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Percolation under noise: Detecting explosive percolation using the second-largest component
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We consider the problem of distinguishing between different rates of percolation under noise. A statistical
model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise
in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary
process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov
graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi)
percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two
different criteria for discriminating between these two percolation models, based on the interquartile range (IQR)
of the first component’s size, and on the maximal size of the second-largest component. We show through data
simulations that this second criterion outperforms the IQR of the first component’s size, in terms of discriminatory
power. The maximal size of the second component therefore provides a useful statistic for distinguishing between
different rates of percolation, under physically motivated conditions for the birth and death of edges, and under
noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the
context of applied neuroscience is also discussed.
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I. INTRODUCTION

Understanding the emergence of organized structure in
dynamic networks remains an active research area [1,2].
In the study of random networks, percolation—the sudden
emergence of a giant connected component (GCC)—is of
critical importance from a theoretical, applied, and statistical
perspective. Percolation in the Erdős-Rényi (ER) model
constitutes one of the first examples of a fully characterized
mathematical phase transition [3,4]. While the ER model of
percolation is an example of a (second order) continuous
phase transition, recent efforts have focused on identifying
the conditions under which a random network process can
yield a (first order) discontinuous percolation [5].

One of the most popular attempts to model discontinuous
percolation has been the Achlioptas’ process and its variants
[6]. The Achlioptas’ product rule (PR) slows down the growth
of the GCC by favoring the creation of edges between small
connected components. Although this particular percolation
model has been shown to be, in fact, continuous and therefore
of second order [5,7,8], it nonetheless provides an interesting
alternative to the ER model [9]. Achlioptas’ processes have
indeed generated a substantial amount of theoretical work,
whereby authors have explored related strategies for producing
explosive percolation in random networks [10–12]. In addition,
Riordan and Warnke [5] have shown that genuine first order
phase transitions can be realized by systematically adding,
at every step of the process, the edge that joins the two
smallest components in the entire network. In this paper, we
use the phrase “explosive percolation” to refer to the sudden
emergence of a large connected component in the Achlioptas
process. However, we note that explosive percolation in this
context is rapid, but continuous.

Interest in network percolation has been fueled by its
relevance to several application domains. In clinical neuro-
science, for instance, epileptic seizures have been associated
with the sudden emergence of coupled activity across the

brain [13–18]. The resulting functional networks—in which
edges indicate strong enough coupling between brain regions
[19]—are consistent with the notion of percolation. A better
understanding of the type of phase transitions undergone at
different stages of the seizure may aid in the development of
strategies for the treatment of epilepsy [20]. In this paper, we
have therefore concentrated our attention on relatively small
networks, with sizes ranging between 100 and 1000 vertices.
Such a number of vertices is comparable to the size of the
networks often studied in neuroscience [17,21–25]. However,
note that percolation on such small networks can suffer from
finite-size effects [26].

The rich theory on percolation, and its application to real
world data, motivates the following question: How can we
distinguish between different percolation regimes in practice?
Previous theoretical work has concentrated on noise-free
percolation, which constitutes an idealized perspective on
percolation processes. In practice, however, the sampling of
real-world networks is likely to be corrupted by measurement
errors. Moreover, network growth has generally been con-
ceived as a monotonic process, whereby only edge creations
are allowed. However, this assumption may be too restrictive,
since in real-world networks, the number of edges may
increase and decrease over time, in a stochastic manner (see
example in Fig. 1). Finally, to the best of our knowledge,
there does not currently exist a statistical framework for
distinguishing between different types of percolation regimes
in the presence of edge birth and edge death, as well as noise.

In this paper, we propose a framework to distinguish
between different percolation regimes in practice. To do so,
we formulate the problem of recognizing a percolation regime
from noisy observations as a question of statistical inference.
Under this framework, we compare the discriminatory power
of two potential percolation features deduced from the evolu-
tion of the first and second component of an observed dynamic
network. We test this framework in simulation by constructing
a hidden Markov graph model, which encompasses both a
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FIG. 1. Proportion of nodes in the largest component as a function
of time for a functional network deduced from the electrocorticogram
of a single patient with epilepsy during a seizure (see [27] for details).
The weighted functional networks have been binarized by conducting
independent hypothesis tests on the maximum absolute values of the
cross correlations over 0.5-s windows with 50% overlap and after
correcting for multiple comparisons. The black trace is a smoothed
version of this process. Seizure onset was clinically estimated to occur
at the vertical dotted line.

nonstationary latent process characterized by birth and death
of edges, and an observed graph process that introduces
both type-I and type-II errors. We show that edge death and
noise renders the statistic deduced from the first component
ineffective in distinguishing between the standard ER second
order percolation and Achlioptas’ explosive percolation. How-
ever, a different detection criterion—based on the size of the
second component—successfully discriminates between the
two percolation regimes in the presence of edge death and
noise. These results provide a framework for distinguishing
percolation regimes in practice.

