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Synchronization measures of bursting data: Application to the electrocorticogram
of an auditory event-related experiment
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Synchronization measures have become an important tool for exploring the relationships between time
series. We review three recently proposed nonlinear synchronization measures and expand their definitions in
a straightforward way to apply to an ensemble of measurements. We also develop a synchronization measure
in which nearest neighbors are determined across the ensemble. We compare these four nonlinear synchroni-
zation measures and show that our measure succeeds in physically motivated examples where the other
methods fail. We apply the synchronization measure to human electrocorticogram data collected during an
auditory event-related potential experiment. The results suggest a crude model of cortical connectivity.

DOI: 10.1103/PhysRevE.70.011914 PACS nun)er87.19.Nn, 05.45.Tp, 05.45.Xt, 87.19.La

I. INTRODUCTION synchronization11], phase synchronizatiofl2], and syn-

The electrocorticogranECoG is a measure of the elec- Chronization techniques robust to noisy dg#al3. These

tric potential on the cortical surface of the brain. Although of Synchronization measures are generally applied to pairs of
higher spatial resolution than the scalp electroencephalografine series from a single simulation or experiment. Here we
(EEG), the ECoG siill records the summed activity from mil- discuss the application of three well-known synchronization
lions of individual neurons. In order to better understand theneasures to an ensemble of repeated measurements, as oc-
relationships between microscopic neurons and macroscopiirs in the ECoG experiment of interest in the present work.
electric potential recordings, the human neocoltexghly ~ We find that these measures give erroneous results when ap-
the outermost 3 mm of the brgican be divided into func- plied to physically motivated, simulated data. To overcome
tional units called cortical macrocolumiig]. Each macro- this limitation, we develop a synchronization measure in
column contains approximately 4@eurons and 28 syn-  which nearest neighbors are determined across the ensemble

apses, which connect each neuron to neighboring neurongf measurements, rather than within each individual en-
neighboring macrocolumns, and more distant regions of thegemble member.

brain. Understanding the interactions between cortical mac- Thjs paper is organized as follows. In Sec. Il A we restate
rocolumns, although more tractable than the interactions banree well-known synchronization measures and define a
tween individual neurons, is still a demanding problem. In-ne\y synchronization measure in Sec. 11 B. In Secs. Il and IV
stead, relationships between pairs of electrodes—whiclye apply these measures to the unidirectionally coupled non-
record activity summed over cortical macrocolumns—arggentical Henon map and to model data of bursting oscilla-
used to infer relationships between larger regions of the NeQpry activity, respectively. We show that only our synchroni-
cortex. , , , , _zation measure succeeds in detecting the types of
The relationships between two time series recorded S'mU|i‘nterdependence expected in ECoG ERP experiments. In Sec.
taneously from different electrodes have been investigateq e apply the synchronization measure to actual human
with many techniques. These include measures of linear inecog data collected during an auditory ERP experiment and
terdependence, such as cross correlg#ncoherencg3.4,  gyggest a simple model for the results. Finally, in Sec. VI we
and event-related coherenf®}, and more recent measures symmarize the results and present our conclusions.
of nonlinear interdependence, such as mutual information
and synchronizatiofi6,7]. Traditional information measures
have been shown to depend strongly on the embedding di-
mension and time delay for short EEG time seli8k al- In this section we review three synchronization measures
though clever, nonstandard techniques may overcome thisom [6] and[8]. We apply each measure to an ensemble of
limitation [9]. Synchronization techniques are useful for thescalar time series{n] and r{{n], where the time index
analysis of short time series of noisy data, characteristic o£{1,... n'} and the ensemble indék={1, ... k’}. Specifi-
ECoG event-related potentiERP) measurements. cally, we think ofs{{n] andr{n] as the value of the electric
Various synchronization measures have been developefotential recorded simultaneously at two different electrodes
These include identical synchronizatiqd0O], generalized as a function of discrete time The physical time is related
to the discrete tima by t=nAt+t, wheret, is the initial time
and At is the sampling interval. Each ensemble memiber
*Electronic address: aszeri@me.berkeley.edu represents a unique realization of the same experiment. The

II. INTERDEPENDENCE MEASURES
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synchronization measure is computed for each ensemble R(xYn])

member pairi.e., s{n] and r{n] with k fixed) and the re- SX{nlly) = ROT]lY)” Q)
sulting synchronization values are averaged over the entire
ensemble. which when averaged over ensembles yields
The ensemble formalism is particularly useful for our ap- "
plication of interest. Electrocorticogram measurements often 1 R(Xn))
involve the response of the neocortex triggered by a specific S(x[n]ly) = Ek% RONTlY) (4)

stimulus, for example an auditory tone. Typically in the ERP
experiments the response to the sensory stimulus is oscilldf the ensemblex andy are synchronous at time, then
tory, weak, and of short duratigqm’ is smal). Therefore, an  S(x[n]|y) —1; if they are independent, the®(x[n]|y) ~0.
ensemble of ERPs is recordédith time referenced to the Here S(x[n]|y) is the first synchronization measure we con-
stimulus onsgtand various measures are averaged over thegider. We note that a variation of this measure, intended to
ensemble to improve the signal to noise ratio. Physicallyaccount for noisy data, can be found[it8].
ensemble averaging assumes that repetitive applications of Next we define the mean-squared distance fséfn] to
the stimulus activate similar pathways in the brgld]. We  every time point in the ensemble
therefore expect that the ERP will begin at approximately the b
same time—say, 100 ms—after each stimulus presentation. — 1
We further assume that the response of the neocortex will ROn)) = rlg O] =xp])?, )
trace the same dynamics with each stimulus presentation. In -
what follows we will show how this assumption is useful. whereP=n’-(d-1)7. Then, from[6], define

