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The stochastic partial differential equations (SPDEs) stated by Steyn-Ross and co-workers
constitute a model of mesoscopic electrical activity of the human cortex. A simplification in
which spatial variation and stochastic input are neglected yields ordinary differential
equations (ODEs), which are amenable to analysis by techniques of dynamical systems
theory. Bifurcation diagrams are developed for the ODEs with increased subcortical
excitation, showing that the model predicts oscillatory electrical activity in a large range of
parameters. The full SPDEs with increased subcortical excitation produce travelling waves
of electrical activity. These model results are compared with electrocortical data recorded at
two subdural electrodes from a human subject undergoing a seizure. The model and
observational results agree in two important respects during seizure: (i) the average
frequency of maximum power, and (ii) the speed of spatial propagation of voltage peaks. This
suggests that seizing activity on the human cortex may be understood as an example of
pathological pattern formation. Included is a discussion of the applications and limitations of
these results.
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1. INTRODUCTION

Over 50 million people worldwide suffer from epilepsy, a
debilitating condition of chronic unprovoked seizures.
There exist many different classifications of seizures
(e.g. simple partial seizures, complex partial seizures,
generalized seizures), yet all seizures share the general
characteristic of inducing ahyperexcitation of the cortex
(the outer fewmillimetres of the brain). Themicroscopic
behaviour of individual cortical neurons during this
hyperexcitation is well documented and is the basis for
some drug treatments. However, comprehensive micro-
scopic recordings are infeasible, especially in human
patients. Therefore, physicians record the macroscopic
electrical behaviour of the seizing human cortex and
collect the scalp electroencephalogram (EEG) and
electrocorticogram (ECoG). At this macroscopic level,
which involves interactions between millions of individ-
ual neurons, cortical seizures are less well understood
(Quyen et al. 2003).

In this paper, we describe a model of the mesoscopic
electrical behaviour of the seizing human cortex. We
employ a recently developed continuum model of
cortical electrical activity, which consists of a system
of stochastic partial differential equations (SPDEs;
Steyn-Ross et al. 2003). These SPDEs (and the related
ordinary differential equations; ODEs) have been
successfully applied to study the electrical properties
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of the anaesthetized human cortex (i.e. the anaestheto-
dynamicmodel of cortical function). In a series of papers,
Steyn-Ross and colleagues showed that the model
equations predict changes in the scalp EEG of anaes-
thetized patients consistent with experimental results
(Steyn-Ross et al. 1999, 2001a,b, 2003).

Here, we consider whether these SPDEs can model
the mesoscopic electrical behaviour recorded from the
human cortex during a seizure. Our methods differ from
previous discussions. We do not assume that some
variables equilibrate much faster than others (the slow-
membrane or adiabatic approximation; Steyn-Ross
et al. 1999), nor do we apply techniques of stochastic
calculus (such as the Ornstein–Uhlenbeck equation) to
the linearized SPDEs (Steyn-Ross et al. 2003). Instead,
we approach the SPDEs from a dynamical systems
perspective and employ ideas and tools from bifur-
cation theory. We show that in some parameter
regimes, the SPDEs predict pathological oscillatory
behaviour—characterized by a bifurcation to a large-
amplitude, coherent travelling wave against a back-
ground of spatio-temporal fluctuations—in some
important ways consistent with ECoG recordings
from the seizing cortex.

The organization of this paper is as follows. In §2, we
discuss clinical ECoG data recorded at two subdural
electrodes from a human subject during his typical
complex partial seizures. In §3, we review the model
equations, the dimensionless SPDEs we use here, and
the variable of principal interest: the excitatory mean
q 2005 The Royal Society
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soma potential he. In §4, we consider a simplified
version of the SPDEs that possesses neither spatial
variance nor stochastic input; we call this system the
dimensionless ODEs. In §§4.1 and 4.2, we compute
bifurcation diagrams for the dimensionless ODEs at
two different parameter values. We show that in both
cases oscillatory activity (as expected during a seizure)
occurs. For typical parameter values, the oscillatory
activity is unstable and short-lived. For other par-
ameter values (which may be consistent with the
seizing cortex), the oscillatory activity is stable and
long-lived. In §5, we analyse the complete dimension-
less SPDEs. We show that results from this system
agree qualitatively with results from the simpler
dimensionless ODEs, and that travelling wave solutions
exist. In §6, we compare the model solutions with the
experimental recordings, and in §7, we discuss these
results.
2. OBSERVATIONAL DATA: ECoG SEIZURE
RECORDINGS

The cellular mechanisms of a seizure have been
extensively studied and some general microscopic
characteristics have been deduced (Dichter & Ayala
1987). Preceding a seizure, thousands of individual
neurons in the seizure focus (the brain region where a
seizure begins, also known as the epileptogenic zone)
undergo depolarization shifts followed by an after-
hyperpolarization. As long as this behaviour is confined
to the seizure focus, there may be no clinical manifes-
tation (although this synchronous activity can be
detected as an interictal spike or a sharp wave in the
EEG or ECoG). Gradually, as the seizure develops, the
magnitude of the afterhyperpolarization decreases and
individual neurons generate nearly continuous action
potentials. The inhibition surrounding the seizure focus
weakens, the seizure spreads to other cortical neurons,
and a clinical seizure occurs. Here, we will not consider
this microscopic behaviour of individual neurons, nor
will we consider ictogenesis (the initiation of the
seizure, which may occur in deeper brain regions).
Instead, we investigate the mesoscopic characteristics
of seizure activity on the cortical surface as made
manifest in subdural ECoG recordings.

Large amounts of ECoG data are often recorded
from the seizing cortex (i.e. ictal data) as part of clinical
care of patients with intractable epilepsy. These
patients whose seizures do not respond well to drug
treatments may undergo surgery to remove a region of
cortex that is believed to contain the seizure focus. Such
resective surgery offers a chance to eliminate or
ameliorate the seizures. In the process of planning
such surgery, clinicians must accurately locate the
seizure focus, and identify any surrounding areas of
functional cortex that should be preserved to minimize
post-operative deficits. If necessary, to define the
seizure focus more precisely with respect to structural
and functional anatomy, clinicians may implant sub-
dural electrodes on the brain surface for extended time
periods (typically one week) to obtain recordings
during seizures and locate the seizure onset. The
electrodes are placed over the region of cortex suspected
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to contain the seizure focus based on: (i) semiologic
features of the patient’s seizures (i.e. the observable
features of the seizure, such as eye deviation or limb
jerking), (ii) scalp EEG recordings made during typical
seizures, (iii) abnormalities observed in the ECoG
recorded intraoperatively at the time of electrode
implantation (i.e. interictal recordings), or (iv)
abnormalities seen on brain images. After the electro-
des are implanted and the patient experiences his or her
typical seizures, physicians locate the seizure focus
through visual analysis of the ECoG recordings and
formulate the surgical plan.

