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Synchronization measures have become an important tool for exploring the relationships between time
series. We review three recently proposed nonlinear synchronization measures and expand their definitions in
a straightforward way to apply to an ensemble of measurements. We also develop a synchronization measure
in which nearest neighbors are determined across the ensemble. We compare these four nonlinear synchroni-
zation measures and show that our measure succeeds in physically motivated examples where the other
methods fail. We apply the synchronization measure to human electrocorticogram data collected during an
auditory event-related potential experiment. The results suggest a crude model of cortical connectivity.
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I. INTRODUCTION

The electrocorticogram(ECoG) is a measure of the elec-
tric potential on the cortical surface of the brain. Although of
higher spatial resolution than the scalp electroencephalogram
(EEG), the ECoG still records the summed activity from mil-
lions of individual neurons. In order to better understand the
relationships between microscopic neurons and macroscopic
electric potential recordings, the human neocortex(roughly
the outermost 3 mm of the brain) can be divided into func-
tional units called cortical macrocolumns[1]. Each macro-
column contains approximately 106 neurons and 1010 syn-
apses, which connect each neuron to neighboring neurons,
neighboring macrocolumns, and more distant regions of the
brain. Understanding the interactions between cortical mac-
rocolumns, although more tractable than the interactions be-
tween individual neurons, is still a demanding problem. In-
stead, relationships between pairs of electrodes—which
record activity summed over cortical macrocolumns—are
used to infer relationships between larger regions of the neo-
cortex.

The relationships between two time series recorded simul-
taneously from different electrodes have been investigated
with many techniques. These include measures of linear in-
terdependence, such as cross correlation[2], coherence[3,4],
and event-related coherence[5], and more recent measures
of nonlinear interdependence, such as mutual information
and synchronization[6,7]. Traditional information measures
have been shown to depend strongly on the embedding di-
mension and time delay for short EEG time series[8], al-
though clever, nonstandard techniques may overcome this
limitation [9]. Synchronization techniques are useful for the
analysis of short time series of noisy data, characteristic of
ECoG event-related potential(ERP) measurements.

Various synchronization measures have been developed.
These include identical synchronization[10], generalized

synchronization[11], phase synchronization[12], and syn-
chronization techniques robust to noisy data[6,13]. These
synchronization measures are generally applied to pairs of
time series from a single simulation or experiment. Here we
discuss the application of three well-known synchronization
measures to an ensemble of repeated measurements, as oc-
curs in the ECoG experiment of interest in the present work.
We find that these measures give erroneous results when ap-
plied to physically motivated, simulated data. To overcome
this limitation, we develop a synchronization measure in
which nearest neighbors are determined across the ensemble
of measurements, rather than within each individual en-
semble member.

This paper is organized as follows. In Sec. II A we restate
three well-known synchronization measures and define a
new synchronization measure in Sec. II B. In Secs. III and IV
we apply these measures to the unidirectionally coupled non-
identical Henon map and to model data of bursting oscilla-
tory activity, respectively. We show that only our synchroni-
zation measure succeeds in detecting the types of
interdependence expected in ECoG ERP experiments. In Sec.
V we apply the synchronization measure to actual human
ECoG data collected during an auditory ERP experiment and
suggest a simple model for the results. Finally, in Sec. VI we
summarize the results and present our conclusions.

II. INTERDEPENDENCE MEASURES

In this section we review three synchronization measures
from [6] and [8]. We apply each measure to an ensemble of
scalar time seriesskfng and rkfng, where the time indexn
=h1, . . . ,n8j and the ensemble indexk=h1, . . . ,k8j. Specifi-
cally, we think ofskfng andrkfng as the value of the electric
potential recorded simultaneously at two different electrodes
as a function of discrete timen. The physical timet is related
to the discrete timen by t=nDt+ t0 wheret0 is the initial time
and Dt is the sampling interval. Each ensemble memberk
represents a unique realization of the same experiment. The*Electronic address: aszeri@me.berkeley.edu
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synchronization measure is computed for each ensemble
member pair(i.e., skfng and rkfng with k fixed) and the re-
sulting synchronization values are averaged over the entire
ensemble.

The ensemble formalism is particularly useful for our ap-
plication of interest. Electrocorticogram measurements often
involve the response of the neocortex triggered by a specific
stimulus, for example an auditory tone. Typically in the ERP
experiments the response to the sensory stimulus is oscilla-
tory, weak, and of short duration(n8 is small). Therefore, an
ensemble of ERPs is recorded(with time referenced to the
stimulus onset) and various measures are averaged over the
ensemble to improve the signal to noise ratio. Physically,
ensemble averaging assumes that repetitive applications of
the stimulus activate similar pathways in the brain[14]. We
therefore expect that the ERP will begin at approximately the
same time—say, 100 ms—after each stimulus presentation.
We further assume that the response of the neocortex will
trace the same dynamics with each stimulus presentation. In
what follows we will show how this assumption is useful.