The synchronization measures require that we reconstruct

the state space of the systemx"{n]=(s{n],s{n _ . RXn))

+7],... STn+(d-1)7) and yL]=(nl, P+, .0 n HOTIY) = Ny ©
+(d-1)7]) for each pair of ensemble membégis]. Here r ) ]
denotes the delay time and the embedding dimension, Which we average over the ensembles to obtain

which we assume are the same for both ensembles and all Ko o=

ensemble members. The standard procedures for determining H(x[n]ly) = 12 | Rx{n]) 7)
7andd are demandingr is often assigned to be the time of K1 RMnlly)

the first minimum of the average mutual information, ahd o .

is calculated through a false nearest-neighbor procgdate @S the second synchronization measure. Finally[8ha
Both of these calculations are questionable for short data set§€ary) normalized synchronization measure is proposed
of noisy, nonstationary data, which are typical in ECoG ERPVich in our notation becomes

experiments. Usingl15] as a guide, we considered different 1 K E(xk[n]) ~RON]ly)
values ofr andd, and found stable results. N(x[nlly) = PE Y . (8)
k=1 R(x[n])

A. Current synchronization measures

We now define three synchronization measures in currerdiote thatN(x[n]|y) is also ensemble averaged. Equations
use and discuss a simple method of ensemble averaging. Tk®: (7), and (8) are well-known synchronization measures
first two synchronization measur&x[n]|y) andH(x[n]|y) and are included here with a simple ensembl_e averaging
follow from [6]. Denote asn,; the time indices of theN scheme. We apply each of these measures to simulated data

nearest neighbors to the elematfin] of the kth member of  in Secs. Il and IV. o .
the ensemble at tima. We note that{n] and its nearest Before introducing our synchronization measure, we illus-
neighbors are all elements of theh member of the en- trate how the nearest neighbors are chosen in the synchroni-

semble. Define the mean-squared Euclidean distance froﬁf‘tion measure§(x[n]|y), H(x[n]y), and N(x[n][y). In
the elemen&n] to its N nearest neighbors as Fig. 1(a) we show a typical ensemble memts§m] for the
ECoG ERP experiment discussed in detail in Sec. V. The

1 N stimulus occurs at timé=0 ms. Note that before the stimu-
R(Xn]) = NE (X{n] = x[ny 1), (1) lus the measured voltage fluctuates between +20 mV, while
=1 after the stimulus an oscillatory burst occurs between
Note thatR(xn]) is a function of timen through xX[n]. =30 ms and:1_60 ms. _After the oscillatory burst, the volt-
Similarly, denote the time indices of the nearest neighbors t§g€ returns to its prestimulus range. .
yn] asm,; and define We now discuss the procedure for finding nearest neigh-

\ bors to a point within the oscillatory burst. Ir:d% illustrative
1 purposes, we embedded the ensemble mergthat using
ROCTn]ly) = 1 2 (¢fn] = X {m )%, (20 d=3 andr=10. We show this embedding{n], in Fig. 1(b).
= The point marked with an asterisk in Figgajland Xb) is
Here, we calculate the average squared distance ®fn]  the same and corresponds to a point in the oscillatory burst
to elements in the same ensemkleising the time indices of s{n]. Denote the time index of this point @. In Fig.
(my;) from ensemble/{n]. Then we define 1(c) we show the local neighborhood ®f{n*], and we mark
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FIG. 2. (a) Ten ensemble members embedded usir@ and
7=10. The thickest curve is the ensemble member shown in Figs.
1(a) and Xb). The pointx{n"] is marked with an asteriskb) The
local neighborhood of the point{n"]. The thickest curve is the
trajectory ofx{n]. The pointx{n"] is marked with an asterisk. The
thin curves are trajectories of nine other ensemble members. The
®) (e} nearest ensemble neighbors are marked with triangles.

FIG. 1. (8 The electric potential of one ensemble member re-

corded by one electrode in the ECoG ERP experiment. The stimulu® ('], hasla nearest neighbor in .each ens*erhﬁlk. Notice
occurs att=0 ms. Note the oscillatory burst between 30 ms andWe do notinclude the nearest neighbowtfn’] in ensemble

