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Cell assemblies have long been thought to be associated with brain
rhythms, notably the gamma rhythm. Here, we use a computational
model to show that the beta1 frequency band, as found in rat asso-
ciation cortex, has properties complementary to the gamma band
for the creation and manipulation of cell assemblies. We focus on
the ability of the beta1 rhythm to respond differently to familiar
and novel stimuli, and to provide a framework for combining the
two. Simulations predict that assemblies of superficial layer pyrami-
dal cells can be maintained in the absence of continuing input or
synaptic plasticity. Instead, the formation of these assemblies relies
on the nesting of activity within a beta1 rhythm. In addition, cells
receiving further input after assembly formation produce coexistent
spiking activity, unlike the competitive spiking activity characteristic
of assembly formation with gamma rhythms.

postinhibitory rebound | synchrony

It has been highly documented that rhythms of the central ner-
vous system are associated with cognition (1). However, the

ways in which brain rhythms are important to cognitive function
are not well understood. One suggested function for rhythms has
been the creation of cell assemblies (collections of neurons that
are transiently synchronous). The rhythm most associated with
the formation of such cell assemblies is the gamma frequency
band (30–90 Hz) (2–4). Other rhythms, however, may play an
important role in the formation or transformation of cell assem-
blies. Here, we build on experimental and modeling work con-
cerning the beta1 frequency band (≈15 Hz), as found in rat
association cortex (5, 6), to show that this version of the beta1
rhythm has special physiological properties appropriate to ma-
nipulation of cell assemblies. We are especially interested here
in how networks producing this rhythm respond to familiar and
novel stimuli and how the underlying physiology provides a con-
text for combining the two. A key feature of the model given
below is that the spiking during beta1 depends on rebound from
inhibition, allowing activity to be maintained in the absence of
continuing input. The “memory”—provided by the ability to have
ongoing activity—is independent of synaptic plasticity. The model
also shows that the nesting of gamma activity inside the beta1
oscillation produces different interactions of cell assemblies than
in the absence of the beta1 rhythm: There is much less of the
competition characteristic of cell assemblies produced within the
gamma rhythm (7).
To appreciate the novel features of cell assemblies formed

within the beta1 rhythm, it is necessary to understand some
central features of the gamma rhythm and its assembly-forming
properties. The type of gamma rhythm associated with cell as-
semblies is known as the pyramidal interneuron network gamma
(or PING) rhythm (4). This kind of gamma is produced mainly
by pyramidal cells and fast-spiking interneurons (7–11). In this
rhythm, activated pyramidal cells excite fast-spiking perisomatic-
targeting interneurons (FS cells) that, in turn, inhibit the pyra-
midal cells; the period of the oscillation corresponds to the time
necessary for the inhibition to decay and allow the pyramidal
cells to spike once again. Thus, the period of the gamma rhythm

depends most on the decay time of the inhibition, coupled with
the excitability of—and input to—the pyramidal cells.
Two main properties of the PING rhythm facilitate formation

of transient, stimulus-specific cell assemblies. First, during PING,
the longest important time scale is the decay time of the inhibitory
synaptic input to the pyramidal cells, which essentially governs the
cycle length. Thus, there are no ongoing currents lasting longer
than one cycle to provide memory from cycle to cycle. Hence, as
long as the input to a population of neurons remains the same, the
same subset of pyramidal cells participates in the firing (4).
Depending on the pattern of activation of a neuronal population,
cell assemblies can be formed, abolished, or reconstituted re-
peatedly at subsequent gamma rhythm cycles (3). Second, there is
enormous overlap in the axonal fields of FS interneurons and
a great deal of convergence and divergence of inhibition in the
PING circuit (12, 13). It follows that, if two subsets of cells are
given enough excitation to form cell assemblies and one is given
more than the other, the cells receiving the lower amount of ex-
citation can be suppressed (7, 14). The cells with the highest ex-
citation determine the frequency of the inhibitory cells and cause
them to fire faster than if they were interacting with the less ex-
cited group of cells. This higher frequency of the FS cells sup-
presses the less excitable pyramidal cells. Thus, a cell assembly
formed within a gamma rhythm is protected from distracting
(weaker) co-presented inputs as a consequence of the circuit or-
ganization that generates the rhythm in the first place.
However, these same two properties also have their dis-

