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Abstract 
Networks now play a prominent role in neuroscience research, supported by new re-
cording and analysis techniques. In this chapter we provide a brief introduction to this 
emerging field, with particular emphasis on methods to create (structural or functional) 
networks from neuronal data and measures to characterize structural network proper-
ties. We also outline three simple models of networks, including the small-world net-
work. The concepts introduced in this chapter provide a basic foundation to begin fur-
ther exploration of networks in neuroscience.

Introduction
The appearance of networks in neuroscience has grown tremendously  in the past dec-
ade, supported by new recording and analysis techniques. To summarize this expand-
ing field is a daunting task and not the goal of this chapter. Instead, we will consider a 
brief introduction to network analysis, with emphasis on the application of networks to 
problems in neuroscience. We will focus in particular on techniques to create networks 
(either functional or structural) from data, tools to analyze networks, and methods to 
construct simple network models. Again, our goal in this chapter is simply to introduce 
these concepts and provide the reader with a basic background applicable in later chap-
ters and for further exploration of this emerging field. More detailed discussions of net-
works and their application may be found in the references (1-5).

Structural and functional networks
Many examples of networks exist in the world. These include structural networks (e.g., 
the network of roads that connect cities and towns), social networks (e.g., the networks 
of film actors that collaborate in movies), and biological networks (e.g., a network of 
neurons connected with synapses or gap  junctions). In each case, we can divide the 
network into two fundamental components: nodes (the cities, actors, or neurons) and 
edges (the roads, films, or synapses) that connect node pairs. In what follows, we will 
focus on binary, undirected networks. In these simplified networks, an edge either exists 
between two nodes or does not, and the presence of an edge provides no directional 
(i.e., no causal) information.

In neuroscience, networks are typically  divided into two categories: structural net-
works and functional networks (4). In structural networks, the edges represent physical 
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connections between nodes. At the microscopic spatial scale, these include synaptic or 
gap junctional connections between individual neurons. In neuroscience, the only com-
plete structural network mapped at this scale is for the nematode worm C. elegans 
(6,7). At the macroscopic spatial scale, white matter tracks are used to infer synaptic 
connections between brain regions and construct structural networks in humans (8-10).

Functional networks rely  on the coupling between dynamic activity  recorded from 
separate brain areas. For example, we illustrate in Figure 1A simulated electroencepha-
logram (EEG) data recorded from two electrodes placed on the scalp surface of a hu-
man subject. To construct a simple network from these data (consisting of only  two 
nodes), we determine how well the EEG data recorded at the two electrodes match. 
Many measures exists to characterize this “match” (or coupling) between EEG signals 
(11). Here we employ  a very simple measure: the cross correlation. The idea of this 
measure is to compare the two time series and see how well the voltage traces align. In 
doing so, we compare the signals both directly and shifted in time with respect to one 
another. Examining how the signals align over different time shifts allows us to detect if 
one signal is simply  a delayed version of another (Figure 1A). When the alignment be-
tween the two signals is good the cross correlation approaches 1, while when the 
alignment is poor the cross correlation approaches 0. If two signals are completely out 
of phase (e.g., when one reaches its maximum, the other reaches its minimum, and vice 
versa) the cross correlation approaches -1. Depending on the time shift between the 
two signals, we may observe all three types of correlation, as we now describe.

The cross correlation between the two simulated EEG recordings varies between -1 
and 1 (Figure 1B). With no shift in the signals, the cross correlation is small (near 0). If 
we delay one signal backwards in time by 25 ms, the two EEG recordings “anti-
correlate” (i.e., when one signal peaks, the other troughs) and the cross correlation ap-
proaches -1. When we advance one signal (gray in Figure 1A) forward in time by  25 ms, 
the two EEG recordings align and the cross correlation reaches 0.9. This last result in-
dicates that the voltage activity observed at the two electrodes is coupled: the EEG data 
exhibit a strong correlation at a specific time shift. We represent this graphically  by con-
necting the two electrodes with an edge (Figure 1C). In doing so, we have created a 
simple, 2-node network with one edge. The two nodes represent the two EEG elec-
trodes, and the edge indicates sufficiently  strong coupling between the voltage activity 
recorded from the two electrodes. 

Figure 1:   Example method to construct functional networks from voltage data. (A) In this simulated 

example, EEG data are recorded from two electrodes on the scalp  surface; the EEG data (black and up-

per gray curve) are simple sinusoids with added noise. If we shift the lower (gray) trace to the right by 
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some time advance, then the EEG data at the two electrodes align. (B) The cross correlation between the 

two electrodes is large when we shift the EEG data from one electrode by 25 ms. (C) Because the cross 

correlation is strong enough, we connect the two electrodes with an edge (black line) and form a simple 

two-node network. (D) Simulated multivariate data recorded from many EEG electrodes, results in (E) a 

much more complicated network in which the number of edges depends upon the choice of coupling 

threshold.