II. PERCOLATION MODELS

A. Birth and death Erdős-Rényi (ER) process

We first construct a graph-valued stochastic process that
exhibits the Markov property. This provides a realistic model
for generating noisy percolation processes, while maintaining
a sufficient level of computational tractability. We will denote
a sequence of graph-valued random variables on n vertices by

{Gt = (V,Et ) : t = 0, . . . ,T }, (1)

where V denotes the vertex set of Gt , whereas Et represents
the edge set of G at time t . Observe that the vertex set does
not vary with time. At each time step, a single edge is either
added or deleted. Such a sequence will be said to be Markov
if its edge sets are controlled by a Markov chain. We impose
this dependence through the use of a binary random variable,
denoted {Yt : t = 0, . . . ,T }, whose state space is {0,1}. This
Markov chain is characterized by the following transition
probability matrix P , for some choices of the birth and death
rates, denoted respectively by p and q, and taking values in

[0,1]:

Yt+1 = 0 Yt+1 = 1
Yt = 0 1 − p p

Yt = 1 q 1 − q

Following customary notation, the entries of P will be denoted
by P[Yt+1 = j |Yt = i], with rows summing to 1. The graph-
valued Markov chain Gt is then obtained by associating Yt with
the addition or deletion of an edge in each edge set Et . Thus,
provided that p,q �= 0, it follows that the state space of this
graph-valued Markov chain is the space of all simple graphs
on n vertices, since every graph is reachable with positive
probability.

In general, p and q are not required to sum to 1. It will
be of interest to let p > q in order to study the large-scale
behavior of the Gt ’s as the graph process accumulates edges.
Moreover, observe that Yt is a (time) homogeneous Markov
chain, since P[Yt+1 = ω|Yt = ω′] = P[Y1 = ω|Y0 = ω′], for
any ω,ω′ ∈ {0,1} and every t .

Now, suppose that there exist mt := |Et | edges at time t in
Gt and let Xt (e) denote the “status” of edge e at time t , such that
Xt (e) = 1, if that edge is present, and Xt (e) = 0, otherwise.
Note that we have here two different sources of dependence.
On one hand, the edges are dependent on each other, since no
more than one edge can be added or deleted at every time step.
On the other hand, the edges are also dependent over time,
since the status of an edge at time t + 1 depends on the status
of that same edge at time t .

In the sequel, we will concentrate on a special case of
this birth and death process, where we will set p = 1 − q.
This leads to simplified marginal distributions for the edges.
Additional details of this birth and death model are provided
in Appendix.

B. Birth and death product rule (PR) process

We extend the standard Achlioptas’ framework of PR
percolation to a birth and death process, by devising death
steps. This model is analogous to the aforementioned ER
birth and death model, except for the choice of the probability
distribution of the latent Xt (e)’s. As for the ER birth and death
model, a binary random variable Yt controls the addition or
deletion of edges in each Gt . However, in the case of the PR
model, the choice of the edge to be added or to be deleted is
not uniform over the Et ’s. Here, this choice depends on the
modular structure of the graph at time t . Therefore, as for the
ER model, we obtain a nonstationary stochastic process.

Assuming that Yt = 1, the addition of a new edge is
conducted by uniformly choosing two candidate vertex pairs
among all the edges in EC

t , the complement of the edge set Et .
These two candidate edge pairs are denoted by e1 := (v11,v12)
and e2 := (v21,v22), and satisfy Xt (e1) = 0 and Xt (e2) = 0,
since e1,e2 ∈ EC

t , as in Fig. 2. We then evaluate the size of
the connected components to which v11, v12, v21, and v22

belong. These four connected components are denoted by C11,
C12, C21, and C22, respectively. Then, following Achlioptas
et al. [6], we apply the following product rule: If |C11||C12| <

|C21||C22|, then Xt+1(e1) = 1; otherwise, Xt+1(e2) = 1.
Conversely, the death or deletion of an edge is handled

in a symmetric manner. When Yt = 0, we uniformly select
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FIG. 2. Birth and death steps for the product rule (PR) in the
Achlioptas’ model of percolation. In this example, edge e2 was born
before edge e1, since |C11||C12| > |C21||C22|. Therefore, when e1 and
e2 are selected during a death step, e2 is discarded after e1. This death
step specification ensures that births and deaths constitute genuine
reverse PR operations.

two candidate edges from Et . These vertex pairs are denoted
e1 := (v11,v12) and e2 := (v21,v22) and satisfy Xt (e1) = 1 and
Xt (e2) = 1, since e1,e2 ∈ Et . Next, we set Xt (e1) = 0 and
Xt (e2) = 0, in order to compute the size of the connected
components to which v11, v12, v21, and v22 would belong, if
these edges were absent. This is done in order to ensure that the
deletion of an edge exactly corresponds to the reverse operation
of the addition of an edge under PR. Next, after having deleted
these edges and having computed the sizes of C11, C12, C21,
and C22, we decide which edge should re-enter Gt , in order to
produce Gt+1. Such a decision is also based on the PR, such
that if |C11||C12| < |C21||C22|, then Xt+1(e2) = 0; otherwise,
Xt+1(e1) = 0.