advantages: Resulting cell assemblies are ephemeral, changing or
disappearing rapidly at the slightest alteration in input, and com-
petitive, ensuring only the strongest driven neurons in a population
can participate. These properties make the assemblies less than
computationally ideal for coding sequences of sensory input when
there are meaningful relationships between temporally segregated
inputs. For cell assemblies to be useful in such a situation, mecha-
nisms must exist that allow both persistence of multiple inputs and
cooperation between inputs arriving at different times.
One possible candidate for such a mechanism is the beta1

rhythm (5). The beta1 rhythm has been noted in multiple studies
of higher order processing (15–20). The beta1 rhythm has also
been seen in vivo (21, 22) and in vitro (5) as emerging after the
removal of transient excitatory (sensory) input. Another version
of a broader band beta rhythm, found in motor planning, is be-
lieved to be associated with maintenance of the status quo (23).
However, here we are concerned with association-area process-
ing; it is not known if the mechanisms of the beta activity are
similar. In this paper, we examine a computational model of ro-
dent association cortex capable of producing interacting gamma
and beta rhythms. We show how a distributed beta1 rhythm can
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persistently coordinate local cell assemblies without the need for
synaptic plasticity. We model the impacts of sequences of familiar
and novel inputs on cell assemblies and show that the beta1
rhythm provides a context within which these sequences can be
encoded cooperatively in a single cell assembly.

Results
Background: Physiology of Beta1. The computational model we
implement depends on the emergence of beta1 activity through
the process of period concatenation as observed in vitro. Thus, we
start by briefly reviewing the most salient experimental results. In
a bath containing 400 nM kainate, slices of rat association cortex
(S2) initially display a 40-Hz rhythm (gamma) in the superficial
layers and a 25-Hz (beta2) rhythm in the deep layers (24). If ex-
citation is then reduced by addition of a kainate antagonist, all
layers change their spectral peak to 15 Hz (beta1) (5, 6). In this
rhythm, the gamma and the beta2 are concatenated: One period
of the beta1 oscillation consists of spiking in the deep layer, fol-
lowed one gamma period later by spiking in the superficial layer,
and followed one beta2 period later by spiking again in the deep
layer. As revealed in in vitro experiments and simulated in com-
putational models, the order of events in this sequence propagates
between cells in deep and superficial cortical layers. Beginning in
the deep layer, a burst of spikes produced by intrinsically bursting
(IB) cells excites the superficial layer basket cells, which inhibit
the superficial layer pyramidal cells. These superficial layer py-
ramidal cells rebound from the inhibition and generate spikes
one gamma cycle later, activating both superficial basket cells and
low-threshold spiking (LTS) interneurons. The latter then inhibit
the deep layer IB cell dendrites, which rebound and burst one
beta2 cycle later (Fig. 1). This scenario depends on the existence
of hyperpolarization-activated currents (h-currents) in the cells
that promote rebound spiking, allowing the rhythm to persist even
as excitation to cortex becomes very low.

Model of Gamma Oscillation. To represent the persistent gamma
activity observed in vitro, we implement a computational model
adapted from ref. 6. Briefly, this model consists of two cell pop-
ulations—regular spiking (RS) pyramidal cells and fast spiking
basket cells—with strong synaptic interactions (Fig. 1A, shaded,
andMaterials andMethods).We divide theRS cell population into
two groups of equal size, which we label “RS1” and “RS2” and
which receive different levels of tonic excitatory drive. We will
show that including strong, assembly-specific RS-to-RS synapses
(perhaps resulting from spiking-timing dependent synaptic plas-
ticity) minimally affects the simulated dynamics. In this model of
the superficial layer gamma activity, the individual RS cells do not
spike on every cycle of the gamma rhythm, whereas the basket
cells fire at close to the population frequency (Fig. 1B).
We note that this rhythm is mechanistically not the same as the