The synchronization measures require that we reconstruct
the state space of the systemxkfng=(skfng ,skfn
+tg , . . . ,skfn+sd−1dtg) and ykfng=(rkfng ,rkfn+tg , . . . ,rkfn
+sd−1dtg) for each pair of ensemble members[15]. Heret
denotes the delay time andd the embedding dimension,
which we assume are the same for both ensembles and all
ensemble members. The standard procedures for determining
t andd are demanding;t is often assigned to be the time of
the first minimum of the average mutual information, andd
is calculated through a false nearest-neighbor procedure[15].
Both of these calculations are questionable for short data sets
of noisy, nonstationary data, which are typical in ECoG ERP
experiments. Using[15] as a guide, we considered different
values oft andd, and found stable results.

A. Current synchronization measures

We now define three synchronization measures in current
use and discuss a simple method of ensemble averaging. The
first two synchronization measuresSsxfng uyd andHsxfng uyd
follow from [6]. Denote asnk,i the time indices of theN
nearest neighbors to the elementxkfng of the kth member of
the ensemble at timen. We note thatxkfng and its nearest
neighbors are all elements of thekth member of the en-
semble. Define the mean-squared Euclidean distance from
the elementxkfng to its N nearest neighbors as

Rsxkfngd =
1

N
o
i=1

N

sxkfng − xkfnk,igd2. s1d

Note thatRsxkfngd is a function of timen through xkfng.
Similarly, denote the time indices of the nearest neighbors to
ykfng asmk,i and define

Rsxkfnguyd =
1

N
o
i=1

N

sxkfng − xkfmk,igd2. s2d

Here, we calculate the average squared distance fromxkfng
to elements in the same ensemblek using the time indices
smk,id from ensembleykfng. Then we define

Ssxkfnguyd =
Rsxkfngd

Rsxkfnguyd
, s3d

which when averaged over ensembles yields

Ssxfnguyd =
1

k8
o
k=1

k8
Rsxkfngd

Rsxkfnguyd
. s4d

If the ensemblesx and y are synchronous at timen, then
Ssxfng uyd→1; if they are independent, thenSsxfng uyd,0.
HereSsxfng uyd is the first synchronization measure we con-
sider. We note that a variation of this measure, intended to
account for noisy data, can be found in[13].

Next we define the mean-squared distance fromxkfng to
every time point in the ensemblek:

R̄sxkfngd =
1

P − 1o
p=1

P

sxkfng − xkfpgd2, s5d

whereP=n8−sd−1dt. Then, from[6], define

Hsxkfnguyd = ln
R̄sxkfngd

Rsxkfnguyd
, s6d

which we average over the ensembles to obtain

Hsxfnguyd =
1

k8
o
k=1

k8

ln
R̄sxkfngd

Rsxkfnguyd
s7d

as the second synchronization measure. Finally, in[8] a
(nearly) normalized synchronization measure is proposed
which in our notation becomes

Nsxfnguyd =
1

k8
o
k=1

k8
R̄sxkfngd − Rsxkfnguyd

R̄sxkfngd
. s8d

Note thatNsxfng uyd is also ensemble averaged. Equations
(4), (7), and (8) are well-known synchronization measures
and are included here with a simple ensemble averaging
scheme. We apply each of these measures to simulated data
in Secs. III and IV.

Before introducing our synchronization measure, we illus-
trate how the nearest neighbors are chosen in the synchroni-
zation measuresSsxfng uyd, Hsxfng uyd, and Nsxfng uyd. In
Fig. 1(a) we show a typical ensemble memberskfng for the
ECoG ERP experiment discussed in detail in Sec. V. The
stimulus occurs at timet=0 ms. Note that before the stimu-
lus the measured voltage fluctuates between ±20 mV, while
after the stimulus an oscillatory burst occurs betweent
=30 ms andt=160 ms. After the oscillatory burst, the volt-
age returns to its prestimulus range.

We now discuss the procedure for finding nearest neigh-
bors to a point within the oscillatory burst. For illustrative
purposes, we embedded the ensemble memberskfng using
d=3 andt=10. We show this embedding,xkfng, in Fig. 1(b).
The point marked with an asterisk in Figs. 1(a) and 1(b) is
the same and corresponds to a point in the oscillatory burst
of skfng. Denote the time index of this point asn* . In Fig.
1(c) we show the local neighborhood ofxkfn*g, and we mark
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the five nearest neighbors toxkfn*g with triangles. It is clear
from Figs. 1(b) and 1(c) that the nearest neighbors toxkfn*g
lie immediately along the trajectory passing throughxkfn*g.
By excluding nearest neighbors within a local temporal win-
dow nearxkfn*g, we only succeed in selecting neighbors fur-
ther along this isolated trajectory. For this case, the trajectory
of a single ensemble member does not cover anything like an
attractor in the embedding space. Therefore neighbors along
the oscillatory burst must be defined with care. We show in
what follows that by considering neighbors across the en-
semble of measurements, we can—in this case—construct a
more representative picture of the underlying dynamics when
the data are available only in short data sets.