160 ms. The asterisk marks a point on the oscillatory bussThe K. Finding a single nearest neighbor xYn’] in each en-
embedding of the times series (@). We chosed=3 and7=10 for ~ semblel #k, rather than throughout a single time series,
illustrative purposes. The asterisk in this figure corresponds to thavoids the complications associated with serial correlations
asterisk in(a). (c) The local neighborhood of the point marked with of the data from short data sets. In general we denote the
an asterisk in(b). The five nearest neighbors to this point are time index of the nearest neighborx§n] in ensembld as
marked by triangles. The nearest neighbors are temporally proxima{k’I and call this set of neighbors tmearest ensemble neigh-
to the fiducial point because the data set is short. borsto x{[n]. In Fig. 2b), we show the local neighborhood

of the pointx{n"]; we mark the poink[n"] with an asterisk
the five nearest neighbors x§[n"] with triangles. It is clear and the ten nearest ensemble neighbors to this point with
from Figs. 1b) and Xc) that the nearest neighborsxf{n']  triangles. Here the neighbors are chosen from across the en-
lie immediately along the trajectory passing throudfn’].  semble of measurements, rather than within each individual
By excluding nearest neighbors within a local temporal win-ensemble member. Because we have assumed that the trajec-
dow neanxi{n"], we only succeed in selecting neighbors fur-tory of each ensemble member follows similar dynamics,
ther along this isolated trajectory. For this case, the trajector$his method of determining neighbors is justified.
of a single ensemble member does not cover anything like an Now we define the synchronization measure. As in Sec.
attractor in the embedding space. Therefore neighbors alor§A we reconstruct the state spaces of the time sesfy
the oscillatory burst must be defined with care. We show irand ri{n] to createx[n] and y"{n], respectively. For each
what follows that by considering neighbors across the entime pointn of every ensemble membé&rwe calculate the
semble of measurements, we can—in this case—constructraean Euclidean distance frorf{n] to its k' =1 nearest en-
more representative picture of the underlying dynamics whesemble neighbors:
the data are available only in short data sets.

k/
1
DT = KT — o _
B. Synchronization measure (<tnD k' - 12 ”X [n]=x [nk"]” ©)
The method we propose is similar to those discussed in I#k

[6] and[8]. But for the our synchronization measure, nearest

neighbors are chosen from across the ensemble of measutdere| || denotes the Euclidean distance, andniheare the
ments, rather than from within each individual ensembletime indices of the nearest ensemble neighborsfn]. We
member. To illustrate this idea, we show in FigaRten also calculate the standard deviatiop(x[n]) of the mean
ensembles embedded usir3 and 7=10. The darkest distance in Eq(9). Similarly, denote the time indices of the
curve in the figure is the single ensemble member shown imearest ensemble neighborsyttn] as my,. Then compute
Fig. 1(b). Now the element of ensemble at time t=n",  the following:
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K’ K’
1 1
TOInly) = =7 2 OO + op(xIn) TOCI.7ly) = =3 2 O+ 7)) + 05X+ 7)
=1 =1
1#k I#k
= [Ix*[n] = X'Tm 1D, (10 = [IX[n+ 7] = x'Tmy; + 1)), (12

where ©(-) is the Heaviside step function. In ELO) we  wherey is an integer time shift. When the distance between
determine the distance fromt(n] to eachx'[m]. If this  xX[n+7] and X'[my,+ 7] is less thanD(x{n+7])+op(Xn
distance is less thaB(x{[n])+op(xXn]) (i.e., the average + 7)) for all | #k, T(x{n, ]|y)=1.0. It is important to keep
distance fromx[n] to its nearest ensemble neighbors plusin mind that them,, are still based oy*[n], although this is
one standard deviatigntheny'[m, ] is a neighbor ofy{n]  lost in the notation of Eq(12). The time shifting scheme is
andx'[my,] is a neighbor ok[n]. Thus, a neighbor of{n] ~ essentially equivalent to delaying the ensembles before ap-
and y¥[n] shares the same ensembland time indexm,;.  Plying the measure defined in E@.1). We average Eq(12)
Call this neighbor ahared neighboof x{n] andyXn]. By ~ over the ensemble to obtain
summing the number of shared neighbors betwégm] and L K

K o )
y [.n] and dividing by the total number of p933|ble TN, 7lly) = _,2 TN, 7ly). (13)
neighbors—the number of ensemble membkfsminus K' (=1

one—we measure the synchronization between the two time ) ) ) )
series at timen in Eq. (10). We average Eq(10) over the Equat_|on_(13) is the time-shifted, ensemble-averaged syn-
ensemble of measurements to yield chronization between ensemblgesandy. Any of the syn-

chronization measures in Sec. Il A could have been modified
1 K to include time shifts, but we chose only to consider Eq.
T(x[n]ly) = EZ Txn]ly). (1)  (13). We note thafT(x{n, 7]|y) and T(yn, 7]|x) measure
k=1 different quantities; in the former neighborhoods yofare
The measuréll) differs from the synchronization measures €x@mined inx, while in the latter neighborhoods ix are
in Egs. (4), (7), and(8). In Eq. (11) we compute neighbors examined iny. Determining the drlver-respor_lse_relatlonshlp
from across the ensemble of measurements and determiff@M the asymmetry of these two synchronization measure-
the fraction of shared neighbors between ensemplesdx. ments is not obvious. We refer the interested readdi6io
If for some time indexn this fraction approaches 1.0, then and[7].
we say that the synchronization between the two ensembles
is strong at timen. If this fraction approaches 0.0, then we lll. SIMULATED DATA: HENON MAP
say that the S){(nchrqnization is weak. We include the standard 1 ¢jow that the ensemble formalism proposed in Secs.
deylatlon ap(X{n)) in qu' 10 t.o extend the radius of thg Il A and Il B creates useful measures of synchronization, we
neighborhood aroung{n]; a stricter measure of synchroni- 505y the four synchronization measures to the standard ex-

zation rgsults if we exclude this term. The interpretation Ofample of the unidirectionally coupled nonidentical Henon
Eqg. (11) is somewhat clearer than the ratio of mean—square%ap[lg,]:

distances utilized in the synchronization methods of Sec.
Il A. We show in Sec. IV A that the ratio of mean-squared r{n]=1.4-r'{n- 12+ 0.3"n-2],
distances can be misleading in certain types of examples.