PING in which the RS cells fire on almost every gamma cycle (25).
Also, the RS cells of this model possess additional currents not
in the previous models, but critical to sustaining the beta1 rhythm
(5, 6). However, this model still exhibits competition between the
two subsets of RS cells. To show this competition, we consider two
cases. First, we drive the subsets of RS cells with different levels of
tonic excitatory input, so that RS1 receives more excitatory drive
than RS2. Because RS1 receives more depolarizing input, this
subset of cells spikes at a higher rate than RS2 (Fig. 1C). In the
second case, we activate each subset of RS cells independently
with the same tonic excitatory drives used in the first case.We find
that the RS1 cells spike at approximately the same rate—whereas
the spike rate of RS2 cells increases—compared with when both
subsets receive simultaneous activation (Fig. 1C). These results
illustrate the impact of competition between the subsets of RS
cells; the simultaneous activation of both subsets decreases the
spike rate of RS2—the subset receiving weaker tonic excitatory
drive. We note that this competition between the RS cells is
weaker than observed in previous models (14, 26). We show in the
SI Appendix that removing one additional current (the h-current)
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Fig. 1. Cartoon representation of the components in the computational model. (A) The computational model consists of two layers. The superficial layer
gamma model consists of two interconnected cells types: regular spiking (RS) pyramidal cells and basket (b) cells, all modeled as single compartments. The
deep layer beta2 model consists of intrinsically bursting (IB) cells modeled with four compartments (an apical dendrite, a basal dendrite, a soma, and an axon
labeled da, db, IB, and a, respectively). The superficial layer also contains single compartment models of low-threshold spiking (LTS) interneurons. Excitatory
synaptic connections are represented as solid lines. Each RS cell connects to all basket cells, all LTS cells, and three IB cells. Each IB cell connects to all basket and
LTS cells. Inhibitory connections are represented as dashed lines. Each basket cell connects to itself, one LTS interneuron, and all RS cells. Each LTS interneuron
connects to itself, four RS cells, and one IB cell. (B) Example of superficial layer gamma activity and deep layer beta2 activity. Each basket cell spikes on nearly
every cycle of the gamma rhythm, whereas the RS cells (divided into two populations) spike more sparsely. The deep layer IB cells burst at beta2 frequency. (C)
Histogram showing the number of spikes per second generated by RS cells when both populations are activated simultaneously (resulting in competition),
and when activated independently. During competition, the RS2 assembly generates less spikes per second than when activated independently (i.e., when RS1
is not activated). During competition, the more active RS1 assembly suppresses the RS2 assembly, decreasing its firing rate by 8 Hz. In this histogram, and all
histograms that follow, we summarize the results of 10 simulation realizations, each with different initial conditions and realizations of stochastic input.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1019676108 Kopell et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1019676108/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1019676108


from the model used here produces competition results consistent
with previous, simpler models.

Model of Beta2 and Beta1. The beta2 model consists of a pop-
ulation of deep layer, IB pyramidal cell (Fig. 1 A and B). The IB
cells support a beta2 rhythm paced by a muscarinic receptor-
suppressed (M-current) in the axons (5, 6). The computational
model of beta1 we use is a generalization of the model proposed
in ref. 6; a cartoon representation of this model is shown in Fig.
1A. The model consists of two cortical layers: (i) A superficial
layer containing single-compartment fast-spiking basket (b) cells,
RS pyramidal cells and inhibitory LTS interneurons and (ii) a
deep layer containing four-compartment IB cells, connected by
gap junctions. Chemical and electrical connections link the cell
populations, as described in Materials and Methods. The SI Ap-
pendix includes detailed descriptions of the model cells and their
dynamic equations.