In this paper, we consider data collected from a
49-year-oldmalewhohad electrode implantation as part
of his care at the University of California, San Francisco
(UCSF) Epilepsy Center. He had medically refractory
complex partial seizures that began with staring and
manual automatisms and frequently generalized into
convulsions. Prior scalp EEG recordings had suggested
that his seizures originated in the right temporal lobe,
but MRI showed left mesial temporal sclerosis, raising
the possibility that his seizures arose from the left
temporal lobe instead. To better lateralize seizure onset,
subdural and depth electrodes were implanted, with
subdural electrode strips placed over the left and right
lateral frontal regions and the left and right subtemporal
regions. In addition, bilateral hippocampal depth
electrodes were placed, although we will not discuss
these hippocampal recordings here. Each subdural
electrode strip contained six 4 mm diameter platinum–
iridium discs arrayed in a single row, embedded in a
1.5 mm thick silastic sheet with 2.3 mm diameter
exposed surfaces and 10 mm spacing between the discs.
After electrode implantation, the patientwas brought to
the video–telemetry unit, where his antiseizure medi-
cations were slowly withdrawn. ECoG data were
recorded continuously at 400 Hz from all electrodes for
5.5 days. During this time, observations of eight typical
seizures were captured. These recordings were of good
quality andwere determined, based on clinical review by
board-certified clinical neurophysiologists, to show
seizure onset from right medial temporal regions, with
a pattern characteristic of seizures arising from this
region. The patient went on to have a right anterior
temporal lobectomy based on these clinical data.

ECoG epochs containing six of the patient’s seizures
were extracted from the clinical record and reviewed for
research purposes in accordance with UCSF and
University of California, Berkeley human subjects
guidelines. (Two of the seizure data files were corrupted
and no longer available for extraction.) In figure 1,
we show ECoG data leading up to and during a seizure
recorded at two neighbouring subdural electrodes
above the right lateral frontal region. We refer to
the time-series recorded at these two electrodes as
X (lower curve) and Y (upper curve). The ECoG data
shown in this figure possess three notable features.
First, we observe that large-amplitude voltage oscil-
lations occur during the seizure (tO17.5 s). We
determine the frequency of these oscillations by
computing the windowed power spectrum (WPS) of X
and Y. To compute the WPS, we partition the 50 s of
data plotted in figure 1 into 100 overlapping windows of
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Figure 1. ECoG data recorded at two neighbouring subdural electrodes (separated by 10 mm) located on the surface of the right
lateral frontal lobe. We label the time-series X (lower trace in each figure) and Y (upper trace in each figure). To ease visual
comparison we subtract 400 mV fromX and add 400 mV toY. (a) Here, we show 50 s of ECoG activity recorded at two electrodes.
There are three regions of ECoG activity: normal ECoG activity (0 s!t!14 s), followed by voltage suppression (14 s!t!
17.5 s), and seizure (tO17.5 s). (b) Here, we show the data from (a) for 22 s!t!32 s. We note that initially oscillations in X and
Y have the same shape, and that oscillations in X are of larger magnitude and appear to precede those in Y. For tO27 s the
relationship between X and Y becomes more complicated.
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Figure 2. The windowed power spectra (WPS) for the two ECoG time-series shown in figure 1. Here, subfigures (a) and
(b) correspond to the time-series X and Y in figure 1, respectively. The WPS are plotted in logarithmic greyscale with black and
white denoting regions of high power (greater than 30 mV2) and low power (less than 0.03 mV2), respectively. The vertical line in
the figure at tZ17.5 s denotes the approximate onset of seizure.
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1.0 s duration and 0.5 s overlap. For example, the first
window includes data for 0.0 s%t%1.0 s, the second
0.5 s%t%1.5 s, the third 1.0 s%t%2.0 s and so on.
We then multiply the data in each window by the
Hanning function and compute the power spectrum.
We plot the WPS results for X and Y in figure 2a,b,
respectively. The horizontal axis in each figure corres-
ponds to the centre times of the windows, and the solid
vertical line to the time of seizure onset. We note, in the
seconds preceding the seizure, the suppression of power
J. R. Soc. Interface (2005)
at both electrodes for all frequencies. After seizure
onset, the regions of largest power occur at frequencies
between 1 and 10 Hz. The second notable feature in the
observed data is the abrupt transition from normal
ECoG activity (for t!14 s) to seizing activity (for
tO17.5 s). This can be observed both in the original
time-series data (figure 1a) and in the WPS (figure 2).
Lastly, we find that the oscillations recorded at the two
electrodes are slightly out of phase. One may deduce
this conclusion directly from figure 1b; we note that
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Figure 3. The windowed cross-correlation between the two ECoG time-series shown in figure 1. The WCC are plotted in linear
greyscale with regions of strong correlation (greater than 0.8) and anticorrelation (less than K0.8) denoted by black and white,
respectively. The vertical line in the figure at tZ17.5 s denotes the approximate onset of seizure. The horizontal line in the figure
denotes the zero lag.
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peaks in the oscillations in X (lower trace) appear to
precede those in Y (upper trace) until tz29 s. At this
point, the relationship between the two time-series
becomes more complicated. To determine how the
phase relationship between these two electrodes
changes over time, we compute the windowed cross-
correlation (WCC). In a manner similar to the WPS
calculation, we partition the data into overlapping
windows and compute the cross-correlation between X
and Y in each window. We show the results in figure 3.
Following seizure onset (denoted by the vertical line in
the figure), two regions of strong correlation occur:
the first from 17.5 s!t!27 s, and the second from
28 s!t!50 s. In the first region, X leads Y (i.e. the lag
time is positive) while in the second region, X lags Y
(i.e. the lag time is negative but near zero). In §6, we
quantify the WPS and WCC results for six seizures
recorded from the subject. We compare these results
with the solutions to the SPDEs, discussed in §3.
3. MODEL: DIMENSIONLESS SPDEs

An ideal model of the human cortex would describe the
electrical behaviour of each individual neuron and its
surrounding extracellular environment. This discrete
model—applied over the entire three-dimensional
cortex—would contain over 1010 dynamical variables
and would be intractable. Fortunately, the physiology
of the cortex (e.g. dense local connections) and
numerous experimental results suggest that neurons
act in populations or assemblies (Singer 1993; Singer &
Gray 1995). Moreover, most methods for observing the
human cortex (e.g. the ECoG time-series of interest in
this work) record the summed electrical activity from
populations of order 105 cortical neurons (Nunez 1995).
For these reasons, researchers have developed conti-
nuum models of cortical electrical activity.

Such continuum models are not new; some of the
earliest were developed by Freeman (1964) and
J. R. Soc. Interface (2005)
Wilson & Cowan (1972, 1973). Here, we utilize the
system of SPDEs stated by Steyn-Ross et al. (2003).
These SPDEs were introduced in Steyn-Ross et al.
(1999), where the authors included stochastic input to
the system of PDEs first stated by Liley et al. (1999).
To develop this model, Liley et al. (2002) considered a
spatially averaged approximation to the human
cortex. Microscopic elements (like individual neurons)
were averaged over columnar volumes (perpendicular
to the cortical surface) whose diameter was chosen to
lie below the spatial resolution of EEG or ECoG
recordings. The resulting mesoscopic model (with the
addition of stochastic input) consists of 14 coupled,
nonlinear SPDEs (Steyn-Ross et al. 2003).

By solving the SPDEs in Steyn-Ross et al. (2003)
numerically, one computes solutions for all 14 variables
as functions of space and time. One of these variables,
he, is the spatially averaged excitatory soma membrane
potential. Researchers have demonstrated that the
deviation of he from rest is proportional to the sign-
reversed value of the extracellular local field potential
(LFP). Because the ECoG represents the spatially
averaged LFP, we assume that he is linearly related to
the ECoG (Liley et al. 2002). In this way, the model
variable he is related to the observational ECoG data. In
what follows, we compare he calculated in numerical
solutions to the SPDEs with ECoG data recorded
during seizure. We show that increasing the subcortical
excitatory input to the model cortex produces be-
haviour in he that mimics ECoG data recorded from the
seizing cortex.