B. Synchronization measure

The method we propose is similar to those discussed in
[6] and[8]. But for the our synchronization measure, nearest
neighbors are chosen from across the ensemble of measure-
ments, rather than from within each individual ensemble
member. To illustrate this idea, we show in Fig. 2(a) ten
ensembles embedded usingd=3 and t=10. The darkest
curve in the figure is the single ensemble member shown in
Fig. 1(b). Now the element of ensemblek at time t=n* ,

xkfn*g, has a nearest neighbor in each ensemblel Þk. Notice
we do not include the nearest neighbor toxkfn*g in ensemble
k. Finding a single nearest neighbor toxkfn*g in each en-
semble l Þk, rather than throughout a single time series,
avoids the complications associated with serial correlations
of the data from short data sets. In general we denote the
time index of the nearest neighbor toxkfng in ensemblel as
nk,l and call this set of neighbors thenearest ensemble neigh-
bors to xkfng. In Fig. 2(b), we show the local neighborhood
of the pointxkfn*g; we mark the pointxkfn*g with an asterisk
and the ten nearest ensemble neighbors to this point with
triangles. Here the neighbors are chosen from across the en-
semble of measurements, rather than within each individual
ensemble member. Because we have assumed that the trajec-
tory of each ensemble member follows similar dynamics,
this method of determining neighbors is justified.

Now we define the synchronization measure. As in Sec.
II A we reconstruct the state spaces of the time seriesskfng
and rkfng to createxkfng and ykfng, respectively. For each
time point n of every ensemble memberk we calculate the
mean Euclidean distance fromxkfng to its k8−1 nearest en-
semble neighbors:

Dsxkfngd =
1

k8 − 1o
l=1

lÞk

k8

ixkfng − xlfnk,lgi. s9d

Here i ·i denotes the Euclidean distance, and thenk,l are the
time indices of the nearest ensemble neighbors toxkfng. We
also calculate the standard deviationsDsxkfngd of the mean
distance in Eq.(9). Similarly, denote the time indices of the
nearest ensemble neighbors toykfng as mk,l. Then compute
the following:

FIG. 1. (a) The electric potential of one ensemble member re-
corded by one electrode in the ECoG ERP experiment. The stimulus
occurs att=0 ms. Note the oscillatory burst between 30 ms and
160 ms. The asterisk marks a point on the oscillatory burst.(b) The
embedding of the times series in(a). We chosed=3 andt=10 for
illustrative purposes. The asterisk in this figure corresponds to the
asterisk in(a). (c) The local neighborhood of the point marked with
an asterisk in(b). The five nearest neighbors to this point are
marked by triangles. The nearest neighbors are temporally proximal
to the fiducial point because the data set is short.

FIG. 2. (a) Ten ensemble members embedded usingd=3 and
t=10. The thickest curve is the ensemble member shown in Figs.
1(a) and 1(b). The pointxkfn*g is marked with an asterisk.(b) The
local neighborhood of the pointxkfn*g. The thickest curve is the
trajectory ofxkfng. The pointxkfn*g is marked with an asterisk. The
thin curves are trajectories of nine other ensemble members. The
nearest ensemble neighbors are marked with triangles.
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Tsxkfnguyd =
1

k8 − 1o
l=1

lÞk

k8

Q„Dsxkfngd + sDsxkfngd

− ixkfng − xlfmk,lgi…, s10d

where Qs·d is the Heaviside step function. In Eq.(10) we
determine the distance fromxkfng to eachxlfmk,lg. If this
distance is less thanDsxkfngd+sDsxkfngd (i.e., the average
distance fromxkfng to its nearest ensemble neighbors plus
one standard deviation), thenylfmk,lg is a neighbor ofykfng
andxlfmk,lg is a neighbor ofxkfng. Thus, a neighbor ofxkfng
and ykfng shares the same ensemblel and time indexmk,l.
Call this neighbor ashared neighborof xkfng andykfng. By
summing the number of shared neighbors betweenxkfng and
ykfng and dividing by the total number of possible
neighbors—the number of ensemble membersk8 minus
one—we measure the synchronization between the two time
series at timen in Eq. (10). We average Eq.(10) over the
ensemble of measurements to yield

Tsxfnguyd =
1

k8
o
k=1

k8

Tsxkfnguyd. s11d

The measure(11) differs from the synchronization measures
in Eqs. (4), (7), and (8). In Eq. (11) we compute neighbors
from across the ensemble of measurements and determine
the fraction of shared neighbors between ensemblesy andx.
If for some time indexn this fraction approaches 1.0, then
we say that the synchronization between the two ensembles
is strong at timen. If this fraction approaches 0.0, then we
say that the synchronization is weak. We include the standard
deviationsDsxkfngd in Eq. (10) to extend the radius of the
neighborhood aroundxkfng; a stricter measure of synchroni-
zation results if we exclude this term. The interpretation of
Eq. (11) is somewhat clearer than the ratio of mean-squared
distances utilized in the synchronization methods of Sec.
II A. We show in Sec. IV A that the ratio of mean-squared
distances can be misleading in certain types of examples.