All of the measures we have discussed determine the sk[n] =14 —{K[n]rk[n -1]+@1- K[n])sk[n - 1]}sk[n -1]
ensemble-averaged synchronization between ensembles
andy at a specific time. In some applications—ECo0G ex- +0.15{n-2]. (14)
periments, for example—it may be important to investigateHere, the ensemble members differ only in the initial values
time-delayed synchronization. An idea along these lines wagf s{n] andr*n], which are chosen randomly but avoid the
mentioned in[6]. In words, we would like to compare the fixed points of the system. The coupling strengfim] was
synchronization betweex'{n] andy'{m] whenn#m; i.e.,  assigned the value 0(@trong couplingwhen 100<n< 150
we would like to know whethex[n] at timen is related to  gng 0.0(no coupling otherwise. We expect the synchroniza-
y"{m] at timem. To do so, we determine the time india®g,  tion measures to detect the interdependence between the en-
of the nearest ensemble neighborg'fm]. We then compute  semble members{n] andr{n] only when the coupling is
the distance betweexrk[n] and x'[my,] for eachl#k and  strong (i.e., when 108<n<150). For this simulation we
record the number of these points that lie closga], asin  fixed the number of ensemble membé&tsto 20 and chose
Eg. (10). Now, we shift the time indicesy by an integer,. =1, d=3 to reconstruct the state-space vectdfi1] and
We then compute the distance betwedn+»] andx'[m,;  yKn] from ${n] andr¥n], respectively. For the synchroni-
+ 7] for eachl # k and record the number of these points thatzation measures in Sec. Il A, each ensemble member was
lie close tox{n+7]. Here we are comparing{n+7] at  scaled to have zero mean and unit variance. In Fia). the
time (n+7) to the time-shifted nearest ensemble neighborsynchronization measur&x[n]|y) (dashed ling H(x[n]|y)
of y{n] at timen. Equation(10) is easily extended to include (dotted ling, andN(x[n]|y) (solid line) are shown. It is clear
time-shifted synchronization that all three measures increase during the interval of nonlin-
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FIG. 3. Synchronization measures applied to the unidirectionally coupled nonidentical HenoanTdpee synchronization measures:
S(x[n]|y) (dashed ling H(x[n]|y) (dotted line, andN(x[n]]y) (solid line). All of the measures are smoothed over a window of size 11 at
each time point. All three measures increase during the interval of nonlinear coplieg n<150) between the chaotic time serigb)

The time-shifted synchronization measiit&[n, »]|y) smoothed over a two-dimensional window of size 11 at each time point. Note that the
planar axes show time along ensembjeandx, respectively. In the contour plot, there are five evenly spaced contour levels, ranging from
0.0 (white) to 0.08(black. Unless defined otherwise, dllx[n, »]|y) figures follow this gray-scale scheme. The diagonal line in the figure
corresponds to the location of zero time lag. The contour plot shows synchronization occurs with timg=ghdtrring the time interval
100<n<150.

ear coupling between the two ensembles: €06<150. In  synchronization measures will detect no interdependence be-
Fig. 3b) we plot the time-shifted synchronization measuretween these two ensembles of measurements. However, we
T(x[n, 77]|y). Again, the nonlinear coupling between the two show that the measurS(x[n]|y) erroneously detects syn-
ensembles is clear and appears as the thin diagonal band GAronization between the ensembles and explain why this
the contour plot. From the location of the band in Figo)3  OCCUrs.

we conclude that ensemblg§n] andy"[n] are synchronous e construcs{n] such that each ensemble member con-
when 100<n< 150; i.e., the two are coupled with no time sists of identical, weak bursts of oscillatory behavior when

shift. The reader may wonder why the valuesTf[n, 7]|y) 100 ms<n< 150 ms. Each ensemble member is further con-
are so small; in Fig. ®) the contour levels range ’from 00 structed from 200 sinusoids, where each sinusoid is assigned

(white) to 0.08 (black). This follows from the rather tight a_random uniformly distributed frequencifrom 0 o

o . . 100 H2 and random uniformly distributed phageom -
def|rk1|t|on we have ado_pted in EQL2) for_ the ne!ghborhood to ). We scale this sum of 200 sinusoids such that the ratio
of x{{n]. It may be profitable to relax this definition for very

of the oscillatory burst amplitude to the amplitude of the

noisy data. summed sinusoids is approximately 2. We denote this ratio
of amplitudes the signal-to-noise ratiSNR). Here the os-
IV. SIMULATED DATA: OSCILLATORY BURSTS cillatory bursts represent evoked responses while the sinuso-