In appendix A, we discuss a procedure to non-
dimensionalize the SPDEs and associated functions.
The main advantage of recasting the equations in
dimensionless form is a reduction in the number of
parameters. There are 20 parameters in the dimen-
sionless SPDEs whereas in the original SPDEs there
are 29. We define each dimensionless variable and
parameter in terms of its dimensional counterparts



Table 1. Dynamical variable definitions for the dimensionless
SPDEs neural macrocolumn model.
(The dimensionless variables (left column) are defined in
terms of the dimensional symbols (middle column) found in
table 1 of Steyn-Ross et al. (2003). The variables are described
in the right column. Subscripts e and i refer to excitatory and
inhibitory.)

symbol definition description

~he;i he,i/h
rest population mean soma

dimensional electric
potential

~I ee;ie Iee,iege/(Geexp(1)S
max) total e/e, i/e input

to excitatory synapses
~I ei;ii Iei,iigi/(Giexp(1)S

max) total e/i, i/i input to
inhibitory synapses

~fe;i fe,i/S
max long range

(corticocortical) input
to e, i populations

~t t/t dimensionless time

~x x=ðt~vÞ dimensionless space
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from Steyn-Ross et al. (2003) in tables 1 and 2,
respectively. In what follows, we study a simplified
ODE version of the dimensionless model in §4, and
compute numerical solutions to the complete dimen-
sionless SPDE model in §5. Readers less interested in
the mathematical details may like to skip to §6 where
we compare the model solutions and observational
results.
4. SIMULATIONS: DIMENSIONLESS ODEs

Our goal is to determine whether the dimensionless
SPDEs in equation (A 1a–h) can be used to model the
mesoscopic electrical activity observed on the seizing
cortical surface, as discussed in §2. However, the size of
the system (14 first-order differential equations and 20
parameters), the stochastic input in equation (A 1c–f )
and the spatial dependence in equation (A 1g,h) make
this a challenging model. Therefore, to gain what
insight we can from a simpler model, we ignore for the
moment the spatial dependence and stochastic input in
equation (A 1a–h). The resulting equations form a
system of ODEs, which we call the dimensionless
ODEs. Although there are many tools available for
the study of ODEs, we use AUTO (continuation and
bifurcation software for ODEs) to determine fixed
points, their stability type, limit cycles and bifurcations
in the phase portraits (Doedel et al. 2000).

During a seizure, the cortex typically enters a state
of hyperexcitation, manifest in ECoG data through
large-amplitude oscillations (Niedermeyer & DaSilva
1999). This activity corresponds to spatially coherent
oscillations in the variable he. In this direction, we
investigate whether oscillations in he occur in the
dimensionless ODEs owing to changes in the excitatory
parameters. We note that different types of seizures
produce different oscillatory patterns in EEG and
ECoG recordings (Spencer et al. 1992; Ebersole &
Pacia 1996). Here, we seek to model the seizing cortex
in a qualitative way suggestive of the typical ECoG
J. R. Soc. Interface (2005)
data shown in figure 1. Specifically, we require that:
(i) the model produces stable oscillations in he, (ii) the
frequency of the oscillations agree (roughly) with
clinical observations, and (iii) the transition to oscil-
latory behaviour occurs abruptly.

The general statement that increased excitation (or
decreased inhibition) incites cortical seizure activity
masks the numerous associated physiological changes
that occur in the seizing neuronal assemblies (Dichter &
Ayala 1987; Morimoto et al. 2004). At the cellular level,
these physiological changes are observed in experiment
and can be compared to results computed from detailed
computational models of a single neuron (Traub et al.
2001). It is not clear how the cellular mechanisms or
single neuron models relate to mesoscopic seizure
recordings or continuum models. Seizures induced in
animal models allow mesoscopic ECoG recordings and
some control over parameters related to continuum
models. For example, Freeman (1992) discusses elec-
trocortical data recorded from a seizing animal’s
olfactory bulb. He compares these recordings with his
KIII model of the olfactory system and finds that a
parameter connecting excitatory subsets of the model
must increase to induce seizures. Analogies between
such animal models and human seizure activity can be
made but, as for the cellular models, these relationships
are not clear.

In our analysis, we vary only two parameters, Pee

and Ge, both related to the excitation of the model. We
choose these parameters for two reasons. First, as
mentioned previously, the general claim that increased
excitation incites seizures is well known. Thus, we
select two parameters related to the excitation of the
model. Second, an increase in the level of the membrane
potential of a neuronal population is thought to be an
important control factor in inducing seizures (Dichter
& Ayala 1987; da Silva et al. 2003). We show that
increases in Ge raise the excitatory mean soma potential
he of the stable fixed points. A similar result holds for
Pee but is not shown. We fixed the remaining 18
dimensionless parameters at the typical values shown
in table 2. In terms of dimensional variables, the
dimensionless parameterPee is: (i) directly proportional
to pee (the subcortical excitatory spike input to the
excitatory neurons of the cortex), and (ii) inversely
proportional to Smax (the maximum firing rate induced
by the soma voltage). Thus, an increase in Pee

represents either an increase in the subcortical exci-
tation of the cortex or a decrease in the maximum firing
rate. To model an increase in excitatory input (from a
subcortical region, such as the thalamus) to the cortex,
the parameter Pee is increased. The dimensionless
parameter Ge is: (i) directly proportional to Smax and
Ge (the peak excitatory postsynaptic potential; EPSP),
and (ii) inversely proportional to ge (the EPSP
neurotransmitter rate constant) and jhreve Khrestj (the
magnitude of the difference between the excitatory
reversal and resting potentials). Thus, an increase in Ge

represents either an increase in peak EPSP amplitude
or maximum firing rate, or a decrease in the difference
between the excitatory reversal and resting potentials
or the EPSP neurotransmitter rate constant. The latter
corresponds to an increase in the EPSP duration. We



Table 2. Parameter values for the dimensionless SPDEs neural macrocolumn model.
(The dimensionless symbols (first column) are defined in terms of the dimensional variables (second column) found in table 1 of
Steyn-Ross et al. (2003). The variables are described in the third column and typical values are shown in the fourth column.)

symbol definition description typical value

e, i (as subscript) excitatory, inhibitory cell populations
Ge,i Ge;iexpð1ÞSmax=ge;ijhreve;i Khrestj influence of input on the mean soma membrane values 1.42!10K3, 0.0774

h0e;i hreve;i =h
rest dimensionless cell reversal potential K0.643, 1.29

Te,i tge,i dimensionless neurotransmitter rate constant 12.0, 2.6
le,i t~vLee;ei dimensionless characteristic corticocortical inverse-length

scale
11.2, 18.2

Pee,ie pee,ie/S
max subcortical input to e population 11.0, 16.0

Pei,ii pei,ii/S
max subcortical input to i population 16.0, 11.0

Na
e;i — total number of synaptic connections from distant e

populations
4000, 2000

Nb
e;i

— total number of local e and i synaptic connections 3034, 536

~ge;i ge,i/h
rest dimensionless sigmoid slope at inflection point K19.6, K9.8

~qe;i qe,i/h
rest dimensionless inflection point for sigmoid function 0.857, 0.857
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note that the typical values of Pee and Ge are 11.0 and
1.42!10K3, respectively (see table 2).

It is perhaps easier to interpret the parameters Pee

and Ge directly from equation (A 1a–h). The parameter
Pee appears only in equation (A 1c). This parameter
controls the strength of the (non-stochastic) excitatory
subcortical input to excitatory neurons in the cortex.
The parameter Ge appears in equation (A 1a,b), and
controls the influence of excitatory input on the mean
soma membrane potentials. For example, when Ge is
large, the effect of the excitatory inputs (~I ee and ~I ei) on
the potentials (~he and ~hi) is increased. We will show
that solutions of the model equations agree qualitat-
ively with ECoG data recorded from the seizing cortex
when Pee is dramatically increased, and Ge is slightly
decreased.