This procedure extends to any number of electrodes (for example the 21 electrodes 
typically  used in the 10-20 electrode configuration). In this case, we compute the cou-
pling between the voltage data recorded for all electrode pairs (Figure 1D). We then 
connect electrode pairs whose coupling exceeds a threshold value (e.g., 0.5) with an 
edge. As we show in Figure 1E, the connectivity becomes much more difficult to visual-
ize as the number of nodes increases. In fact, as the number of nodes increases, the 
maximum number of possible edges increases dramatically: the 21-node network could 
support over 200 edges compared to 1 possible edge in the 2-node network. Simple 
visual inspection of the network structure, which sufficed for the 2-node network (Figure 
1C), becomes inadequate for this larger, more complicated network.

Two subtleties exist in constructing functional networks from time series data. First, 
what coupling measure is most appropriate?  Different measures exist that focus on lin-
ear interactions (12-14), nonlinear interactions (15), wavelet coherence (16), causality 
(17), and many other methods (11). Each measure provides a different view of the cou-
pling and requires different processing methods and assumptions (e.g., filtering the data 
in a specific frequency band to extract phase information, or choice of embedding di-
mension). Recent studies suggest that linear and nonlinear coupling measures perform 
equally well when applied to macroscopic voltage data, although subtle changes in the 
physiological state of the brain may require more sophisticated coupling measures (18-
23).

Second, how do we determine the appropriate coupling threshold?  In Figure 1 we 
connected electrode pairs with edges whose coupling measure (in this case the cross 
correlation) exceeded a threshold value (e.g, 0.5). No technique yet exists to choose the 
most appropriate coupling threshold. One approach is to examine the networks pro-
duced for a variety of threshold values and seek consistent results (15, 24-30). How-
ever, we may find that different threshold values produce extremely  different networks 
(compare the two networks in Figure 1E).

Another approach to defining a coupling threshold is first to apply  an appropriate sta-
tistical hypothesis test to the coupling result computed for each electrode pair. Doing so, 
we may then assign a p-value to each edge and threshold these p-values rather than 
the original coupling measure (31). An advantage of this approach is that multiple com-
parisons (a p-value exists for each electrode pair) may be addressed using sophisti-
cated statistical techniques (32), and a measure of network uncertainty deduced, 
namely the number of spurious edges in the network (31). One difficulty of this ap-
proach is the development of an appropriate method to determine the statistical signifi-
cance of the coupling measure. For classical linear measures (such as the coherence or 
cross correlation), analytic techniques exist to determine the statistical significance of 



the measure, although these typically  require specific assumptions about the data (e.g., 
the asymptotic case of extremely large sample sizes). For modern nonlinear measures, 
no such analytic methods to assess statistical significance exist. Instead one might em-
ploy a bootstrapping procedure, however bootstrapping techniques are computationally 
expensive and typically not tractable for large networks.

Simple measures to characterize network structure
Typically, after constructing a functional network, we analyze its structure. A useful, first 
analysis is visual inspection of the network (e.g., visual inspection of the networks in 
Figure 1E). But, as the number of nodes in a network increases, so does the number of 
possible edges, and visual inspection becomes less useful. For a network of N nodes, 
the maximum possible number of edges is N(N-1)/2. When N is large (e.g., in a high 
density EEG recording with 128 electrodes or a multielectrode array with 100 contacts) 
the networks typically become much too complicated for visual inspection (Figure 2A,B). 
To go beyond visual inspection and characterize the structure of these large networks, 
many measures exist (1,3,5). In this section, we briefly  outline three of these measures: 
the degree, path length, and clustering coefficient.

The degree (d) is simply the number of edges that touch a node. In Figure 3, we 
show a five node network, and list the degree of each node (in this case a value of ei-
ther 2 or 4). To summarize the degree values of the entire network, we compute the av-
erage degree (D) of all nodes, and find in this case 2.4. For much larger networks, the 
degree distribution is a useful measure that illustrates the probability of observing a 
node of degree d (Figure 2C). In many real-world networks (including the film actor net-
work and neural networks (33)), the degree distribution exhibits a power law: the prob-
ability  of observing a node of degree d decreases as 1/d! where ! is a positive number 

(Figure 2D) (2). In these networks high degree nodes (which appear less frequently 
than the low degree nodes) may serve important functional roles in the network (i.e., 
may act as hubs) although this is not always the case (34). Degree distributions with 
power law behavior are also known as scale-free because the degree distribution looks 
the same (just scaled by a constant value) if we multiply the value of d by a constant. 