All of the measures we have discussed determine the
ensemble-averaged synchronization between ensemblesx
andy at a specific timen. In some applications—ECoG ex-
periments, for example—it may be important to investigate
time-delayed synchronization. An idea along these lines was
mentioned in[6]. In words, we would like to compare the
synchronization betweenxkfng and ykfmg when nÞm; i.e.,
we would like to know whetherxkfng at timen is related to
ykfmg at timem. To do so, we determine the time indicesmk,l

of the nearest ensemble neighbors toykfng. We then compute
the distance betweenxkfng and xlfmk,lg for each l Þk and
record the number of these points that lie close toxkfng, as in
Eq. (10). Now, we shift the time indicesmk,l by an integerh.
We then compute the distance betweenxkfn+hg andxlfmk,l

+hg for eachl Þk and record the number of these points that
lie close toxkfn+hg. Here we are comparingxkfn+hg at
time sn+hd to the time-shifted nearest ensemble neighbors
of ykfng at timen. Equation(10) is easily extended to include
time-shifted synchronization

Tsxkfn,hguyd =
1

k8 − 1o
l=1

lÞk

k8

Q„Dsxkfn + hgd + sDsxkfn + hgd

− ixkfn + hg − xlfmk,l + hgi…, s12d

whereh is an integer time shift. When the distance between
xkfn+hg and xlfmk,l +hg is less thanDsxkfn+hgd+sDsxkfn
+hgd for all l Þk, Tsxkfn,hg uyd=1.0. It is important to keep
in mind that themk,l are still based onykfng, although this is
lost in the notation of Eq.(12). The time shifting scheme is
essentially equivalent to delaying the ensembles before ap-
plying the measure defined in Eq.(11). We average Eq.(12)
over the ensemble to obtain

Tsxfn,hguyd =
1

k8
o
k=1

k8

Tsxkfn,hguyd. s13d

Equation (13) is the time-shifted, ensemble-averaged syn-
chronization between ensemblesx and y. Any of the syn-
chronization measures in Sec. II A could have been modified
to include time shifts, but we chose only to consider Eq.
(13). We note thatTsxkfn,hg uyd and Tsykfn,hg uxd measure
different quantities; in the former neighborhoods ofy are
examined inx, while in the latter neighborhoods inx are
examined iny. Determining the driver-response relationship
from the asymmetry of these two synchronization measure-
ments is not obvious. We refer the interested reader to[6]
and [7].

III. SIMULATED DATA: HENON MAP

To show that the ensemble formalism proposed in Secs.
II A and II B creates useful measures of synchronization, we
apply the four synchronization measures to the standard ex-
ample of the unidirectionally coupled nonidentical Henon
map [13]:

rkfng = 1.4 −rkfn − 1g2 + 0.3rkfn − 2g,

skfng = 1.4 −hkfngrkfn − 1g + s1 − kfngdskfn − 1gjskfn − 1g

+ 0.1skfn − 2g. s14d

Here, the ensemble members differ only in the initial values
of skfng andrkfng, which are chosen randomly but avoid the
fixed points of the system. The coupling strengthkfng was
assigned the value 0.9(strong coupling) when 100,n,150
and 0.0(no coupling) otherwise. We expect the synchroniza-
tion measures to detect the interdependence between the en-
semble membersskfng and rkfng only when the coupling is
strong (i.e., when 100,n,150). For this simulation we
fixed the number of ensemble membersk8 to 20 and chose
t=1, d=3 to reconstruct the state-space vectorsxkfng and
ykfng from skfng and rkfng, respectively. For the synchroni-
zation measures in Sec. II A, each ensemble member was
scaled to have zero mean and unit variance. In Fig. 3(a) the
synchronization measuresSsxfng uyd (dashed line), Hsxfng uyd
(dotted line), andNsxfng uyd (solid line) are shown. It is clear
that all three measures increase during the interval of nonlin-
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ear coupling between the two ensembles: 100,n,150. In
Fig. 3(b) we plot the time-shifted synchronization measure
Tsxfn,hg uyd. Again, the nonlinear coupling between the two
ensembles is clear and appears as the thin diagonal band in
the contour plot. From the location of the band in Fig. 3(b)
we conclude that ensemblesxkfng andykfng are synchronous
when 100,n,150; i.e., the two are coupled with no time
shift. The reader may wonder why the values ofTsxfn,hg uyd
are so small; in Fig. 3(b) the contour levels range from 0.0
(white) to 0.08 (black). This follows from the rather tight
definition we have adopted in Eq.(12) for the neighborhood
of xkfng. It may be profitable to relax this definition for very
noisy data.

IV. SIMULATED DATA: OSCILLATORY BURSTS

In this section we apply the synchronization measures of
Sec. II to simulated data. The simulated data are motivated
by observed ECoG ERP time series in which weak bursts of
oscillatory activity often occur. For example, an auditory
stimulus may evoke a 10-Hz burst in one cortical electrode,
followed by a 40-Hz burst in another cortical electrode. See
[16] for a further discussion. Our goal is to determine which
methods accurately detect this specific type of interdepen-
dence. We show in the examples that onlyTsxfn,hg uyd suc-
ceeds in detecting interdependent bursts of oscillatory activ-
ity occurring between two ensembles. For all of the
examples in this section, we set the total number of ensemble
members to 20sk8=20d and letn represent the physical time,
where the sampling intervalDn=Dt is 1 ms.