In what follows, we compute bifurcation diagrams
and numerical solutions of the dimensionless ODEs
at two values of Pee. We first consider the results for
PeeZ11.0 (the typical value) and show that oscillations
in he occur but are unstable and short lived. We then
show that for PeeZ548.066 (nearly 50 times the typical
subcortical excitation), he undergoes large-amplitude,
stable oscillations, and that similar oscillations occur
over a wide range of parameter values. The results in
each case are compared with the clinical data discussed
in §2.
4.1. Example: dimensionless ODEs at PeeZ11.0

In the first example, we fix Pee at its typical
(dimensionless) value of 11.0 and vary the parameter
Ge. In figure 4a, we plot he for the fixed points of the
dimensionless ODEs versus the parameter Ge. Note that
in this figure, we plot the dimensional variable he (with
units mV), which is related to ~he by the scale factor
h0eZK70 mV. The solid lines and dashed line in
figure 4a correspond to the stable and unstable fixed
points of the dimensionless ODEs, respectively. We
note that an increase in Ge produces an increase in both
curves of the stable fixed point value of he (i.e. increased
steady-state values of the spatially averaged excitatory
soma membrane potential).
J. R. Soc. Interface (2005)
The S-shape and stability of the fixed points is
similar to that discussed in Steyn-Ross et al. (1999,
2003). In those works, the authors varied the (dimen-
sional) inhibitory neurotransmitter rate constant gi.
Here, the parameter Ge is inversely proportional to the
(dimensional) excitatory neurotransmitter rate con-
stant ge. We have found, but do not show, similar
bifurcation diagrams for the dimensional ODEs with
gi/gi/l or ge/gel and parameter l varied between
0.1 and 1.5.

In addition to the saddle–node bifurcations of fixed
points, the dimensionless ODEs at PeeZ11.0 also
undergo a Hopf bifurcation at GeZ1.20!10K3. (We
note that this represents a 15% decrease in the typical
value of GeZ1.42!10K3.) We mark this Hopf bifur-
cation in figure 4a with an asterisk. We are particularly
interested in Hopf bifurcations because, at a Hopf
bifurcation, the dynamics of he can change from
stationary behaviour to oscillatory behaviour. To
illustrate the oscillatory behaviour of he near the Hopf
bifurcation, we compute a numerical solution to the
dimensionless ODEs near the Hopf bifurcation at
GeZ1.21!10K3 and PeeZ11.0. We choose the initial
conditions so that the dynamics begin just outside the
basin of attraction of the stable fixed point and compute
the trajectory using a fourth-order Runge–Kutta
method with a time-step of 0.4 ms. We plot in
figure 4b (dimensional) he as a function of dimensional
time t. For 0 s!t!9.5 s, he oscillates at approximately
8 Hz. The amplitude of the oscillations steadily
increases until tZ9.5 s, at which point he abruptly
moves to the stable fixed point nearK84 mV. We show
this transition with finer resolution in figure 4c.

We have shown that for PeeZ11.0 the dynamics of
he undergo a Hopf bifurcation at GeZ1.20!10K3. Near
the Hopf bifurcation there exist transient oscillations in
he that increase in amplitude until the dynamics
undergo a transition to a stable fixed point near
K84 mV. We have not shown but note that adding
noise to the system decreases the time of the transient
oscillations. These unstable oscillations in he do not
mimic the electrical activity of the seizing cortex where
the oscillations maintain a large amplitude and are
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Figure 4. (a) Bifurcation diagram for the dimensionless ODEs at PeeZ11.0. As the dimensionless parameter Ge is varied, the
stable (solid lines) and unstable (dashed line) fixed points in he of the dimensionless ODEs are shown. The asterisk denotes the
Hopf bifurcation. There are two saddle–node bifurcations also visible in the figure. (b) Numerical solution to the dimensionless
ODEs at GeZ1.21!10K3 and PeeZ11.0, near the Hopf bifurcation shown in (a). Dimensional he is plotted as a function of
dimensional time t. The oscillations in he increase in amplitude until the oscillations cease and he/K84 mV. (c) The transition
from transient oscillatory motion in he to the fixed point at finer resolution.
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necessarily stable to incessant perturbations from other
cortical, as well as deeper, brain regions.
4.2. Example: dimensionless ODEs
at PeeZ548.066

Here, we consider an example more closely related to
the seizing cortex. To increase the excitation of the
model cortex, we fix PeeZ548.066 (nearly 50 times the
typical value). This can be interpreted as increased
excitatory input from deeper brain regions to the
cortex, say. As in §4.1, we vary the parameter Ge and
plot in figure 5a the bifurcation diagram in he for the
dimensionless ODEs. The solid lines and dashed line in
figure 5a correspond to stable and unstable fixed points
of the dimensionless ODEs, respectively, and the
asterisks to Hopf bifurcations. We note that an increase
in Ge produces an increase in both curves of stable
fixed points of he.

There are additional curves in figure 5a absent from
figure 4a. These curves indicate the extremal values and
stability type of the limit cycles born in the Hopf
bifurcations. The dash–dot lines in figure 5a represent
the maxima and minima of he achieved during a stable
J. R. Soc. Interface (2005)
limit cycle. The dotted lines represent the maxima and
minima of he achieved during an unstable limit cycle.
Thus, for 0.67!10K3!Ge!0.96!10K3, the dynamics
of he feature a stable limit cycle of large amplitude. We
note that a 32% decrease in the typical value of
GeZ1.42!10K3 is required to enter this range. The
stable, oscillatory behaviour of he satisfies one of our
criteria for modelling the seizing cortex.

To illustrate the stable oscillations in he for 0.67!
10K3!Ge!0.96!10K3, we compute a numerical sol-
ution to the dimensionless ODEs at GeZ0.96!10K3

and PeeZ548.066 using the fourth-order Runge–Kutta
method with a time-step of 0.4 ms. In figure 5b, we plot
he (with dimensions mV) as a function of dimensional
time t. After an initial transient, he is entrained by a
large-amplitude limit cycle with a dominant frequency
near 7.5 Hz. We note that these oscillations are
not sinusoidal. The frequency of the he oscillations
is qualitatively consistent with the clinical observations
from a seizing patient shown in figure 1.

The true environment of the human cortex is
continually changing, for example, in response to
sensory stimuli. Therefore, any model of the seizing
cortex must behave properly over a broad range of
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Figure 5. (a) Bifurcation diagram for the dimensionless ODEs
at PeeZ548.066. The parameter Ge is varied and the stable
(solid lines) and unstable (dashed line) fixed points in he are
shown. The asterisks denote the two Hopf bifurcations.
The dash–dot lines denote the maximum and minimum
values of he achieved during a stable limit cycle. The dotted
lines denote the maximum andminimum values of he achieved
during an unstable limit cycle. The branch of limit cycles is
born and dies in two subcritical Hopf bifurcations; two
saddle–node bifurcations of limit cycles lead to large-
amplitude stable oscillations with sudden onset. (b) Numeri-
cal solution to the dimensionless ODEs at GeZ0.96!10K3