Figure 2:   Two larger networks consisting of 200 nodes. (A, B) We arrange the nodes (gray) in the net-

work as a ring, although this does not imply a literal spatial sensor location in the “real” experiment. Each 

node represents an individual electrode or sensor, and each edge (black line) indicates sufficiently strong 

coupling between activity recorded simultaneously at two nodes. For such large networks, the network 

structure becomes much more difficult to characterize through visual inspection. (C, D) The degree distri-

butions for each network. For the network in (A) most of the nodes have a degree near 5. For the network 

in (B), most of the nodes have a degree less than five, but some nodes have a high degree (up to 35 

edges).

The path length (l) is the minimum number of edges traversed to go from one node 
to another in the network. We assume here that each node is reachable from any other 
node; when this is not the case, care must be taken to account for unreachable nodes. 
In the example 5-node network, the path length from node i to any other node is 1; node 
i can reach any other node by traversing 1 edge. Nodes ii-v can reach any other node in 
1 or 2 steps. We note that many different paths exist between nodes. For example, we 
can travel directly  from node ii to node iii, or we can pass through node i on the way to 
node iii. When computing the path length, by convention we always choose the shortest 
path between nodes. The average path length (L) is calculated from the path length be-
tween each node and all other nodes in the network; for the 5-node network, the aver-
age path length is 1.4.

The final measure we consider is the clustering coefficient (c). The clustering coeffi-
cient of a node is the number of connections that exist between the nearest neighbors 
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of a node, expressed as a proportion of the maximum number of possible connections 
between the nearest neighbors of the node. This definition is perhaps best illustrated 
through an example. In the 5-node network, chose node ii and notice that this node has 
two neighbors (i.e., two nodes directly  connected to node ii by a single edge, nodes i 
and iii in Figure 3B). We now examine whether an edge exists between the two neigh-
bor nodes. In this example, it does (see Figure 3A) so we complete a triangle or cluster 
in the network. In social networks, clustering is typically high; the friends (nearest 
neighbors) of an individual (the chosen node) also tend to be friends (i.e., edges con-
nect the nearest neighbors of the chosen node). The formula to compute the clustering 
coefficient for a node n is, 

Here, !n is a list of the nearest neighbors of node n,  E(!n) is the number of edges 

between the nearest neighbors of n (but does not include edges that connect to node n 
directly), and kn is the number of nodes in !n. For n=i in the example 5-node network,   

!n = {ii,iii,iv,v} and kn=4. Two edges exist within this neighborhood (between nodes ii and 

iii, and between nodes iv and v), so E(!n) = 2. Plugging into the equation above, we find 

ci=2/6=1/3. This result indicates that of all the possible completed triangles between the 
nearest neighbors of node i, only one-third exist. To complete all of the triangles be-
tween the nearest neighbors of node i would require additional connections between 
nodes ii and iv, nodes ii and v, nodes iii and iv, and nodes iii and v. For the other nodes, 
the clustering coefficient equals 1. All possible triangles between the nearest neighbors 
of these other nodes do exist. The average clustering coefficient (C) is the average of c 
between all nodes in the network; for the 5-node network C is 13/15.

Figure 3:   An example 5-node network to illustrate the simple measures of network structure. (A) We 

label the 5-nodes (circles) with roman numerals and connect the nodes with edges (lines). The number in 

parentheses next to each node indicates its degree (d). (B) To determine the clustering coefficient of node 

ii, we first determine its nearest neighbors (the other two nodes in the network are grayed out). We then 

determine if an edge exists between these neighbors (the dotted line). Because this edge exists in (A), 

the three nodes form a triangle or cluster.

In this section we described three measures of network structure. These measures 
provide simple numeric summaries to characterize complex networks, consisting of 
many nodes and edges. As an example of the application of these measures, we con-
sider the nervous system of C. elegans, which has been completely mapped at the cel-
lular level. The network consists of N=282 nodes (or neurons). The average degree 
D=14, average path length L=2.65, and average clustering coefficient C=0.28 (33). Al-
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of the chosen node). The formula to compute the clustering coefficient for a node n is,

cn =
E(!n)

kn(kn−1)/2
(1)

Here, !n is a list of the nearest neighbors of node n, E(!n) is the number of edges between the

nearest neighbors of n (but does not include edges that connect to node n directly), and kn is the

number of nodes in !n. For n = i in the example 5-node network, !i = {ii, iii, iv,v} and ki = 4.