Responses to Novel Stimuli, but Not Familiar Ones, Are Sustained
After the Switch to Beta1.We first consider the situation of strong
inputs to two subsets of superficial RS cells, corresponding to
a novel input (to RS1) and a familiar input (to RS2) (Fig. 2A). It
has been shown (21) that novel inputs create an excitation that is
both stronger and longer-lasting, as in the caricature. The strong
input corresponds to higher levels of kainate in the in vitro pre-
paration. Fig. 2B shows a representative rastergram of the su-
perficial and deep layer cell activity in this high excitation situ-

ation representative of strong input. The superficial layer RS cells
fire, on average, at all phases of the deep layer IB cells, which
exhibit a population beta2 rhythm (Fig. 2C).
Lowering the excitation to all cells (corresponding to the decay

of excitation in the cortical column) produces a transition to the
beta1 rhythm (Fig. 2D). During this transition, the excitation of
the familiar input decays more rapidly (Discussion), whereas the
excitation of the novel input remains, so that only RS1 cells
participate in the beta1 activity. The longer duration of excita-
tion resulting from a novel stimulus aids the formation of a beta1
rhythm. These RS cells now generate spikes at a single phase
interval of the beta1 rhythm (Fig. 2E). Thus, the model suggests
that the beta1 system is preferentially biased to the sustained
activity and, therefore, detection of “novelty.”

Reactivation of the Familiar Stimulus Allows Its Representation to
Join with That of the Novel Stimulus. Re-presentation of the fa-
miliar stimulus results in activation of the superficial pyramidal
cells not recruited in the original assembly (Fig. 3 A and B). The
RS1 and RS2 cells now form a single cell assembly that fires at
two phases of the beta1 rhythm (Fig. 3C); once nearly out of
phase (i.e., near 130 degrees) with the IB cells and once just
before the IB cells burst (near 0 degrees). We note that activa-
tion of the RS2 cells increases the overall number of spikes
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Fig. 2. Model population dynamics during intervals of high and low exci-
tation reveal different neural rhythms. (A) Cartoon representation of stim-
ulus presentation to the model. In the first interval (label 1st), both
superficial layer RS assemblies receive increased excitatory drive. RS1 (upper
curve) receives more drive than RS2 (lower curve), representing in the model
responses to an unfamiliar stimulus by RS1 and familiar stimulus by RS2. In
the second interval (label 2nd), the excitatory drive from the unfamiliar
stimulus to RS1 has decayed slowly, whereas the drive from the familiar
stimulus to RS2 has decayed rapidly. (B) Example rastergram resulting during
the first stimulus presentation. The superficial layer basket and RS cells
generate a gamma oscillation, whereas the deep layer IB cells generate a
beta2 rhythm. (C) Histogram of the RS1 (Upper) and RS2 (Lower) activity as a
function of beta2 phase. No phase relationship exists between the superfi-
cial layer and deep layer cells. (D) Example rastergram during the second
stimulus presentation. Now the superficial and deep layer cells coordinate to
generate a beta1 rhythm. The excitatory drive to the RS2 cells decays suffi-
ciently so that these cells rarely participate in the beta1 rhythm. (E) Histo-
grams of the RS1 and RS2 activity reveal that the RS1 cells generate spikes at
a particular phase of beta1.
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Fig. 3. Reactivation of cells by a familiar input nests superficial layer
gamma activity within the beta1 rhythm. (A) In the second interval, the fa-
miliar input reactivates cell assembly RS2; this reactivation provides 80% of
the excitatory drive delivered in the first interval. (B) Example rastergram
during reactivation shows RS2 and RS1 become more active, now spiking
twice during each beta1 cycle. (C) Histograms for RS1 (Upper) and RS2
(Lower) during reactivation indicate the two beta1 phases at which the su-
perficial layer RS cells spike—once near 130 degrees, and once just before
the deep layer IB cells burst. (D) Histogram of the number of RS1 spikes that
appear out of phase with the beta1 rhythm (i.e., in phase bins ≥120 degrees
and ≤−150 degrees) during the baseline beta1 condition (as in Fig. 2D) and
during reactivation of RS2 (as in this figure). The RS1 assembly generates
approximately the same number of spikes in the out-of-phase interval
whether or not the RS2 cells receive the additional, familiar stimulus. (E and
F) Example rastergram and histogram for model dynamics identical to B and
C but including all-to-all synaptic connections between the pyramidal cells in
RS1. Inclusion of these synapses has little impact on the observed dynamics.
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generated by the RS1 cells because of the (sparse) excitatory
synaptic connections between all RS cells. However, if we con-
sider only intervals out of phase (≥120 degrees and ≤−150
degrees) with the beta1 rhythm, we find that the RS1 assembly
generates approximately the same number of spikes whether or
not the RS2 cells receive the additional, familiar stimulus (Fig.
3D). In this sense, there is no competition between the original
cells receiving stimulation (RS1) and the new ones (RS2); unlike
the situation of PING gamma (7, 14), the introduction of another
and larger input to a subset of pyramidal cells (RS2) does not
suppress the RS1 activity.
The history of inputs to the RS cells might also impact the