and PeeZ548.066, near the rightmost Hopf bifurcation in (a).
Dimensional he is plotted as a function of dimensional time t.
The oscillations in he occur at a frequency near 7.5 Hz and are
stable to perturbations.
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Figure 6. The difference between the maximum and minimum
achieved by (the dimensional) he in solutions of the
dimensionless ODEs for parameters Pee and Ge. The difference
is plotted in linear greyscale with white representing a 0 mV
difference and black representing a 50 mV difference. The
dark region corresponds to stable oscillations of he and
broadens as Pee is increased. The parameter values used to
create figure 5b (GeZ0.96!10K3 and PeeZ548.066) are near
the centre of this figure.
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parameter values. Here, we require that oscillatory
activity in he occur over extended regions of the
parameters Pee and Ge. To confirm this, we compute
numerical solutions to the dimensionless ODEs for
11.0!Pee!1000.0 and 0.5!10K3!Ge!1.4!10K3

using the fourth-order Runge–Kutta method with a
time-step of 0.4 ms. We then determine the difference
between the maximum and minimum achieved by the
solution he after transient behaviour has decayed. If
he approaches a fixed point, then the maximum and
minimum are nearly equal and their difference
approaches zero. However, if he is entrained by a limit
cycle (e.g. figure 5b), then the difference between the
maximum and minimum achieved by he is non-zero.
In figure 6, we plot the difference between the maximum
J. R. Soc. Interface (2005)
and minimum achieved by he as a function of the
parameters Pee and Ge. The difference is plotted in
greyscale with white representing a 0 mV difference and
black representing a 50 mV difference. We find that
oscillations in he (represented by the dark regions in
figure 6) extend over a broad range of parameter values
beginning near PeeZ250.0 and GeZ1.3!10K3. These
regions of oscillatory activity in he illustrate the
parameter values at which the dimensionless ODEs
‘seize’. We have found that the Hopf bifurcation (and
thus the oscillatory activity) is born in a codimension
two bifurcation of the Takens–Bogdanov type at
PeeZ53.2 and GeZ2.98!10K3 (Kramer 2005). We
note that increasing Pee, and thus raising the sub-
cortical excitatory input to the model cortex, enlarges
the region of Ge over which oscillations in he occur.
5. SIMULATION: DIMENSIONLESS SPDEs

We have considered in some detail the dimensionless
ODEs. There is no direct conclusion that the analysis of
this simplified system allows one to draw for the full
dimensionless SPDEs. The stochastic inputs or the
spatially distributed dynamics may destroy the inter-
esting features we observed in the dimensionless ODEs.
We have shown in §4.2 that the dimensionless ODEs
undergo a Hopf bifurcation near PeeZ548.066 and

GeZ0.96!10K3, and that oscillations in he persist over
a broad region of parameter values. Here, we shall
examine whether the full dimensionless SPDEs
exhibit similar oscillatory behaviour. We will consider
three examples. For each example, we compute
numerical solutions to the dimensionless SPDEs using
the Euler–Maruyama algorithm with fixed steps in
space and time, 14 mm and 0.1 ms, respectively
(Higham 2001). We consider only one spatial dimension
~x; the system can now be visualized as describing a line
of closely spaced electrodes, such as the strip of
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Figure 7. Numerical solution to the dimensionless SPDEs with parameters: GeZ1.04!10K3, PeeZ548.066, and periodic
boundary conditions in space. Space (in mm) and time (in ms) are plotted along the horizontal and vertical axes,
respectively. (a) Here, aZ0.001. The value of he is plotted in linear greyscale over space-time with heZK65 mV in white and
heZK45 mV in black. There are no large-amplitude oscillations in he. (b) Here, aZ0.002. The value of he is plotted in linear
greyscale with heZK100 mV in white and heZ0.0 mV in black. Oscillations in he appear to start near 200 mm!x!300 mm,
and spread rapidly over the whole domain near tZ2000 ms. The waves travel to the right with an approximate speed of
2.2 m sK1 and temporal frequency of 10 Hz.
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subdural electrodes described in §2. In each example,
we enforce periodic boundary conditions in space, fix
Ge and a (representing the noisy input from subcortical
sources to the cortex) to be uniform in ~x and ~t, and vary
the spatial and temporal dependence of Pee. In the first
example, we set Pee to be uniform in space and time. In
the second, we set Pee to be Gaussian in space and
constant in time, while in the third, we set Pee to be
Gaussian in space and non-uniform in time. In §6, we
compare the results of these simulations and the clinical
seizure data.

We start by computing numerical solutions to
the dimensionless SPDEs at GeZ1.04!10K3 and
PeeZ548.066, near the parameter values used in §4.2.
In this example, both Pee and Ge are uniform in space
and time. We note that, at these parameter values, the
noise-free dimensionless ODEs are near the Hopf
bifurcation. In figure 5a, the simplified system would
be just to the right of the rightmost asterisk. In
figure 7a, we show the solution to the dimensionless
SPDEs with aZ0.001. In this figure, we plot (dimen-
sional) space on the horizontal axis, (dimensional) time
on the vertical axis, and the value of he in linear
greyscale; white corresponds to heZK65 mV, and
black to heZK45 mV. From this figure it is clear that
the value of he is approximately constant (near
K53 mV, the fixed point of the dimensionless ODEs)
in both space and time.

In figure 7b, we show the solution to the dimension-
less SPDEs with aZ0.002. Here, we have increased
the strength of the spatially uniform stochastic input,
and plotted he in linear greyscale with white corre-
sponding to heZK100 mV, and black to heZ0.0 mV.
Otherwise, the parameters, initial conditions and
plotting scheme are identical to those used to compute
and display the previous numerical solution. There are
two interesting features to note in figure 7b. First,
travelling waves are engendered in he. In the figure,
these are represented by repeated white and black
ridges inclined with respect to the horizontal. These
J. R. Soc. Interface (2005)
waves travel rapidly to the right with an approximate
speed of 2.2 m sK1 and oscillate in time with an
approximate frequency of 10 Hz. We compare this
wave speed and frequency with that derived for the
clinical data in §6. Second, these waves appear quite
abruptly (near tZ2000 ms) and show a high degree of
spatial organization, similar to the clinical seizure
data discussed in §2. Careful examination reveals
that the oscillations appear to be triggered near
200 mm!x!300 mm, and subsequently spread across
the whole domain.

Waves in continuum models of the human cortex are
not new. Steyn-Ross et al. (2003) investigate the
dimensional SPDEs and show that spatial modes
develop when the corticortical e/i diffusivity
dominates the corticortical e/e diffusivity. Jirsa &
Kelso (2000) show that spatio-temporal patterns
(reminiscent of the seizing cortex) occur in a continuum
model of cortical electrical activity with a single
inhomogeneous connection. By adjusting the extent of
this inhomogeneous connection, the stability of the
spatio-temporal patterns changes. In addition, Pinto &
Ermentrout (2001) show how travelling waves may
develop in a model derived from the physiology of a
neocortical slice.

In the second example, we consider numerical sol-
utions to thedimensionlessSPDEsforPeenon-uniformin
space and constant in time. Here, we set Pee to be a
Gaussian function in x with maximum P�

eeZ548:066 at
xZ350 mm, full width at half maximum of 46 mm, and
minimumPeeZ11.0.The localizedregionofhyperexcita-
tion near xZ350 mm may be thought of as the seizure
focus in our simple model. We solve the dimensionless
SPDEswithGeZ0.87!10K3,aZ0.001 (both uniform in
space and time) and showthe solution infigure 8.Wefind
that localized oscillations (the dark ridges in figure 8)
emerge from the region of hyperexcitation near
xZ350 mm, travel outward with approximate speed
1.2 m sK1 and approximate frequency 7.5 Hz, and then
dissolve in the regions of lower excitation, where
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Figure 8. Numerical solution to the dimensionless SPDEs with
parameters: GeZ0.87!10K3, aZ0.001, Pee a Gaussian func-
tion in space with maximum 548.066 at xZ350 mm and full
width at half maximum 46 mm, and periodic boundary
conditions in space. Space (in mm) and time (in ms) are
plotted along the horizontal and vertical axes, respectively.
Thevalue ofhe is plotted in linear greyscalewithheZK100 mV
in white and heZ0.0 mV in black. Waves in he travel outward
from the region of hyperexcitation near xZ 350 mm with
approximate speed 1.2 m sK1 and approximate frequency
7.5 Hz.
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Pee/11.0. This localized oscillatory activity is more
representative of a localized seizure than the global
oscillations illustrated in figure 7b.