Two edges exist within this neighborhood (between nodes ii and iii, and between nodes iv and v),

so E(!i) = 2. Plugging into the equation above, we find ci = 2/6 = 1/3. This result indicates

that of all the possible completed triangles between the nearest neighbors of node i, only one-

third exist. To complete all of the triangles between the nearest neighbors of node i would require

additional connections between nodes ii and iv, nodes ii and v, nodes iii and iv, and nodes iii and v.

For the other nodes, the clustering coefficient equals 1. All possible triangles between the nearest

neighbors of these other nodes do exist. The average clustering coefficient (c̄) is the average of c

between all nodes in the network; for the 5-node network c̄ is 13/15.
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FIG. 3: An example 5-node network to illustrate the simple measures of network structure. (A) We label the

5-nodes (circles) with roman numerals and connect the nodeswith edges (lines). The number in parentheses

next to each node indicates its degree (d). (B) To determine the clustering coefficient of node ii, we first

determine its nearest neighbors (the other two nodes in the network are grayed out). We then determine if

an edge exists between these neighbors (the dotted line). Because this edge exists in (A), the three nodes

form a triangle or cluster.

In this section we described three measures of network structure. These measures provide

simple numeric summaries to characterize complex networks, consisting of many nodes and edges.

As an example of the application of these measures, we consider the nervous system of C. elegans,

which has been completely mapped at the cellular level. The network consists of N = 282 nodes

(or neurons). The average degree d̄ = 14, average path length l̄ = 2.65, and average clustering

coefficient c̄= 0.28 [33]. Already these results reveal some interesting aspects about the network
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ready these results reveal some interesting aspects about the network structure (for ex-
ample, we can travel from one neuron to any other in 3 steps, on average). To further 
interpret these results, we consider three reference networks described in the next sec-
tion.

Simple network models
In the previous section, we considered three measures to summarize observed (or con-
structed) networks. In this section, we consider three simple models to generate net-
works. For each network, we outline the construction method and provide approximate 
formulas for the average degree, average path length, and average clustering coeffi-
cient.

We start with a regular network, in which we arrange the nodes as a ring and con-
nect each node to the k closest nodes on the ring (Figure 4A). The result is a network 
with mesh-like connections between neighboring nodes. For a regular network of N 
nodes, approximate formulas exist for the average degree, average path length, and 
average clustering coefficient. The expression for the average degree is D=k. In a regu-
lar network, the same number of edges connect to each node. The expression for the 
average path length is L"N/(2k). As the number of nodes (N) increases, so does the av-

erage path length; in a large network (when N is big), we must travel many edges (from 
neighbor to neighbor around the circumference of the circle in Figure 4A) to reach our 
destination. Finally, the average clustering coefficient is a constant: C"3/4 for large k. In 

the regular network, the mesh-like connections between nodes establish many clusters 
(or triangles).

The second model network we consider is a traditional random network. In this net-
work, we connect each pair of nodes with probability p. To construct this network, we 
imagine flipping a (perhaps biased) coin for each node pair. If the coin flip results in 
heads, we connect the two nodes with an edge, otherwise we do not (Figure 4C). Ap-
proximate formulas for the network measures exist for a random network of N nodes as 
well. The average degree is D"p(N-1), the probability of success (p) multiplied by  the 

number of times we flip the biased coin for each node (note that, in a network of N 
nodes with no self connections, each node can connect to N-1 other nodes). The aver-
age path length, L"ln(N)/ln(D), increases as the number of nodes increases, although 

not as quickly as in the regular network. Finally, the average clustering coefficient, C"D/
N, decreases as the number of nodes N increases; clusters (or triangles) appear infre-
quently in random networks. 



Figure 4:   Examples of a regular network, small world network, and random network (N=20 and D=4). In 

the regular network (A), mesh-like connections occur between neighboring nodes. In the small world net-

work (B), most connections are local, but a few long distance connections exist. These few shortcuts 

dramatically decrease the average path length of the network, without impacting the clustering coefficient 

substantially. In the random network (C), edges occur between node pairs with equal probability.

To illustrate the differences between a regular and random network, consider N=20 
nodes and D=4. Using the formulas above, we find a larger average path length for the 
regular network (L"2.5) compared to the random network (L"2.16). To travel from one 

node to another in the regular network, we might imagine proceeding from neighboring 
node to neighboring node around the circumference of a circle (Figure 4A). Travel in the 
random network typically requires fewer steps because connections span the middle of 
the circle; no longer is travel restricted to the circle circumference (Figure 4C).