In this section we apply the synchronization measures o- s act as noise. We shall refer to this type of noiseias-
. Pply y . oidal noise The ensemble members ifn] consist only of
Sec. Il to simulated data. The simulated data are motivate

by observed ECoG ERP time series in which weak bursts 0§|nu50|dal noisgi.e., these ensemble members Ppossess no
. L . evoked responsgsWe show an example of the individual
oscillatory activity often occur. For example, an auditory

stimulus may evoke a 10-Hz burst in one cortical electrodeensemble members in Fig(a. Here the weak evoked re-

followed by a 40-Hz burst in another cortical electrode. SeeSponse ofs{n] (solid ling) is mostly hidden by the noise.

[16] for a further discussion. Our goal is to determine whichAfteli gveraglng the time sgrlez Iovir tfhe ensemples, the
methods accurately detect this specific type of interdepen(?vot;aI rgsponse n ense;n i‘.n ack of response in en-
dence. We show in the examples that of(x[n, 7]|y) suc- sembler become apparent in Fig (1.

ceeds in detecting interdependent bursts of oscillatory activ- To calculate the_ synchro_nlzanon between the two en-
. . sembles we chose=1 andd=10 to reconstruct the state-
ity occurring between two ensembles. For all of the

K K K -
examples in this section, we set the total number of ensembigac€ vectors({n] andy'[n] from s{n] andr'{n], respec

members 0 20 =20/ and enrepesent the pysicaltme, [/°. 18 X6 a4 o i synehvorzaton measures il
where the sampling intervaln=At is 1 ms. y '

Fig. 4(c) we plot the synchronization measur&&[n]|y)
(dashed ling H(x[n]|y) (dotted ling, andN(x[n]|y) (solid
line). Both H(x[n]|y) and N(x[n]|y) fluctuate between 0.2
We start by considering the case where the two ensemblemnd 0.55 but possess no obvious structure suggestive of a
of time series measuremerg§n] and r{n] are unrelated. change in synchronization between the two ensembles.
Specifically, we simulate the case where one cortical elecS(x[n]|y), though, suggests a doublinfrom ~0.1 to
trode measures a response to a stimulus while the other cor-0.25) in synchronization between the two ensembles dur-
tical electrode does not. One would expect that all of theing the time of the oscillatory burst is[n]. This is caused

A. Bursting data versus noise
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FIG. 4. Nonlinear synchronization measures applied to oscillatory bursting data versus noigg)datgpical ensemble member from
the oscillatory bursting dats{n] (solid line) and the noisy datel{n] (dashed ling The weak oscillatory responsesf{n] between 100 ms
and 150 ms is hidden in the noige) The ensemble-averaged ERPs of ensersli®lid) and ensemble (dashegl The oscillatory response
in ensembles for 100 ms<n< 150 ms is apparen{c) Three synchronization measure&¥x[n]|y) (dashed ling H(x[n]|y) (dotted ling,
andN(x[n]|y) (solid line). All three measures are smoothed over a window of size 11 ms at each time poinH@&pf|y) andN(x[n]|y)
fluctuate between 0.2 and 0.55 over the entire time interval and suggest no obvious synchronization between the ensembles, as expected
S(x[n]]y) increases during the interval 100 rig <150 ms and therefore suggests an increased synchronization between the ensembles
during this interval. This incorrect interpretation is a consequence of the increR6ein]) during the oscillatory burst, as explained in the
text.

by the numerator of Eq3), R(xX[n]), which increases during the SNR is approximately 2. A typical ensemble member pair
the oscillatory burst due to the increased distance &§m]  (S{n] solid, rX(n] dashegl is shown in Fig. &). The indi-

to its nearest neighbors during this interval. The denominatovidual ensemble members in Fig(ap do not reveal the

of Eq. (3), R(x{{n]ly), also increases during the interval of structure of the ERP, which is mostly hidden by the noise.
oscillatory behavior, though not enough to compensate foPnly after averaging an ensemble of these time series do the
the increase iR(x{[n]). Thus, the increase i8(x[n]|y) for ~ ERPs become apparent in Figthp From the ensemble-

this example is due to an increase Rix<[n]), not an in- averaged data, we conclude that both ensembles possess a
crease in the synchronization between the two ensemble8ontrivial response to the stimulus. We expect the synchro-
The synchronization measuf@x[n, 7]|y) (not shown de-  Nization measures will detect this type of _relatlonshlp, in
tects no interdependence between the two ensembles, as délich both ensembles respond to the stimulus simulta-

pected. In the next example we will not consix[n]|y).  neously, although at different frequencies.
To compute the synchronization between ensendbésl

r, we setr=1 andd=10 to reconstruct the state-space vec-
torsx[n] andyX[n] from ${n] andr¥n], respectively. In Fig.
We now consider the case where both ensembles resporadc) we plot H(x[n]|y) (dotted ling and N(x[n]|y) (solid
to the stimulus, but in different ways. In this example, aline). Both results fluctuate throughout the entire time inter-
high-frequency burst of oscillatory activity occurs #{n]  val. Neither measure accurately captures the interval of syn-
and a simultaneous lower-frequency burst of oscillatory acehronization between the two ensembles. We show
tivity occurs inrn] for 100 ms<n<150 ms and eackh.  T(x[n, 7]|y) for this example in Fig. 6. It clearly detects the
Sinusoidal noise is added to easfin] andri{n] such that interdependence betweesi{n] and r{n] when 100 ms