This choice of specification for the death step ensures that
the ordering of the creation and deletion of edges is sym-
metrical. Given a sequence of two edges {e1,e2} successively
born during two time steps of Gt , if we encounter a death
step, where both e1 and e2 are selected, we would then delete
these edges in the reverse order, by eliminating e2 before e1.
This order-preserving property is illustrated in Fig. 2. This
constraint ensures that births and deaths are genuine reverse PR
operations. In addition, observe that, as for the ER percolation
process, this chain is irreducible, in the sense that there
is positive probability of transitioning from any given edge
configuration to any other in the space of the edge sets of G.

C. Hidden Markov graph model

Next, we assume that there exists a time-independent error
process, which produces at each time point an observed
edge status X∗

t (e). This stochastic process is governed by
two additional parameters α and β, whose behavior can be
described using a traditional “confusion matrix,” such that for
any α,β ∈ [0,1], we have

X∗
t (e) = 0 X∗

t (e) = 1
Xt (e) = 0 1 − α α

Xt (e) = 1 β 1 − β

The Xt (e)’s and X∗
t (e)’s are here treated as latent and

observed stochastic processes, respectively, and α and β can

G∗
t−1 G∗

t G∗
t+1

Gt−1 Gt Gt+1

FIG. 3. Directed acyclic graph (DAG) representation of the
hidden Markov process combining a latent stochastic graph process in
the first row denoted by Gt , with an observed stochastic graph process
contaminated by noise in the second row, denoted by G∗

t . Directed
arrows indicate probabilistic dependence, such that the distribution
of the observed G∗

t depends on the value taken by the latent
graph Gt .

therefore be interpreted as the type-I (false positive) and type-II
(false negative) error probabilities. Combining the graph-
valued Markov latent process with this time-independent error
process, we obtain a graph-valued hidden Markov process, as
described in Fig. 3. From this schematic representation, one
can immediately see that the observed graphs denoted G∗

t−1,
G∗

t and G∗
t+1 are conditionally independent, given the latent

graph process Gt .
For the ER model, under the assumption that p = 1 − q,

these two stochastic graph processes can be combined by
taking into account the time dependence of the X∗

t (e)’s. In this
case, the corresponding transition matrix linking the observed
and latent processes is available in closed form. Details of
these derivations are provided in Appendix.

III. DETECTING EXPLOSIVE PERCOLATION

Explosive percolation is expected to produce a sharper
phase transition than a typical ER percolation. When consid-
ering noisy observations, however, detecting such differences
through visual inspection only, is hard. Figure 4 illustrates this
problem, by comparing noisy and noise-free graph sequences
for both explosive and ER models. Beyond visual inspection,
the problem of discriminating between these two models
of percolation can be formulated as a hypothesis-testing
problem: The null hypothesis, denoted H0, states that the
observed process corresponds to an ER percolation, whereas
the alternative hypothesis, H1, is that the observed process
does not correspond to this type of percolation model.

To proceed with this hypothesis-testing problem in practice,
we specify a population parameter summarizing the percola-
tion process, say θER and θ , for the ER and target models,
respectively. This leads to a hypothesis test of the form

H0 : θER = θ, and H1 : θER �= θ.

Several population parameters could be used for the purpose
of discriminating between these two models of percolation. A
natural candidate for such parameters would be a measure of
the sharpness of the transition of the first component’s size. The
main panel of Fig. 4, however, suggests that this population
parameter will not have sufficient discriminatory power, when
confronted with a substantial amount of observational noise.
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FIG. 4. Percentage of vertices in the giant connected component
(GCC) in the main window, and the corresponding sizes of the second-
largest component (SLC) in inset, for a birth rate of p = 1 and death
rate of q = 0, for the ER (black) and PR (gray) percolation models,
for Nv = 100; in which the x axis denotes the number of steps in
the process divided by Nv . In bold, these results are reported for a
noise-free model, whereas the thin lines represent noisy simulations
with type-I and type-II error rates of α = 0.0075, β = 0. The details
of the algebraic relationship between the type-I and type-II error
rates and the graph process is described in Appendix, for the case
of the ER model. Observe that the ER and PR models are nearly
indistinguishable once a small amount of noise is added to these
percolation processes.