excitatory connections between these cells through the process of
spike-time–dependent synaptic plasticity (27). To simulate this
effect, we include all-to-all (excitatory) synapses between the
pyramidal cells in RS1 and find that the spiking output is essen-
tially unchanged in the model (Fig. 3 E and F). Thus, even if the
history of previous inputs is encoded in mutually excitatory con-
nections among RS1 cells, the output is essentially unchanged;
it remains encoded in the set of cells participating in the beta1
rhythm. Re-presentation of the novel input to the RS1 cells
results in similar behavior, namely increased RS1 activity clus-
tered (in this case) near three different phase intervals of the
beta1 rhythm (SI Appendix).

Within a Beta1 Rhythm, There Is No Competition Between Multiple
Streams of Inputs. In the previous section, we considered the re-
presentation of inputs to RS1 and RS2 individually and found
increased activity in these reactivated cells. If both the inputs are
reintroduced together (Fig. 4A), the superficial layer generates
a gamma oscillation nested in the beta1 rhythm. The RS1 cells
(which receive more excitatory drive) tend to spike at three
different phases in the beta1 rhythm, whereas the RS2 cells spike
mainly at two phases (Fig. 4 B and C). Thus, some of the history
of past involvement, here encoded as a larger input to RS1 cells,
appears in the beta1 phase at which the RS cells spike. Again, we
find that these results do not significantly change if recurrent
excitation is added to the RS1 cells (Fig. 4 D and E). Finally, we
consider the total number of spikes generated by RS1 and RS2
during beta1 when each assembly receives the re-presentation of
input individually (e.g., Fig. 3 for RS2) and together (Fig. 4). We
find that the spike rate of the RS1 and RS2 cells, with simulta-
neous inputs, are nearly the same as the spike rates when each is
activated alone (Fig. 4F), although the beta1 phase at which the
RS2 cells spike changes. This observation suggests no competi-
tion between RS1 and RS2 when the gamma activity of these
assemblies is nested in beta1. To illustrate this assertion, we
compute the competition ratio—the ratio of spikes generated by
RS2 when activated simultaneously with RS1 versus the number
of spikes generated by RS2 when activated independently. We
find a ratio closer to one (i.e., less competition) during the
reactivation (beta1) condition (Fig. 4G). Thus, the competition
(i.e., partial suppression) between the subsets of superficial RS
cells decreases dramatically when the gamma rhythm appears
nested in beta1.

Discussion
It has been frequently suggested that the formation of cell as-
semblies (i.e., populations of synchronously active neurons) is an
important aspect of how the brain performs computations (1, 2).
However, the mechanisms and neural rhythms by which cell as-
semblies form and evolve with different inputs have not been
thoroughly explored. Here, we show in a computational model
that the physiology associated with different rhythms can produce
different mechanisms for cell assembly formation and manipula-
tion. We focused on the beta1 rhythm observed in the rodent as-
sociation system and showed how cell assemblies constrained by
this physiology differ from cell assemblies associated with gamma