In the final example, we compute numerical solutions
to the dimensionless SPDEs for Pee non-uniform in
space and time. As in the previous example, we fix
GeZ0.87!10K3andaZ0.001(bothuniforminspaceand
time).However,unlikethepreviousexample,wevaryPee

in time. At tZ{0, 5000} ms, we fix PeeZ11.0 uniform in
space. For 500 ms!t!5000 ms, we set Pee to be
a Gaussian function in x with maximum P�

ee at
xZ350 mm, full width at half maximum of 46 mm, and
minimum Pee/11.0. At tZ{500, 1000, 1500, 2000,
2500} ms, we increase P�

ee in steps of 100 so that
P�
eeZf110; 210; 310; 410; 510g, respectively. These

increases are marked by the solid vertical lines in
figure 9a. We then decrease P�

ee in steps of
100 so that for tZ{3000, 3500, 4000, 4500} ms,
P�
eeZf410; 310; 210; 110g, respectively. These decreases

are marked by the dashed lines in figure 9b. We show in
figure 9 that localized oscillations in he (the dark ridges)
begin at tZ1900 ms, where P�

eeZ310. The frequency of
these oscillations increaseswhenwe increaseP�

ee to 510at
tZ2500 ms. Then, as we decrease P�

ee between
3000 ms!t!5000 ms, the oscillations in he decrease in
frequency and eventually disappear.

This simple example provides a crude model for the
evolution of the seizing cortex. At normal levels of
subcortical excitation (PeeZ11.0) there exist only
disorganized spatio-temporal fluctuations in he and no
pathological oscillatory activity. Only when P�

ee exceeds
a threshold level do localized oscillations in he appear.
As the subcortical excitation is increased further, the
J. R. Soc. Interface (2005)
frequency of the oscillations increases. Then, as P�
ee is

decreased, the oscillations slow and eventually
disappear.

6. RESULTS

In §2, we showed ECoG data recorded at two
neighbouring electrodes during seizure, and in §§3–5,
we computed numerical solutions to a continuummodel
of cortical electrical activity. Here, we compare the
observed ECoG data with the model solutions for he.
Specifically, we compute two quantities: (i) the average
frequency at which the power spectrum achieves its
maximum during seizure, and (ii) the average speed at
which the voltage peaks propagate between two
subdural electrodes during seizure. We denote these
quantities f0 (the peak frequency) and v (the propa-
gation speed), respectively. We show that f0 and v,
computed from the model solutions and the ECoG
seizure data, are roughly in agreement.

In our determination of f0, we consider data collected
at the same two subdural electrodes (e.g. X and Y ) for
each of six seizures from the same patient. Part of one
such seizure is shown in figure 1. To compute f0, we first
low pass filter the ECoG dataX andY below 55 Hz, and
then compute the WPS. For example, in figure 2a we
show the WPS for the time-series X recorded during a
typical seizure. In this case, the maximum power occurs
between 1 and 10 Hz following seizure onset (at
tz17.5 s). To determine f0, we calculate the average
frequency of maximum power in the WPS for the
duration of the seizure (here, for 17.5 s!t!50 s). We
list f0 and its standard deviation over the duration of the
seizure for both electrodes (i.e. X and Y ) and each
seizure in table 3. For reference, we label the seizures S1
to S6, where S1 corresponds to the data discussed in §2.
We also compute the average of f0 over the six seizures
forX andY and find 4.1G0.8 and 5G1 Hz, respectively.

Propagating waves of electrical activity have been
observed in numerous mammalian systems and during
seizures in rats and in cats (Chervin et al. 1988; Connors
& Amitai 1993; Pinto & Ermentrout 2001). Here, we
assume that, during each seizure, voltage peaks propa-
gate between the two neighbouring subdural electrodes
(with time-series X and Y ). That this assumption is
valid can be inferred from the data shown in figure 1b.
We note for 17.5 s!t!27 s the similarity of the wave
forms inX andY and that peaks inX precede peaks inY.
To determine the average propagation speed v of these
voltage peaks, we first low pass filter the time-series
below 55 Hz.We then compute theWCCbetweenX and
Y, as shown in figure 3 for S1. At each time in theWCC, a
maximum correlation occurs for some lag time. For
example, at tZ20 s, the maximum correlation occurs at
a lag of approximately 25 ms. We compute this lag at
which the maximum correlation occurs for the duration
of the seizure.We find that, in general, the lag values are
consistent over two temporal intervals.Thefirst interval
(I1) includes the time of seizure onset and the 10 s that
follow. The second interval (I 2) includes all later times
(i.e. all times 10 s after the seizure onset until seizure
termination). For example, in S1 the two time-intervals
over which the lag of maximum correlation is consistent
are: I 1Z17.5 s!t!27 s and I 2Z28 s!t!50 s. Such



Table 3. The peak frequency f0 for the ECoG time-series data recorded at electrodes X (first row) and Y (second row) for each of
six seizures and the average over the six seizures.
(For each seizure, we write the mean and the standard deviation of the mean. To compute the uncertainty in the average, we
assume the uncertainties in f0 for each seizure are independent and random and propagate the uncertainties in the standard way.)

seizure label S1 S2 S3 S4 S5 S6 average

f0 of X (Hz) 3.9G0.2 3.6G0.2 3.1G0.3 4.3G0.3 4.3G0.3 5.4G0.6 4.1G0.8
f0 of Y (Hz) 5.1G0.5 3.8G0.3 3.9G0.3 4.6G0.4 5.3G0.4 6.2G0.5 5G1

Table 4. The speed v at which excitation propagates during two time-intervals I 1 (immediately following seizure onset) and I 2
(the later portion of the seizure) for each of six seizures.
(The averages are computed in interval I 1 using seizures S1 to S5, and in interval I 2 using seizures S1, S2, S4 and S5. For each
seizure, we write the mean and the standard deviation of the mean. To compute the uncertainty in the average, we assume the
uncertainties in v for each seizure are independent and random and propagate the uncertainties in the standard way.)

seizure label S1 S2 S3 S4 S5 S6 average

v in I 1 (m sK1) 0.42G0.02 0.49G0.03 0.75G0.06 0.45G0.02 0.63G0.7 — 0.5G0.1
v in I 2 (m sK1) K2.6G0.2 K5G1 N K4.3G0.8 0.51G0.03 — K3G1
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Figure 9. Numerical solution to the dimensionless SPDEs with parameters GeZ0.87!10K3, aZ0.001, and periodic boundary
conditions in space. At tZ{0, 5000},PeeZ11.0 uniform in space. For 500 ms!t!5000 msPee is a Gaussian function in space with
maximum P�

ee at xZ350 mm and full width at half maximum 46 mm. In subfigure (a), the maximum P�
eeZf110:0; 210:0; 310:0;

410:0; 510:0g at tZ{500, 1000, 1500, 2000, 2500} ms, respectively. These increases in P�
ee are denoted by the solid vertical lines. In

subfigure (b), the maximum P�
eeZf410:0; 310:0; 210:0; 110:0g at tZ{3000, 3500, 4000, 4500} ms, respectively. These decreases in