B. Simultaneous bursts

2 T T T T T 1.0 T T T T T 1.0

0.8 b
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FIG. 5. (a) A typical ensemble member pair from the oscillatory bursting ddfan] (solid line) and r{{n] (dashed ling The weak
oscillatory responses of both time series are mostly hidden in the rbis&he ensemble-averaged ERPsstjin] (solid line) and rin]
(dashed ling The oscillatory bursts, hidden in the pair @), are revealed here in the ensemble averaged E®RP$wo synchronization
measuresH (x[n]|y) (dotted ling andN(x[n]|y) (solid line), smoothed over a window of size 11 ms at each time point. Nektieim]|y)
nor N(x[n]|y) accurately captures the synchronization between the two ensemble for X050 ms.
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' ' ' ' ' ] experiment. The ECoG data were recorded from an awake
patient undergoing neurosurgery for tumor removal. The re-
cordings were done in accordance with UCSF human sub-
jects requirements and patient consent was obtained. Seven
carbon ball electrodegust under 3 mm in diametgwere
placed on the left hemisphere around the posterior extent of
the Sylvian fissure, near the known position of primary and
secondary auditory cortices. Two epidural electrodes served
as reference and ground for the differential amplifiers. The
analog signals were bandpass filtered in the amplifier be-
tween 0.1 and 250 Hz, amplified by “.Gand digitized at a

250

N
()]
(@)

X Time [ms]
o o
& o
e e e
1

S0 ] sampling rate of 2003 Hz with 16-bit resolution. The data
1 were subsequently high-pass filtered above 2.3 Hz using us-
o e ing a symmetrical finite-response filter and all epochs with
0 50 100 150 200 2350 detectable artifact were removed.
Y Time[ms] The stimuli consisted of short duratiaii80 m$ tones

. . o , occurring at two different frequencies. During the experi-
FIG. 6. The time-shifted synchronizatiof(x[n, 7]|y) applied o "the patient passively heard three 210-s blocks of tones

to the ensemble of oscillatory bursting data of FigT&(n, 7]ly)  \yhile watching a slide show. In the first and third blocks

was smoothed over a two-dimensional window of size 11 at eac%s% of the tones were at 500 Higtandards and 15% of the ’

time point. The solid diagonal line corresponds to the location Oftones were at 550 Haleviants. Tones occurred at a rate of

zero time lag. This measure detects the synchronization betweenth§2'5 Hz. In the second block, the standards were replaced
two ensembles for 100 msn<150 ms. by silences(i.e., only deviant tones occurrgdTraditional
event-related averages and time-frequency analyses revealed
<n<150 ms. Of the three synchronization measures appliedortical responses between approximately 25 ms and 250 ms
in this example, onlyT(x[n, 7]|y) detects the interdepen- from tone onset. As expected from previous scalp EEG and
dence between the two ensembles. In experimental data, vegimal studies, responses to standards were weak, responses
expect stimuli will evoke responses in different cortical lo- to deviants were stronger, and responses to deviants only
cations at different frequencies. Therefore, we will only usewere strongest. For a detailed description of the traditional
the synchronization measufiéx[n, ]|y) in our analysis of ECoG methods and results, sd47.
experimental ECoG ERP data, discussed in Sec. V. In the analysis that follows, we applied our synchroniza-
We now summarize the results of our computer simulation measureT(x[n, 7]|y) to three electrodes from the sec-
tions. We have shown in Sec. Il that the synchronizationond block of tonegdeviants only in which the evoked re-
measuresS(x[n]|y), H(x[n]|y), andN(x[n]]y), as well as  sponses were strongest. For convenience, we refer to the
our synchronization measufiéx[n, 7]|y), detect the nonlin- three electrodes a, B, andC. We considered times 125 ms
ear interdependence between an ensemble of measuremeptsceding the stimulus onset to 220 ms following the stimu-
constructed from coupled nonlinear Henon maps. In Sedus onset, chosek’=40 ensemble members, and set
IV A we showed thaS(x[n]|y) erroneously detects synchro- op(x{n+ 7]) in Eq.(12) to zero in what follows to obtain the
nization between two unrelated ensembles in one of whiclmost conservative measure. We did not average reference the
oscillatory bursts occur. In Sec. IVB we showed thatdata due to the small numberine) of electrodes. Therefore,
H(x[n]|y) andN(x[n]|y) fail to detect interdependence be- the shared reference electrode may artificially increase the
tween two related ensembles in which bursts of oscillatorysynchronization results. If this effect were important, we
activity occur. Our measurg&(x[n, »]|y) is the only measure would expect all electrode pairs to show strong synchroniza-
to behave correctly in the three examples we considered. tion for all time. We show below that the synchronization
We do not wish to suggest th&x[n]|y), H(x[n]|y), and  varies from strong to weak, and for some electrode pairs no
N(x[n]|y) are poor measures of synchronization. The refersynchronization was detected. Therefore, we assume that the
ences in Sec. | have shown the utility of these synchronizateference electrode only weakly effects the synchronization
tion methods applied to a variety of simulated and experifesults presented below.
mental data. Instead, we suggest that these measures are noin Fig. 7 we show the synchronization measure
useful for the particular time series of interest, in which os-T(X[n, 7]|y) for electrodesA andB. The solid diagonal line
cillatory bursts of activity occur in ensembles of short datadenotes the location of zero time lag. The vertical and hori-
sets. In the next section, we applyx[n, ]]y) to the time  zontal dashed lines denote the time of stimulus onset. From