rhythms alone. Three important contrasts distinguish the beta1
and gamma rhythm generating systems. First, cell assemblies
formed in the typical gamma oscillation require ongoing input,
whereas cell assemblies formed in beta1 are self-sustaining via
rebound from inhibition. Second, cell assemblies concurrently
generated in the superficial layer (PING) gamma oscillation
compete with one another. In contrast, these layers can create a
coordinated cell assembly if there is a beta1 rhythmic background.
Third, the self-sustaining cell assemblies during beta1 allow later
input to create a unified cell assembly linking past and pre-
sent inputs.
In a recent review, A. Engel and P. Fries (23) suggested that

beta frequency oscillations are useful for the maintenance of the
status quo, such as holding a fixed position or maintaining short-
term memory. We agree with that suggestion, but go further in
two ways. First, we suggest a mechanistic reason why at least this
version of the beta1 rhythm is well adapted to maintaining cell
assemblies in the absence of further input. Second, we suggest why
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Fig. 4. Reactivation of cells by inputs nests superficial layer gamma activity
within the beta1 rhythm. (A) In the second interval, inputs reactivate cell
assemblies RS1 and RS2. (B) Example rastergram during reactivation shows
RS2 and RS1 become more active, now spiking two or three times during
each beta1 cycle. (C) Histograms for RS1 (Upper) and RS2 (Lower) during
reactivation indicate the beta1 phases at which the superficial layer RS cells
spike. Both assemblies generate spikes near ±120 degrees, and RS1 also
spikes near 0 degrees. (D and E) Example rastergram and histogram for
model dynamics identical to B and C but including all-to-all synaptic con-
nections between the pyramidal cells in RS1. Inclusion of these synapses has
little impact on the observed dynamics. (F) Histogram showing the number
of spikes per second generated by RS cells when both populations are
reactivated simultaneously (Left) and when reactivated independently
(Right). Both assemblies generate approximately the same number of spikes
per second when activated simultaneously (as in this figure) or indepen-
dently (as in Fig. 3 for RS2). (G) The competition ratio is the number of spikes
generated by RS2 when activated simultaneously with RS1 versus when ac-
tivated independently. In the first presentation of the stimulus, the RS2 as-
sembly generates fewer spikes when activated simultaneously with RS1. In
the second presentation, RS2 generates nearly the same number of spikes
whether or not RS1 is simultaneously activated.
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the beta1 rhythm in multimodal areas is well adapted to allowing
manipulation of cell assemblies to perform new computations.
It is computationally advantageous for the cortex to have

a means to hold patterns of neuronal activity coding for features
of a sensory object in short-term (working) memory. For example,
within a single sensory modality, a memory of previously pre-
sented stimuli can be used to compare and contrast subsequent
stimuli to reach basic similarity/novelty distinctions in sequences
of input time-distributed over hundreds of milliseconds to several
seconds. The dynamic signature associated with retention of past
stimuli in such sequences appears to involve predominantly the
beta1 rhythm. Visual short-termmemory tasks reveal strong beta1
activity during retention (28, 29), which also correlates with ac-
companying BOLD responses (30). In addition, working memory
impairment is associated with a decrease in phase and coherence
measures within the beta1 frequency band (31). For multimodal
sensory processing, short-term memory is equally important. It is
highly unlikely that each modality of stimulus associated with
a target object will arrive concurrently in cortex. Thus, any neu-
ronal assembly coding for the object must be built up over time.
Such multimodal processing is also strongly associated with beta1
rhythm generation (16). The idea of memory being held in on-
going neuronal rhythms is far from new (e.g., ref. 32), but here we
present a mechanism by which this phenomenon may occur.
From a mechanistic perspective, the beta1 rhythm provides an

ideal substrate for preserving neuronal assemblies over time. It is
formed after periods of strong cortical excitation, because this
excitation decays (5). The persistence of the rhythm, in the ab-
sence of strong, transient drive critically depends on the presence
of the hyperpolarization-activated conductance—the h-current.
Due to rebound spiking, coordinated activity in infra- and
supragranular cortical layers persists, in the absence of strong
depolarization, in key neuronal subtypes—superficial layer RS
and deep layer IB neurons (6). Using such a mechanism, the
neuronal population code for a transiently presented sensory
stimulus can be remembered through the iterative pattern of spike
coincidences in the slower beta1 rhythm. It should be noted that
neuronal assemblies can be remembered in cortex for periods of
timemuch longer than that associated with short-termmemory (e.
g., ref. 33). In these cases, it is highly likely that specific patterns of
use-dependent synaptic plasticity are critical. However, in the
current work, such plasticity did not play a significant role in the
creation and manipulation of cell assemblies.
In the absence of any excitatory drive, the beta1 rhythm cannot