A. Bursting data versus noise

We start by considering the case where the two ensembles
of time series measurementsskfng and rkfng are unrelated.
Specifically, we simulate the case where one cortical elec-
trode measures a response to a stimulus while the other cor-
tical electrode does not. One would expect that all of the

synchronization measures will detect no interdependence be-
tween these two ensembles of measurements. However, we
show that the measureSsxfng uyd erroneously detects syn-
chronization between the ensembles and explain why this
occurs.

We constructskfng such that each ensemble member con-
sists of identical, weak bursts of oscillatory behavior when
100 ms,n,150 ms. Each ensemble member is further con-
structed from 200 sinusoids, where each sinusoid is assigned
a random uniformly distributed frequency(from 0 to
100 Hz) and random uniformly distributed phase(from −p
to p). We scale this sum of 200 sinusoids such that the ratio
of the oscillatory burst amplitude to the amplitude of the
summed sinusoids is approximately 2. We denote this ratio
of amplitudes the signal-to-noise ratio(SNR). Here the os-
cillatory bursts represent evoked responses while the sinuso-
ids act as noise. We shall refer to this type of noise assinu-
soidal noise. The ensemble members ofrkfng consist only of
sinusoidal noise(i.e., these ensemble members possess no
evoked responses.) We show an example of the individual
ensemble members in Fig. 4(a). Here the weak evoked re-
sponse ofskfng (solid line) is mostly hidden by the noise.
After averaging the time series over the ensembles, the
evoked response in ensembles and lack of response in en-
sembler become apparent in Fig. 4(b).

To calculate the synchronization between the two en-
sembles we choset=1 andd=10 to reconstruct the state-
space vectorsxkfng and ykfng from skfng and rkfng, respec-
tively. We expect all of the synchronization measures will
detect no synchronization between the two ensembles. In
Fig. 4(c) we plot the synchronization measuresSsxfng uyd
(dashed line), Hsxfng uyd (dotted line), andNsxfng uyd (solid
line). Both Hsxfng uyd and Nsxfng uyd fluctuate between 0.2
and 0.55 but possess no obvious structure suggestive of a
change in synchronization between the two ensembles.
Ssxfng uyd, though, suggests a doubling(from ,0.1 to
,0.25) in synchronization between the two ensembles dur-
ing the time of the oscillatory burst inskfng. This is caused

FIG. 3. Synchronization measures applied to the unidirectionally coupled nonidentical Henon map.(a) Three synchronization measures:
Ssxfng uyd (dashed line), Hsxfng uyd (dotted line), andNsxfng uyd (solid line). All of the measures are smoothed over a window of size 11 at
each time point. All three measures increase during the interval of nonlinear couplings100,n,150d between the chaotic time series.(b)
The time-shifted synchronization measureTsxfn,hg uyd smoothed over a two-dimensional window of size 11 at each time point. Note that the
planar axes show time along ensemblesy andx, respectively. In the contour plot, there are five evenly spaced contour levels, ranging from
0.0 (white) to 0.08(black). Unless defined otherwise, allTsxfn,hg uyd figures follow this gray-scale scheme. The diagonal line in the figure
corresponds to the location of zero time lag. The contour plot shows synchronization occurs with time shifth=0 during the time interval
100,n,150.

SYNCHRONIZATION MEASURES OF BURSTING DATA:… PHYSICAL REVIEW E 70, 011914(2004)

011914-5



by the numerator of Eq.(3), Rsxkfngd, which increases during
the oscillatory burst due to the increased distance fromxkfng
to its nearest neighbors during this interval. The denominator
of Eq. (3), Rsxkfng uyd, also increases during the interval of
oscillatory behavior, though not enough to compensate for
the increase inRsxkfngd. Thus, the increase inSsxfng uyd for
this example is due to an increase inRsxkfngd, not an in-
crease in the synchronization between the two ensembles.
The synchronization measureTsxfn,hg uyd (not shown) de-
tects no interdependence between the two ensembles, as ex-
pected. In the next example we will not considerSsxfng uyd.

B. Simultaneous bursts

We now consider the case where both ensembles respond
to the stimulus, but in different ways. In this example, a
high-frequency burst of oscillatory activity occurs inskfng
and a simultaneous lower-frequency burst of oscillatory ac-
tivity occurs in rkfng for 100 ms,n,150 ms and eachk.
Sinusoidal noise is added to eachskfng and rkfng such that

the SNR is approximately 2. A typical ensemble member pair
(skfng solid, rkfng dashed) is shown in Fig. 5(a). The indi-
vidual ensemble members in Fig. 5(a) do not reveal the
structure of the ERP, which is mostly hidden by the noise.
Only after averaging an ensemble of these time series do the
ERPs become apparent in Fig. 5(b). From the ensemble-
averaged data, we conclude that both ensembles possess a
nontrivial response to the stimulus. We expect the synchro-
nization measures will detect this type of relationship, in
which both ensembles respond to the stimulus simulta-
neously, although at different frequencies.