series of interest: an ensemble of measurements collected fig. 7 it is clear that electrodesandB are synchronous. We

an ECoG ERP experiment. note thatA and B become strongly synchronous approxi-
mately 90 ms after the stimulus onset and that the duration of
V. APPLICATION: ECoG ERP the synchronization is longer iA than inB.

Next we show the synchronization between electrades

Having developed the synchronization measureandA in Fig. §a). It is clear thatC and A are synchronous
T(x[n, 7]|y) in Sec. Il B and applied it to simulated data in although less so thaA andB. The synchronization is elon-
Secs. Il and IV, we now apply it to data from an ECoG ERPgated in time along th€ direction, and the maximum syn-
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We can interpret these results in a qualitative manner con-
sistent with the physiology of the human neocortex. That the
synchronization follows the stimulus onset in Fig. 7 suggests
the synchronization between electrodesind B is induced
by the stimulus. The area of maximum synchronization in
Fig. 7 occurs at a physiologically reasonable temporal loca-
tion, approximately 90 ms after the stimulus onset, and the
closeness of the synchronization maximum to the diagonal
. suggests that electrodésand B are synchronous with zero
& WY BTy time lag. We may therefore make the hypothesis that the

‘ 2 stimulus activates the cortical regions below electrofes
andB simultaneously. This suggests that a common input—
perhaps from other cortical areas or deeper brain regions—

activates both cortical regions simultaneously. In this way we
T T can begin to map the cortical connectivity following a devi-
A Time [ms] ant auditory tone.
o ] We present two more simulated examples to help interpret

FIG. 7. The synchronization measuféx[n, ]|y) applied to  he synchronization results for electrod@sA andC, B. We
electrodesA and B from the ECoG ERP experimental data. peoqin hy noting that experimental ERPs are not precisely
T(x[n, 7]|y) was smoothed over a two-dimensional window of size ;e |scked to the stimulus onset. Different paths of action
11 at each time point. The solid diagonal line corresponds to th otential propagation, changing states of the subject, and in-
location of zero time lag. The horizontal and vertical dashed line erent experimental ’error will vary the time at Whi;:h the
correspond to the time of stimulus onset. For this figure there ar%RPS oceur. Althouah the time interval between the stimulus
ten evenly spaced contour levels from 0(@dite) to 0.19(black). S 9 . . .
Note the region of strong synchronization from 40<m$<<130 ms and Co_rtlcal response may vary, different Cortlcal regions
in A and 60 ms<n< 110 ms inB. may still be strongly synchro'nous. In both 'S|mulated ex-

amples that follow,s{n] consists of an oscillatory burst
50 ms in duration and centered at175 ms, whiler{n]
chronization occurs after the stimulus, near 130 m€ emd  consists of an oscillatory burst 100 ms in duration, also cen-

200

150

100

50

B Time [ms]

-50

LI o) L B B B B P

<
Q
| R B

100

90 ms inA. tered atn=175 ms. To eacls{n] andr{{n] we added sinu-
Finally in Fig. 8b) we show the synchronization soidal noise such that the SNR=10.
T(x[n,7]|y) between electrode€ andB. In this case, the To mimic the known variation in ERPs mentioned above,

synchronization is very weak. Thus, electrodeandB are  we consider two cases. In the first case, we include random
strongly synchronous? andA are weakly synchronous, and time shifts(up to £20 m3 in the location of the oscillatory

C andB are not significantly synchronous. bursts. We do this in such a way that, for e&chhe pair of
[T T T T T T [T T TS Iq' R R & i 2
200 ! g 200 : 2 g};, fe A
3 | e 3 : 8 Q.70 22 A B
C ! LB ] C ! RN S e
150 : 25" 7 . 150 ! w L Piwesst .
r !, - y . ] r : ]
100 e . A 100 AL 2 =
- _ ! QR o TP o r P ?, ?
£ 5 e s 1 £ x | . 1
g sof - B = 0P TH  E SO Ut gl 0l a2 ]
= L, - d o o § | = - ey I A » 4
S AT - R S T :
0__ _,____'__"__'_"__'__'____"____ O__ o ______'__"__'_"_'___'__'_"____
j i ] E 2R ]
+ v 1 r [P N 4
50" - -50F & g -
T < . ] ¥ ]
—100 5% & 8 ?{W“ A T S BT B =160 v??’.‘.g. {6 v ¥ v q oo 0w e iowenl sys pisd
—-100 -50 0 50 100 150 200 -100 -50 0 50 100 150 200
C Time [ms] C Time [ms]