manifest. Therefore, stimuli that generate long, slowly decaying
periods of activation are far more likely to generate a beta1
rhythm than rapid transient periods of activation. Transient
stimulation of excitatory afferents can generate such long, slowly
decaying responses in cortex only if the pathway being activated
has remained quiescent previously (e.g., refs. 21 and 34), sug-
gesting that the beta1 rhythm may be selectively generated by
unfamiliar or infrequent sensory stimuli. In ref. 21, this suggestion
was shown to be the case for simple auditory tone sequences, and
reports showing strong beta1 generation in short-term memory
tasks used novel stimuli for each trial (28).
We use these long, slowly decaying profiles of excitation, and

the accompanying beta1 rhythm, in this study to distinguish be-
tween frequently presented (familiar) stimuli and rarely pre-
sented (unfamiliar) stimuli. Frequency of presentation affects the
duration and power of induced gamma band responses (21),
a phenomenon related to repetition suppression (35); although
the work in ref. 35 is about rates rather than spectral power, there
is an increasing corpus of literature showing that gamma (alone
but particularly with delta) is the single most powerful predictor of
spike density (36, 37). In contrast, we propose that unfamiliar
stimuli appear to involve different network processes, which in-
volve beta1 rhythm generation.

When an unfamiliar stimulus is co-presented with a familiar
one, the most obvious computation to be performed is to decide
whether the two are related. However, owing to the repetition
suppression of the familiar stimulus, the initial drive resulting
from the familiar stimulus (here to RS2) is not as strong as
that resulting from the unfamiliar stimulus (here to RS1). Co-
presentation of stimulus pairs, with biased drives, leads to strong
competition, with the weaker drive effectively being ignored (38),
a process associated with lateral inhibition (14). In the present
simulations, the stronger driven (unfamiliar) assembly dominates
during the initial gamma rhythm, a time before the beta1 rhythm
is established (Fig. 1C). This competitive process may not always
serve as the appropriate computational outcome. For example, if
an unfamiliar stimulus is presented during a sequence of familiar
stimuli, then it could be argued that the familiar stimulus must
have some contextual validity. What computation provides the
context? The model presented here provides a possible solution:
If the familiar stimulus is presented again during the retention
period for the unfamiliar stimulus (the protracted beta1 rhythm),
then no competition is seen. Instead, the subset of neurons
responding to the unfamiliar stimulus spike at the same rate
whether or not another subset of neurons responds to the fa-
miliar stimulus (Fig. 4F). The two assemblies become modified,
yet both remain, thus encoding for both stimuli. This encoding as
a single assembly is consistent with the “binding-by-synchrony”
hypothesis (39). We note that, although the RS cells responding
to the two stimuli tend to fire at the same phases (and hence are
bound) in this model of rat association cortex, the different firing
rates of the two RS assemblies may permit independent repre-
sentation in other cortical regions.
There are multiple reasons for this lack of competition in

beta1. One has to do with the contrast between the gamma
(PING) mechanism and the beta1 mechanism: In the former, the
dominant assembly activates the shared interneurons; the non-
dominant assembly is not sufficiently activated to fire before the
wave of inhibition and is suppressed. In the beta1 mechanism,
the superficial interneurons are activated and timed partly by the
deep layer IB cells, which are not tied to either assembly. In the
PING rhythm, when the drive goes up, so does the frequency;
indeed, that is the source of the competition among assemblies.
By contrast, if two superficial layer cell assemblies receive dif-
ferent drives during beta1, both continue to be active, contrib-
uting additional spikes within each beta1 period. Another major
reason has to do with the h-current in the RS cells: When RS
cells are inhibited, the inward h-current is activated, depolarizing
the cells and making them harder to suppress.
In summary, the beta1 rhythm is unique (to the best of our