To compute the synchronization between ensembless and
r, we sett=1 andd=10 to reconstruct the state-space vec-
torsxkfng andykfng from skfng andrkfng, respectively. In Fig.
5(c) we plot Hsxfng uyd (dotted line) and Nsxfng uyd (solid
line). Both results fluctuate throughout the entire time inter-
val. Neither measure accurately captures the interval of syn-
chronization between the two ensembles. We show
Tsxfn,hg uyd for this example in Fig. 6. It clearly detects the
interdependence betweenskfng and rkfng when 100 ms

FIG. 4. Nonlinear synchronization measures applied to oscillatory bursting data versus noisy data.(a) A typical ensemble member from
the oscillatory bursting dataskfng (solid line) and the noisy datarkfng (dashed line). The weak oscillatory response inskfng between 100 ms
and 150 ms is hidden in the noise.(b) The ensemble-averaged ERPs of ensembles (solid) and ensembler (dashed). The oscillatory response
in ensembles for 100 ms,n,150 ms is apparent.(c) Three synchronization measures:Ssxfng uyd (dashed line), Hsxfng uyd (dotted line),
andNsxfng uyd (solid line). All three measures are smoothed over a window of size 11 ms at each time point. BothHsxfng uyd andNsxfng uyd
fluctuate between 0.2 and 0.55 over the entire time interval and suggest no obvious synchronization between the ensembles, as expected.
Ssxfng uyd increases during the interval 100 ms,n,150 ms and therefore suggests an increased synchronization between the ensembles
during this interval. This incorrect interpretation is a consequence of the increase inRsxkfngd during the oscillatory burst, as explained in the
text.

FIG. 5. (a) A typical ensemble member pair from the oscillatory bursting data:skfng (solid line) and rkfng (dashed line). The weak
oscillatory responses of both time series are mostly hidden in the noise.(b) The ensemble-averaged ERPs ofskfng (solid line) and rkfng
(dashed line). The oscillatory bursts, hidden in the pair of(a), are revealed here in the ensemble averaged ERPs.(c) Two synchronization
measures:Hsxfng uyd (dotted line) andNsxfng uyd (solid line), smoothed over a window of size 11 ms at each time point. NeitherHsxfng uyd
nor Nsxfng uyd accurately captures the synchronization between the two ensemble for 100 ms,n,150 ms.
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,n,150 ms. Of the three synchronization measures applied
in this example, onlyTsxfn,hg uyd detects the interdepen-
dence between the two ensembles. In experimental data, we
expect stimuli will evoke responses in different cortical lo-
cations at different frequencies. Therefore, we will only use
the synchronization measureTsxfn,hg uyd in our analysis of
experimental ECoG ERP data, discussed in Sec. V.

We now summarize the results of our computer simula-
tions. We have shown in Sec. III that the synchronization
measuresSsxfng uyd, Hsxfng uyd, and Nsxfng uyd, as well as
our synchronization measureTsxfn,hg uyd, detect the nonlin-
ear interdependence between an ensemble of measurements
constructed from coupled nonlinear Henon maps. In Sec.
IV A we showed thatSsxfng uyd erroneously detects synchro-
nization between two unrelated ensembles in one of which
oscillatory bursts occur. In Sec. IV B we showed that
Hsxfng uyd and Nsxfng uyd fail to detect interdependence be-
tween two related ensembles in which bursts of oscillatory
activity occur. Our measureTsxfn,hg uyd is the only measure
to behave correctly in the three examples we considered.

We do not wish to suggest thatSsxfng uyd, Hsxfng uyd, and
Nsxfng uyd are poor measures of synchronization. The refer-
ences in Sec. I have shown the utility of these synchroniza-
tion methods applied to a variety of simulated and experi-
mental data. Instead, we suggest that these measures are not
useful for the particular time series of interest, in which os-
cillatory bursts of activity occur in ensembles of short data
sets. In the next section, we applyTsxfn,hg uyd to the time
series of interest: an ensemble of measurements collected in
an ECoG ERP experiment.

V. APPLICATION: ECoG ERP

Having developed the synchronization measure
Tsxfn,hg uyd in Sec. II B and applied it to simulated data in
Secs. III and IV, we now apply it to data from an ECoG ERP

experiment. The ECoG data were recorded from an awake
patient undergoing neurosurgery for tumor removal. The re-
cordings were done in accordance with UCSF human sub-
jects requirements and patient consent was obtained. Seven
carbon ball electrodes(just under 3 mm in diameter) were
placed on the left hemisphere around the posterior extent of
the Sylvian fissure, near the known position of primary and
secondary auditory cortices. Two epidural electrodes served
as reference and ground for the differential amplifiers. The
analog signals were bandpass filtered in the amplifier be-
tween 0.1 and 250 Hz, amplified by 104, and digitized at a
sampling rate of 2003 Hz with 16-bit resolution. The data
were subsequently high-pass filtered above 2.3 Hz using us-
ing a symmetrical finite-response filter and all epochs with
detectable artifact were removed.