For this same example (N=20 nodes and D=4), we find a much larger clustering co-
efficient for the regular network (C"0.75) compared to the random network (C"0.2). In 

the random network, the nearest neighbors of a node are no more likely to be con-
nected than any other nodes; the probability that a node!s “friends” are also friends in a 
random network is p. In the regular network, the mesh-like structure of the connections 
supports completed triangles (i.e., clusters).

Is either the regular or random network a good approximation to the C. elegans neu-
ral network?  To address this, we fix N=282 and D=14 (the values for C. elegans (33)), 
compute the average path length and average clustering coefficients for the corre-
sponding regular and random networks, and compare these values to those determined 
for the observed neural network in Table I.

Table 1:  The average path length (L) and average clustering coefficient (D) for the C. elegans neural 

network and for a regular and random network with the same number of nodes and average degree (33).

C. elegans Regular Random

L 2.65 10 2.13

Regular network Random networkSmall world network

A B C



C 0.28 0.75 0.05

 

These calculations suggest that the average path length of the C. elegans network is 
better approximated by a random network; the average path length of both networks is 
considerably shorter than that for a regular network. Yet, we find that the clustering co-
efficient of the C. elegans network is poorly  approximated by the random network. The 
C. elegans network possesses a higher clustering coefficient, which is better approxi-
mated by  the regular network. We conclude that neither the regular nor random network 
accurately  represents both the clustering coefficient and average path length calculated 
for the C. elegans network. Each models captures only one important aspect of the 
network topology.

The final model we consider — the small world network — provides a better ap-
proximation to the C. elegans network. Like this neural network, the small world network 
possesses both a small average path length and a large average clustering coefficient. 
We construct the small world network in the following way (33). First, we begin with a 
regular network of N nodes each with k edges. We then rewire each edge with probabil-
ity p. More specifically, we choose an edge, flip  a biased coin (with a probability  of suc-
cess p), and if the flip is successful, we disconnect one end of the edge and reconnect it 
to another node chosen at random (with uniform probability) from all other nodes. When 
p is small, the result is a rewiring of a few network edges (Figure 4B). These edges typi-
cally serve as network shortcuts; we can follow these edges to quickly  move from one 
side of the network to the other. The result of these few shortcuts is a dramatic de-
crease in the average path length. However, because we rewire only a few edges, the 
average clustering coefficient of the network remains large. These are the characteris-
tics of a small world network: a few shortcuts create a network with small average path 
length and large average clustering coefficient.

Brain networks (both structural and functional) appear frequently to possess small 
world structure (35-38). We might interpret these observation as the brain seeking to 
balance segregation of information processing to local structures and integration of this 
processing between distant structures (4). In attempting to achieve this balance, per-
haps the brain seeks to minimize wiring (therefore making most connections local) and 
maximize efficiency  (so that signals may travel quickly from one brain region to another 
through a minority of large distance connections). These reasonable arguments make 
the small world network a compelling model of brain networks.

Conclusions
The application of networks to problems in neuroscience is rapidly expanding. The 
emergence of new technology (e.g., high-density multielectrode array recordings from 
thin slices of brain tissue in vitro or diffusion tensor imaging of white matter tracks in 
vivo) permits unprecedented collection of neuronal network data. Characterizing these 
networks — and understanding their implications for brain function — will require the 
continued development of mathematical tools and theory.



In this chapter, we considered two types of networks studied in neuroscience: struc-
tural networks and functional networks. Both types of networks undoubtably  serve im-
portant roles in the brain. Structural networks form the backbone of neural connectivity, 
while functional networks make dynamic use of this backbone and transiently unite dis-
parate brain regions. Although we distinguished between these two types of networks, 
dynamic brain activity (resulting in functional connections) alters brain structural connec-
tivity (through plasticity mechanisms, for example); in other words, brain structural and 
functional connectivity are interrelated.

We conclude with suggested questions to consider when examining networks in 
neuroscience literature (Table 2). Each question focuses on topics considered in this 
primer, which provides only a brief introduction to the field of networks. Many other net-
work measures exist beyond the three discussed here (e.g., betweenness or assortativ-
ity). Similarly, other network models exist (e.g., preferential attachment) beyond the 
regular, random, and small world networks. Nevertheless, we hope this brief introduc-
tion has prepared (and motivated) readers to pursue further study in this growing field.

Table 2:  Suggested questions to consider when exploring networks in the neuroscience literature

1. Is the network structural or functional? 

2. If the network is functional:

   a. What coupling method determined node connectivity? 

   b. What coupling threshold defined the edges? 

3. What is the average degree, average path length, and average clustering coeffi-
cient? 

4. Is the network approximately regular, random, or small world? 
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