knowledge) in providing a mechanism for ongoing manipulation
of cell assemblies. Thus, although it shares with other rhythms (40–
42) the ability to create a nest for higher frequencies, the beta1
rhythm has its own special functional properties, following from
the central role of the rebound from inhibition in its rhythmo-
genesis. Rebound (driven by the h-current as predicted in the
present simulations) permits persistence in the oscillatory response
to temporally discrete stimuli and also reduces assembly suppres-
sion based on lateral inhibition. Thus, our simulations predict that
the ability of the beta1 rhythm to facilitate inter- and intralaminar
interactions may form both a substrate for synaptic plasticity-in-
dependent short-term memory and a means to create a cortical
representation for present stimuli in the context of those received
in the recent past.

Materials and Methods
The computational model of the gamma rhythm includes single-compart-
ment models of 80 RS cells and 20 basket cells, interconnected with all-to-all
synapses. In addition, each basket cell possess an autapse, and each RS cell
possesses sparse connections randomly assigned to other RS cells (i.e., each of
the 80 RS cells connects to three randomly chosen other RS cells), regardless of
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whether the cells belong to RS1 or RS2. The computational model of the
beta2 rhythm consists of 20 IB cells. We model each cell with four com-
partments—two dendrites (proximal and distal), a soma, and an axon—and
connect the IB population with gap junctions (each IB cell connects to three
other IB cells) between the axons. In the transition to beta1, a population of
20 LTS interneurons (single-compartment models) become essential for
propagating the rhythm between cortical layers. Detailed equations for the
model cells are provided in SI Appendix.

In the superficial layer, the three different cell types are connected by
synapses (AMPA- and GABAa -receptor mediated), whereas in the deep layer,
the IB cells are connected by gap junctions. Between the cortical layers,
AMPA-receptor mediated ascending connections (from the deep to super-
ficial layer) begin at the axonal compartment of the IB cells and terminate
on all basket and LTS cells. GABAa-receptor mediated descending con-
nections (from the superficial to deep layer) begin from individual LTS cells
and terminate on the apical dendrite of individual IB cells (i.e., each of the 20
LTS cells connects to one of the 20 IB cells). Unlike previous models (6), here
we include excitatory descending connections from RS cells to IB apical
dendrites with each IB cell receiving inputs from 3 of 80 RS cells. These
descending connections are known to include both NMDA- and AMPA-
receptor–mediated currents (43). The slow decay of the NMDA currents acts
effectively as a constant excitatory drive to the deep layer IB cells. The faster
AMPA currents, however, may potentially disturb the beta1 rhythm, which
relies on spiking activity propagated between the cortical layers (6). This
disturbance does not occur in the model because the AMPA-mediated cur-

rent are shunted at the IB dendrites by simultaneously arriving GABAa input
from the LTS cells (SI Appendix). As in ref. 6, the transition to the beta1
regime requires two transformations: (i) hyperpolarization of all cells rela-
tive to the high excitation state that supports the faster gamma and beta2
rhythms, and (ii) inclusion of NMDA-mediated synapses connecting each IB
cell axon to all IB cell basal dendrites.

In this model, the one compartment RS cell is considered to represent all of
the compartments of the RS cell and, therefore, is given the h-current, which
is known to exist more distally along the RS dendrites (44). The interneuron
population now includes other inhibitory cells that are known to project
more distally, thus evoking the h-currents. We hypothesize that the peri-
somatic-projecting interneurons dominate in the highly driven PING case,
whereas other interneurons are active during the beta1 regime. Because we
are interested here in the properties of the dynamics in the beta1 regime,
we do not model the above details explicitly, which would require multiple
compartments for the RS cells and more than one class of interneurons,
without adequate constraining data. Instead, we focus on an essential
property of the inhibition to the RS cells in the beta1 regime: that it can
produce rebound excitation (5, 6).
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