The stimuli consisted of short durations180 msd tones
occurring at two different frequencies. During the experi-
ment, the patient passively heard three 210-s blocks of tones
while watching a slide show. In the first and third blocks,
85% of the tones were at 500 Hz(standards) and 15% of the
tones were at 550 Hz(deviants). Tones occurred at a rate of
<2.5 Hz. In the second block, the standards were replaced
by silences(i.e., only deviant tones occurred.) Traditional
event-related averages and time-frequency analyses revealed
cortical responses between approximately 25 ms and 250 ms
from tone onset. As expected from previous scalp EEG and
animal studies, responses to standards were weak, responses
to deviants were stronger, and responses to deviants only
were strongest. For a detailed description of the traditional
ECoG methods and results, see[17].

In the analysis that follows, we applied our synchroniza-
tion measureTsxfn,hg uyd to three electrodes from the sec-
ond block of tones(deviants only) in which the evoked re-
sponses were strongest. For convenience, we refer to the
three electrodes asA, B, andC. We considered times 125 ms
preceding the stimulus onset to 220 ms following the stimu-
lus onset, chosek8=40 ensemble members, and set
sDsxkfn+hgd in Eq. (12) to zero in what follows to obtain the
most conservative measure. We did not average reference the
data due to the small number(nine) of electrodes. Therefore,
the shared reference electrode may artificially increase the
synchronization results. If this effect were important, we
would expect all electrode pairs to show strong synchroniza-
tion for all time. We show below that the synchronization
varies from strong to weak, and for some electrode pairs no
synchronization was detected. Therefore, we assume that the
reference electrode only weakly effects the synchronization
results presented below.

In Fig. 7 we show the synchronization measure
Tsxfn,hg uyd for electrodesA andB. The solid diagonal line
denotes the location of zero time lag. The vertical and hori-
zontal dashed lines denote the time of stimulus onset. From
Fig. 7 it is clear that electrodesA andB are synchronous. We
note thatA and B become strongly synchronous approxi-
mately 90 ms after the stimulus onset and that the duration of
the synchronization is longer inA than inB.

Next we show the synchronization between electrodesC
andA in Fig. 8(a). It is clear thatC andA are synchronous
although less so thanA andB. The synchronization is elon-
gated in time along theC direction, and the maximum syn-

FIG. 6. The time-shifted synchronizationTsxfn,hg uyd applied
to the ensemble of oscillatory bursting data of Fig. 5.Tsxfn,hg uyd
was smoothed over a two-dimensional window of size 11 at each
time point. The solid diagonal line corresponds to the location of
zero time lag. This measure detects the synchronization between the
two ensembles for 100 ms,n,150 ms.
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chronization occurs after the stimulus, near 130 ms inC and
90 ms inA.

Finally in Fig. 8(b) we show the synchronization
Tsxfn,hg uyd between electrodesC and B. In this case, the
synchronization is very weak. Thus, electrodesA andB are
strongly synchronous,C andA are weakly synchronous, and
C andB are not significantly synchronous.

We can interpret these results in a qualitative manner con-
sistent with the physiology of the human neocortex. That the
synchronization follows the stimulus onset in Fig. 7 suggests
the synchronization between electrodesA and B is induced
by the stimulus. The area of maximum synchronization in
Fig. 7 occurs at a physiologically reasonable temporal loca-
tion, approximately 90 ms after the stimulus onset, and the
closeness of the synchronization maximum to the diagonal
suggests that electrodesA andB are synchronous with zero
time lag. We may therefore make the hypothesis that the
stimulus activates the cortical regions below electrodesA
andB simultaneously. This suggests that a common input—
perhaps from other cortical areas or deeper brain regions—
activates both cortical regions simultaneously. In this way we
can begin to map the cortical connectivity following a devi-
ant auditory tone.

We present two more simulated examples to help interpret
the synchronization results for electrodesC, A andC, B. We
begin by noting that experimental ERPs are not precisely
time locked to the stimulus onset. Different paths of action
potential propagation, changing states of the subject, and in-
herent experimental error will vary the time at which the
ERPs occur. Although the time interval between the stimulus
and cortical response may vary, different cortical regions
may still be strongly synchronous. In both simulated ex-
amples that follow,skfng consists of an oscillatory burst
50 ms in duration and centered atn=175 ms, whilerkfng
consists of an oscillatory burst 100 ms in duration, also cen-
tered atn=175 ms. To eachskfng and rkfng we added sinu-
soidal noise such that the SNR=10.

To mimic the known variation in ERPs mentioned above,
we consider two cases. In the first case, we include random
time shifts(up to ±20 ms) in the location of the oscillatory
bursts. We do this in such a way that, for eachk, the pair of

FIG. 7. The synchronization measureTsxfn,hg uyd applied to
electrodesA and B from the ECoG ERP experimental data.
Tsxfn,hg uyd was smoothed over a two-dimensional window of size
11 at each time point. The solid diagonal line corresponds to the
location of zero time lag. The horizontal and vertical dashed lines
correspond to the time of stimulus onset. For this figure there are
ten evenly spaced contour levels from 0.01(white) to 0.19(black).
Note the region of strong synchronization from 40 ms,n,130 ms
in A and 60 ms,n,110 ms inB.