P�
ee are denoted by the dashed vertical lines. Space (in mm) and time (in ms) are plotted along the vertical and horizontal axes,

respectively. The value of he is plotted in linear greyscale with heZK100 mV in white and heZ0.0 mV in black. Waves in he are
localized in space and time to the region of hyperexcitation near xZ350 mm for 1800 ms!t!3800 ms.
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intervals can be chosen for each seizure except S6. For
this seizure, the lag values of maximum correlation are
near zero for all times following seizure onset. Therefore,
we do not include S6 in our analysis of v. We determine v
in each interval by dividing the known electrode
separation (10 mm) by the average lag in each interval.
We list v and its standard deviation in each interval and
for each seizure in table 4. We note that for S3 the
average lag is 0 ms in I 2 and therefore v is infinite. We
compute the average and standard deviations of v in I 1
(over S1 to S5) and I 2 (over S1, S2, S4 and S5) to find
0.5G0.1 and K3G1 m sK1, respectively. We note that
travelling waves of electrical activity on animal cortices
have been reported with speeds of 0.06–0.09 m sK1

(Chervin et al. 1988).
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To compare these observational results with the
model results, we compute f0 and v from the numerical
solutions to the model cortex for the variable he.
We tabulate the results in table 5 for the dimensionless
ODEs simulation shown in figure 5a, and the dimen-
sionless SPDEs simulations shown in figures 7b and 8.
We note that the results of the simulations agree with
the observed data for f0 (within a factor of 2) and v in I 1
(within a factor of 5).
7. DISCUSSION

Our aim was to consider the potential of the SPDEs
to provide a model of the mesoscopic electrical activity
on the seizing cortex. In our analysis of the dimensionless



Table 5. The peak frequency f0 and wave speed v determined
for the model solutions of he.

simulation f0 (Hz) v

ODE (figure 5b) 7.5 —
PDE (figure 7b) 10.0 2.2 m sK1

PDE (figure 8) 7.5 1.2 m sK1
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ODEs, we have shown that there do exist limit cycles in
he associated with Hopf bifurcations in the dynamics.
We have also shown that the simpler dimensionless
ODEs suggest behaviour in the complicated dimension-
less SPDEs that is consistent with the clinical seizure
data. Specifically, we have shown that at typical
parameter values GeZ1.42!10K3 and PeeZ11.0, a
reduction in Ge (to GeZ1.20!10K3) produced oscil-
latory behaviour in he. However, this oscillatory
behaviour was transient and did not produce the large-
amplitude, stable oscillations characteristic of the
seizing cortex. Moreover, this oscillatory behaviour
occurred at a single value of Ge. Thus, the parameter
values of the model cortex would have to be carefully
tuned to reach this point.

To increase the excitability of the model cortex and
make it ‘seize’, we increased Pee. We show in figures 5a
and 6 that for PeeO250.0 there exist stable, large-
amplitude limit cycles in he over a wide range of Ge. We
suggest in §5 that these oscillations are associated with
travelling wave dynamics in the dimensionless SPDEs.
Thus to produce behaviour in he consistent with that
observed in the seizing cortex, we must: (i) increase Pee,
and (ii) decrease Ge in the dimensionless SPDEs. In
dimensional terms, we must increase the subcortical
excitation pee or decrease the maximum firing rate
Smax, and we must increase the EPSP neurotransmitter
rate constant ge or the difference between the reversal
and resting potentials jhreve Khrestj or decrease the peak
excitatory postsynaptic potential Ge or S

max.
That we must decrease Ge to induce a seizure seems

counterintuitive. We expect that an increase in the
strength of excitatory inputs would promote seizing
activity. However, the decrease in Ge, from 1.42!10K3

to 0.87!10K3 used to create figure 9, represents only a
39% change. The change in Pee required to induce a
seizure is much larger. We show in figure 9 that this
parameter must increase by at least 2700%. We may
interpret the changes in these two parameters required
for seizure induction following the models in da Silva
et al. (2003). Alterations of the epileptic brain, owing to
genetic or environmental (e.g. injury) effects, for
example, predispose it to seizures. In modelling the
epileptic cortex, we may interpret this predisposition as
a permanent (model I) or a gradual (model II or model
III) change of a model parameter. The results shown in
figure 9 illustrate the latter case; with Ge fixed, a
gradual increase in Pee induces seizing activity in he.
Because the change in Pee is gradual and affects the
dynamics of he we could try to anticipate these types of
seizures. We may also interpret these results following
the model I framework. For example, consider a
permanent increase in Pee from 11.0 to 310.0. When
J. R. Soc. Interface (2005)
modelling the cortical activity of any individual (either
healthy or epileptic), we may assume that the model
parameters undergo routine fluctuations in their
normal values. In healthy individuals (with the typical
parameter value PeeZ11.0), a small negative fluctu-
ation in the model parameter Ge may induce a harmless,
transient oscillation (like that shown in figure 4) but
not a seizure. This same fluctuation in Ge will cause
the predisposed epileptic cortex to seize. In this case,
the increased value of Pee allows the dynamics to cross
the separatrix (or boundary) between the normal and
seizing states (Robinson et al. 2002). Thus, only a small
change in Ge is necessary to produce pathological
oscillations in he. Because a random fluctuation in
Ge induces the seizure, these types of seizures cannot be
anticipated. From the results presented here, we
suggest a large change in Pee and a small change in
Ge may provide a model of the seizing cortex.

In tables 3–5 we compute two results, the average
peak frequency f0 and the average propagation speed v,
derived from clinical ECoG recordings and solutions to
the SPDEs. We find that the values derived from the
observational and model data approximately agree
(f0 within a factor of 2 and v in I 1 within a factor of 5),
but note the following important issues. First, the
subdural electrode strips used in the clinical recordings
consist of six electrodes each separated by 10 mm.
Thus, the spatial sampling of the cortex is poor and we
cannot observe detailed wave behaviour in the voltage.
It may be true that electrodes X and Y lie on either
side of a sulcus (a groove or furrow in the cortex); the
precise locations are not known. It may also be true
that a wave in electrical potential is propagating
obliquely with respect to the shortest path between
electrodes X and Y. Future recordings that utilize
high-density electrode grids with small interelectrode
spacing would provide better results to compare with
the theory. Second, the lead/lag relationships deter-
mined from the WCC are ambiguous. For example, we
showed in figure 3 that for 17.5 s!t!27 s, the
oscillations at electrode X lead the oscillations at
electrode Y by approximately 25 ms. During this
interval, these time-series are nearly sinusoidal with
a well-defined frequency near 4 Hz; see the data in
figure 1b or the WPS in figure 2. The cross-correlation
of two sinusoids is itself a sinusoid, and therefore
ambiguous; although we suggest X leads Y by
approximately 25 ms, it is also true that Y leads
X by approximately 225 ms (the period of the 4 Hz
cycle minus 25 ms). We chose the case X leads Y for
two reasons: (i) the amplitude of oscillations in X is
bigger than in Y, and (ii) a correlation at 25 ms
between two closely spaced electrodes is more reason-
able than a correlation of 225 ms. It does not seem
possible to resolve this ambiguity of the cross-
correlation. Third, we have assumed that the same
voltage wavefront passes through both electrodes. If
the wave source lies between the two electrodes, then
this assumption is incorrect. Smaller electrode spacing
may help locate the wave source more accurately.
Fourth, given such a complicated model (14 nonlinear
first-order stochastic differential equations and 20
parameters), we could potentially produce any desired
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behaviour in he by properly tuning the parameters.
Here, we chose to adjust two parameters, both related
to the excitation of the model cortex. In this way, we
used the physiology of the seizing cortex to constrain
the adjustable parameters in the model. Finally, we do
not mean to suggest that the SPDEs provide an
accurate model of all human cortical seizure activity.
Here, we have only compared the model results with
data collected from a single subject, and shown that
the model and observational data agree in an
approximate way.

