three electrodes in an auditory

ERP experiment, and in Section 2.6 we applied three other synchronization measures to resting EEG data collected

from healthy, MCI, and AD patients.

Second, in Chapter 3 we studied a mathematical model of human cortical electrical activity recorded during

seizure. We started with an analysis of ictal ECoG data collected from four human subjects, and determined two

quantities of interest: f — the average frequency of maximum power during seizure, and v — the speed of voltage

propagation across the cortex during seizure. We then stated a dimensionless form of a mean field model of corti-

cal electrical activity and explored how changes in two model parameters (Pee and Γe) affected the model dynamics.

Through bifurcation analysis and numerical simulations, we showed a quantitative agreement between f and v com-

puted from the mathematical model and observed in the ECoG data. We concluded that the mean field model, with

appropriate values of Pee and Γe, provided a crude approximation to the seizing cortex. Having shown this agreement,

we then used the model to investigate methods to abort seizures in the cortex. We considered how two types of applied

electric fields affected the model dynamics through changes in bifurcations. Of the two, only the differential con-

troller could abort the seizure-like oscillation in the model dynamics with minimal negative consequences. Finally, we

sought to connect the “seizing” mathematical model to cortical physiology. We identified changes in eight parameters
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that resulted in seizure-like oscillations in the model dynamics. We found that increased inter-population connectivity

(e � i and i � e) and decreased intra-population connectivity (e � e and i � i) induced seizures in the model. We

then related these parameter changes to corresponding changes in cortical physiology. We concluded by comparing

these results with other seizure models, and suggesting new types of medications to treat epilepsy.

We have achieved three important results. First, we introduced a new measure of synchronization in Section

2.1. We showed that this measure is more appropriate for the analysis of an ensemble of data compared to other

synchronization and traditional linear measures. We then applied this measure to an ensemble of ECoG data recorded

during an ERP experiment and suggested how three cortical regions may communicate. Second, we applied three

well known synchronization measures to scalp EEG data recorded from three subject groups: healthy, MCI, and AD.

Unlike other approaches, we did not filter the EEG data into arbitrary frequency bands (e.g., α and β.) We showed that

of the five interhemispheric synchronization measures we considered, only that between the left and right occipital

lobes provided a statistically significant discriminant between the healthy and AD subjects. We then suggested that

AD affects coupling between the occipital lobes more strongly than between other interhemispheric regions.

We cannot verify these physiological interpretations of the synchronization results; we can only hypothesize that

changes in the synchronization of EEG (or ECoG) data result from changes in cortical physiology. To test these

hypotheses would require invasive, destructive procedures. Therefore, to connect the analysis of ECoG and EEG time

series to changes in cortical physiology, we implement a mathematical model of human cortical electrical activity.

At present such models can only approximate cortical electrical activity in states of pathological order. The final

accomplishment in this dissertation was to show that a mathematical model of human cortical electrical activity in

current use can approximate the seizing cortex. Having established the validity of the model, we used it to suggest

new methods to abort seizures and treat epilepsy.

As measures and models of cortical electrical activity improve, the need for invasive, destructive neurological

procedures may lessen. For example, to treat epilepsy future physicians might apply a suite of coupling measures

to the patient’s scalp EEG. They may then compare these coupling results with computer simulations of a detailed

cortical model (based, perhaps, on the patient’s own cortex.) This comparison could reveal the physiological changes

(i.e., parameter changes in the model) associated with the patient’s epilepsy and suggest specific, localized methods of

treatment. This treatment may be chemical (e.g., a drug designed to counter the patient’s physiological pathology) or

electrical (e.g., a small stimulator placed near the patient’s epileptogenic zone.) Further refinements may permit more

researchers to apply mathematical models to their studies of the healthy human cortex. For example, psychologists

may attempt to relate the results of an ERP experiment to the physiological source.

In the future improved measures and models will replace those discussed here. For example, an important new



129

measure of coupling — Granger causality — may help determine causal relationships between two EEG or ECoG

time series [109]. Often these measures develop in disparate fields; the original application of Granger causality was

for the analysis of financial time series. In a similar way, techniques developed to analyze and model EEG or ECoG

data may find other applications; the study of detailed mathematical models of cortical activity may suggest new

analysis techniques. As researchers acquire more experimental data and computing power they will develop more

accurate mathematical models of human cortical electrical activity. Perhaps, in the future, these models will simulate

the electrical activity of each individual neuron [11].
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