FIG. 8. The synchronization measureTsxfn,hg uyd applied to electrodes from the ECoG ERP experimental data. In both figures,
Tsxfn,hg uyd was smoothed over a two-dimensional window of size 11 at each time point. The solid diagonal line in both figures corresponds
to the location of zero time lag. The horizontal and vertical dashed lines in both figures correspond to the time of stimulus onset. For both
figures there are ten evenly spaced contour levels from 0.01(white) to 0.19(black). (a) The synchronization measureTsxfn,hg uyd applied
to electrodesC and A from the ECoG ERP experimental data. Note that the synchronization is elongated inC and is weaker than the
synchronization between electrodesA andB. (b) The synchronization measureTsxfn,hg uyd applied to electrodesC andB from the ECoG
ERP experimental data. Note that the synchronization is weaker than the synchronization between the other electrode pairs.
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ensemble membersskfng and rkfng are time shifted by the
same amount and in the same direction. Thus, although the
time series are not precisely time locked to the stimulus, they
are precisely time locked to each other. We refer to this type
of shifting as uniform shifting. In Fig. 9(a) we show the
synchronization measureTsxfn,hg uyd wherexkfng andykfng
are the embeddings ofskfng and rkfng, respectively, and we
have setsDsxkfn+hgd in Eq. (12) to zero. We note that
Tsxfn,hg uyd due to the uniformly shifted simulated data,
shown in Fig. 9(a), is similar to the result for the experimen-
tal data shown in Figs. 7 and 8(a); both results possess an
elongated region of synchronization centered near zero time
shift.

For the second case of simulated data, the oscillatory
bursts in the time seriesskfng and rkfng are time shifted by
random amounts(up to ±10 ms.) But in this example, the
time shifts for pairs of ensemble membersskfng andrkfng are
not necessarily the same. Thus, the time series are neither
time locked to the stimulus nor to each other. We refer to this
type of shifting asrandom shifting. As above,xkfng andykfng
are the embeddings ofskfng and rkfng, respectively, and we
have setsDsxkfn+hgd in Eq. (12) to zero. The synchroniza-
tion measureTsxfn,hg uyd shown in Fig. 9(b) reveals very
weak synchronization between the two randomly shifted en-
sembles. Here,Tsxfn,hg uyd allows one to draw the correct
conclusion—if the two times series are neither time locked to
the stimulus nor to each other, they are only weakly depen-
dent. The two ensembles of time series are not independent
because both time series respond to the stimulus at approxi-
mately the same time. This simulated result shown in Fig.
9(b) is consistent with the weak synchronization found be-
tween electrodesC andB and shown in Fig. 8(b).

The qualitative reasoning and simple simulations suggest
the following conclusions. The strong synchronization be-
tween electrodesA and B may be due to simultaneous or
uniformly shifted ERPs—this electrode pair may be driven

by a common source. The weak synchronization between
electrodesC and B may be due to randomly shifted ERPs;
although both electrodes respond to the stimulus, they do so
in an unrelated way. Finally, the intermediate synchroniza-
tion between electrodesC andA may be due to a combina-
tion of uniform shifting and small, random shifting. Thus,
this electrode pair may be weakly driven by a common
source.

VI. CONCLUSIONS

In Sec. II we adapted the ensemble formalism to three
current synchronization measures and introduced a synchro-
nization measureTsxfn,hg uyd. We showed in Sec. IV that
Tsxfn,hg uyd is the most useful synchronization measure for
the application of interest in the present work: analysis of
data from electrode pairs in an ECoG ERP experiment. In
Sec. V we appliedTsxfn,hg uyd to three electrode pairs from
an ECoG ERP experiment and suggested relationships be-
tween the associated areas of cortex based on the similarity
to measures of simulated data of uniformly shifted and ran-
domly shifted responses.

We note that inferring cortical connectivity from the
analysis of electrode recordings is a very difficult task. Un-
fortunately we cannot verify whether our synchronization(or
any other) results for the experimental data correspond to
physical connectivity in the cortex. Future experiments in
which the cortical connectivity is known or can be deter-
mined independently could validate the relationship between
synchronous electrodes and connected cortical regions.
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FIG. 9. The synchronization measureTsxfn,hg uyd applied to shifted simulated data. In both figures,Tsxfn,hg uyd was smoothed over a
two-dimensional window of size 11 at each time point. The solid diagonal line in both figures corresponds to the location of zero time lag.
For both figures there are ten evenly spaced contour levels from 0.01(white) to 0.19(black). (a) The synchronization measureTsxfn,hg uyd
applied to uniformly shifted simulated data. The ensembless and r consist of oscillatory bursts with the same center time. The oscillatory
bursts in each ensemble member pairskfng andrkfng are shifted in time by the same amount, up to ±20 ms, and in the same direction.(b)
The synchronization measureTsxfn,hg uyd applied to randomly shifted simulated data. The ensembless and r consist of oscillatory bursts
with the same center time. The oscillatory bursts in each ensemble member pairskfng andrkfng are shifted in time by different amounts, up
to ±10 ms, and in different directions.
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