(a) (b)

FIG. 8. The synchronization measuféx[n, z]|y) applied to electrodes from the ECoG ERP experimental data. In both figures,
T(x[n, n]|y) was smoothed over a two-dimensional window of size 11 at each time point. The solid diagonal line in both figures corresponds
to the location of zero time lag. The horizontal and vertical dashed lines in both figures correspond to the time of stimulus onset. For both
figures there are ten evenly spaced contour levels from @ite) to 0.19(black. (a) The synchronization measuféx[n, 7]|y) applied
to electrodesC and A from the ECoG ERP experimental data. Note that the synchronization is elongata@nd is weaker than the
synchronization between electrodgsandB. (b) The synchronization measuéx[n, 7]|y) applied to electrode€ andB from the ECoG
ERP experimental data. Note that the synchronization is weaker than the synchronization between the other electrode pairs.
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250 F b 250 F .
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FIG. 9. The synchronization measuFé&[n, »]|y) applied to shifted simulated data. In both figur&&[n, »]|y) was smoothed over a
two-dimensional window of size 11 at each time point. The solid diagonal line in both figures corresponds to the location of zero time lag.
For both figures there are ten evenly spaced contour levels from@1te) to 0.19(black). (a) The synchronization measuféx[n, 7]|y)
applied to uniformly shifted simulated data. The ensemblasdr consist of oscillatory bursts with the same center time. The oscillatory
bursts in each ensemble member 4in] andrXn] are shifted in time by the same amount, up to +20 ms, and in the same dirgbion.

The synchronization measuféx[n, »]|y) applied to randomly shifted simulated data. The ensenbbe®dr consist of oscillatory bursts
with the same center time. The oscillatory bursts in each ensemble membsef phandri{n] are shifted in time by different amounts, up
to £10 ms, and in different directions.

ensemble members{n] and rn] are time shifted by the by a common source. The weak synchronization between
same amount and in the same direction. Thus, although thelectrodesC and B may be due to randomly shifted ERPs;
time series are not precisely time locked to the stimulus, theyplthough both electrodes respond to the stimulus, they do so
are precisely time locked to each other. We refer to this typén an unrelated way. Finally, the intermediate synchroniza-
of shifting asuniform shifting In Fig. 9a) we show the tion between electrodeS and A may be due to a combina-
synchronization measuf&x[n, 7]|y) wherex{n] andy{n]  tion of uniform shifting and small, random shifting. Thus,
are the embeddings af[n] andr¥{n], respectively, and we this electrode pair may be weakly driven by a common
have setop(x{{n+7]) in Eq. (12) to zero. We note that source.

T(x[n, 7]ly) due to the uniformly shifted simulated data,

shown in Fig. Qa), is 'similar to the result for the experimen- VI. CONCLUSIONS

tal data shown in Figs. 7 and&; both results possess an

elongated region of synchronization centered near zero time In Sec. Il we adapted the ensemble formalism to three
shift. current synchronization measures and introduced a synchro-

For the second case of simulated data, the oscillatoryization measurd(x[n, 7]|y). We showed in Sec. IV that
bursts in the time series{n] andrn] are time shifted by T(x[n, 7]|y) is the most useful synchronization measure for
random amountgup to £10 ms). But in this example, the the application of interest in the present work: analysis of
time shifts for pairs of ensemble membeffn] andr{{n] are  data from electrode pairs in an ECoG ERP experiment. In
not necessarily the same. Thus, the time series are neith8ec. V we applied(x[n, ]|y) to three electrode pairs from
time locked to the stimulus nor to each other. We refer to thimsn ECoG ERP experiment and suggested relationships be-
type of shifting agandom shiftingAs abovex{n] andyXn]  tween the associated areas of cortex based on the similarity
are the embeddings af{n] andr'{n], respectively, and we to measures of simulated data of uniformly shifted and ran-
have setop(X{[n+7]) in Eq. (12) to zero. The synchroniza- domly shifted responses.
tion measureT(x[n, 7]|y) shown in Fig. @) reveals very ~ We note that inferring cortical connectivity from the
weak synchronization between the two randomly shifted enanalysis of electrode recordings is a very difficult task. Un-
sembles. HereT(x[n, 77]|y) allows one to draw the correct fortunately we cannot verify Whe_ther our synchronization
conclusion—if the two times series are neither time locked t@ny Othey results for the experimental data correspond to
the stimulus nor to each other, they are only weakly depenPhysical connectivity in the cortex. Future experiments in
dent. The two ensembles of time series are not independekthich the cortical connectivity is known or can be deter-
because both time series respond to the stimulus at approxpined independently could validate the relationship between
mately the same time. This simulated result shown in FigSynchronous electrodes and connected cortical regions.

9(b) is consistent with the weak synchronization found be-
tween electrode€ andB and shown in Fig. @).

The qualitative reasoning and simple simulations suggest
the following conclusions. The strong synchronization be- The authors would like to thank members of the Knight
tween electrodeg\ and B may be due to simultaneous or Laboratory for useful discussions. M.A.K. was supported by
uniformly shifted ERPs—this electrode pair may be driventhe National Science Foundation.
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