Although confounding factors exist both in the
model and observations, these results still illustrate
an important use of the SPDEs and other continuum
models: establishing links between the known ECoG
data and unknown cortical physiology. Traditionally,
neurophysiologists visually analyse ECoG data
recorded from a seizing patient. No attempt is made
to link the changes observed in these time-series with
corresponding changes in cortical physiology. Conti-
nuum models of cortical electrical activity allow one to
consider such links in a quantitative way. This is
especially important for human cortical data, where
invasive procedures are inappropriate. For example,
Robinson et al. (2002) consider an ODE model of the
corticothalamic network. Unlike the SPDEs model
presented here, these models explicitly include the
interactions of cortical neurons with the thalamus. The
authors show that the model can produce the 3 Hz spike
wave characteristic of absence seizures and how the
model parameters relate to the period of the seizures. A
corticothalamic model is used to study other types of
epilepsy in da Silva et al. (2003). In this work, we relate
the emergence of pathological oscillations in the
measured cortical voltage to changes in two par-
ameters: a small decrease in Ge and a large increase in
Pee. In this way, we suggest a link between the ECoG
data and the physiology of the cortex.

Measures of dynamical quantities may also be
computed from observed and simulated time-series
and compared. For example, the correlation dimension,
largest Lyapunov exponent (LLE), and synchroniza-
tion have been shown in observations to decrease
preceding a seizure (Quyen et al. 2003; Iasemidis 2003).
Such quantities are calculable from the model
equations. Dafilis et al. (2001) vary two dimensional
parameters (pee and pei) and compute the LLE and
Kaplan–Yorke dimension for the dimensional ODEs
model from Liley et al. (1999). A similar analysis may
be performed in which one varies the parameters Pee

and Ge of the dimensionless ODEs model presented
here. Although the dimension and LLE determined
from noisy ECoG data are of limited accuracy, a
comparison of the theoretical and observational results
may provide verification or suggest improvements to
the model (Freeman 1992).

Understanding both the ECoG patterns of cortical
ictal activity and the related changes in cortical
physiology may help shape new strategies for seizure
detection and focus location. This, in turn, may allow
clinicians to deliver abortive seizure therapy that is
targeted both in time and in space. For example,
experimental methods such as focal cooling, brief pulse
J. R. Soc. Interface (2005)
cortical electrical stimulation and local drug delivery all
depend on reliable algorithms for the detection and
prediction of seizures (Eder et al. 1997; Lesser et al.
1999; Yang et al. 2002). The combination of parameters
one can change in a well-motivated, physiologically
relevant model to simulate these dynamics may suggest
strategies for therapeutic intervention.
APPENDIX A.

Here, we non-dimensionalize the SPDEs from
Steyn-Ross et al. (2003). To do so we replace each
dynamical variable, as well as space x and time t, with
its dimensionless counterpart. For example, we replace
he (the population mean soma voltage in Steyn-Ross
et al. 2003) with h0e ~he, where h

0
eZhreste ZK70 mV and ~he

is dimensionless. The main advantage of recasting
the equations in dimensionless form is a reduction in the
number of parameters. There are 20 parameters in
the dimensionless SPDEs; in the original SPDEs there
are 29. We find for the dimensionless SPDEs:

v~he
v~t

Z1K~heCGeðh0eK~heÞ~I eeCGiðh0i K~heÞ~I ie; (A1a)

v~hi
v~t

Z1K~hiCGeðh0eK~hiÞ~I eiCGiðh0i K~hiÞ~I ii; (A1b)

1

Te

v

v~t
C1

� �2

~I eeZNb
e
~Se½~he�C~feCPeeC~G1; (A1c)

1

Te

v

v~t
C1

� �2

~I eiZNb
e
~Se½~he�C~fiCPeiC~G2; (A1d)

1

Ti

v

v~t
C1

� �2

~I ieZNb
i
~S i½~hi�CPieC~G3; (A1e)

1

Ti

v

v~t
C1

� �2

~I iiZNb
i
~S i½~hi�CPiiC~G4; (A1f )

1

le

v

v~t
C1

� �2

~feZ
1

l2e

v2~fe

v~x2

C
1

le

v

v~t
C1

� �
Na

e
~Se½~he�; (A1g)

1

li

v

v~t
C1

� �2

~fiZ
1

l2i

v2~fi

v~x2

C
1

li

v

v~t
C1

� �
Na

i
~Se½~he�: (A1h)

The eight dynamical variables in this system (~he, ~hi,
~I ee, ~I ei, ~I ie, ~I ii, ~fe and ~fi) are functions of dimensionless
space and time, ~x and ~t, respectively. We illustrate the
connections between these dynamical variables in
figure 10. The dimensionless variables and parameters
are defined in tables 1 and 2, respectively. Each
variable and parameter is expressed in terms of its
dimensional counterparts from Steyn-Ross et al.
(2003). In these tables, we have made the notational
simplifications in agreement with the values used in
Steyn-Ross et al. (2003): teZtiZt, Smax

e ZSmax
i ZSmax

and hreste Zhresti Zhrest. The dynamical variable heZh0e ~he
is the key observable and related to the scalp EEG
orECoG signal (Liley et al. 2002).



he hi

Iee Iei Iie

fe

fi

Pee Pei Pie Pii
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Figure 10. A schematic of the eight dynamical variables
(boxed) and the four subcortical inputs (Pee, Pei, Pie, Pii). The
variables are defined in table 1; they appear in the dynamical
equations (A 1a–h). We indicate the interactions between the
variables using arrows. A schematic of the cortical macro-
column may be found in fig. 2 of Liley et al. (1999).
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We also define the dimensionless sigmoid transfer
functions:

~Se½~he�Z
1

1Cexp½K~geð~he K ~qeÞ�
; (A 2a)

~S i½~hi�Z
1

1Cexp½K~gið~hi K ~qiÞ�
; (A 2b)

and the dimensionless stochastic input terms:

~G1 Zaee

ffiffiffiffiffiffiffi
Pee

p
x1½~x; ~t� (A 3a)

~G2 Zaei

ffiffiffiffiffiffi
Pei

p
x2½~x; ~t� (A 3b)

~G3 Zaie

ffiffiffiffiffiffi
Pie

p
x3½~x; ~t� (A 3c)

~G4 Zaii

ffiffiffiffiffiffi
Pii

p
x4½~x; ~t�: (A 3d)

The terms in equations (A 3a–d ) represent the noise
that arises from subcortical inputs to the cortex. Here,
the xk are Gaussian distributed white noise sources with
zero mean and d-function correlations. In numerical
simulations, the xk are approximated as

xk½~x; ~t�Z
Rðm;nÞffiffiffiffiffiffiffiffiffiffiffi
D~xD~t

p ; (A 4)

where ~xZmD~x and ~tZnD~t, (m, n integers), specify
space and time coordinates on a lattice with (dimen-
sionless) grid spacings, D~x and D~t, respectively. Here,
we set aeeZaeiZaieZaiiZa as in the stochastic
simulations of the spatio-adiabatic one-dimensional
cortex in Steyn-Ross et al. (2003).
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