Therefore, as a second candidate population parameter,
we consider the following natural extension: The size of
the second-largest component (SLC). This provides a more
sensitive marker of the sharp phase transition exhibited
by explosive percolation models [28]. Several authors have
considered the size of the second largest component as a
useful marker. Margolina et al. [28] have investigated the ratio
of the sizes of the first and second component in cubic and
triangular lattices. They have shown that the number of nodes
in the second largest component reaches a maximum at the
percolation threshold. More recently, and also in the context
of cubic and hypercubic lattices, da Silva et al. [29] have
studied the scale invariance of the ratio of the sizes of the
first and second components. The size of the second largest
component has also been used in neuroimaging, in order to
identify the percolation threshold [30], as well as in an effort
to detect and prevent epileptic seizures [31]. However, to the
best of our knowledge, it has not been previously used in a
statistical context for the purpose of discriminating between
different types of percolation regimes. In what follows, we
will show that the use of the size of the SLC as a statistical
marker to distinguish the two percolation regimes exhibits
greater discriminatory power than a statistic solely based on
the first component.

The differences between the candidate percolation models
are therefore quantified using two criteria: (i) the interquartile
range (IQR) of the distribution of the size of the GCC, and (ii)
the maximal size of the SLC over the entire time period. These
two criteria are formally defined as follows. Given the graph
process, Gt = (V,Et ), and denoting the vertex subset of the

largest component in Gt by S1,t , we define the cumulative edge
function as the cardinality of S1,t , normalized by the maximal
number of edges in the graph, such that

F (t) := |S1,t |(
n

2

) .

Although this function is not a cumulative distribution function
(CDF), one can nonetheless uniquely define quantiles using
the standard definition of quantiles for the CDFs of discrete
random variables, such that for any x ∈ [0,1], we have

Q(x) := min
t=1,...,T

{t : F (t) � x},

where T is the maximal number of time steps in the graph
process. In this paper, we are especially interested in the
classical interquartile range,

IQR := Q(0.75) − Q(0.25). (2)

This parameter quantifies the steepness of the phase transition:
the larger the IQR criterion, the longer the transition to a fully
connected graph.

As a second criterion to distinguish the two percolation
regimes, we consider the maximal size attained by the SLC
over the entire time period of the dynamic network observation.
If one defines the vertex set of the SLC at time t by S2,t , this
second criterion can be expressed as

θSLC = max{|S2,t | : t = 1, . . . ,T }.
This quantity is known to constitute a good marker of the
steepness of the phase transition, since it reflects the extent of
separation of the graph process into large connected subgraphs
[28,31]. Indeed, a direct consequence of the Achlioptas’
construction rule is that by inhibiting the growth of a single
large component, we necessarily increase the production of
several subcomponents.

Statistical inference on these two criteria is then drawn
using a Monte Carlo hypothesis test. Letting the parameter
θ := θIQR, and selecting the candidate percolation to be drawn
from a PR process, we consider the following null and
alternative hypotheses,

H0 : θER = θPR, and H1 : θER > θPR,

respectively. The direction of this test is justified by the fact that
we expect explosive percolation to occur rapidly, and thus to
exhibit a smaller amount of variability in the size of its GCC,
when transitioning to a fully connected graph. Our second
criterion, by contrast, is tested in the opposite direction, since
we naturally anticipate the PR process to be characterized by
a larger maximal SLC. Thus, for θ := θSLC, the alternative
hypothesis becomes H1:θER < θPR.

In the results reported in this paper, the distributions of
the ER and PR graph processes are known. It therefore
suffices to simulate from these densities in order to construct
the distribution of the two test statistics at hand. This
procedure is illustrated in Fig. 5. We are especially interested in
the discriminatory powers of these statistics, and we will there-
fore compare their respective merits, using the true positive and
false positive rates, within a receiver operating characteristic
(ROC) framework. The ROC curve illustrates the performance
of a binary classifier by plotting the false positive rate against
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FIG. 5. Densities of the IQR of the GCC in the main windows, and
densities of the maximal size of the SLC in the insets, are reported
for networks of sizes 100 and 1000 vertices in panels (a) and (b),
respectively, for the ER (black) and PR (gray) percolation models,
and based on 1000 realizations from the distributions of these two
(noise-free) models, specifying a birth rate of p = 1 and death rate
of q = 0, in which the x axis denotes the number of steps in the
process divided by Nv . The IQR criterion has been described in
Eq. (2). Note that the difference in scales of the density values of the
y axes in these two figures is due to the difference in scales of the x

axes, which represent the number of steps scaled by network sizes,
t/Nv .

the true positive rate, as the discriminating threshold varies. For
presentational convenience, the distributions of interest were
smoothed using a normal density kernel, before computing
the ROC curves and corresponding areas under the curves
(AUCs). The computation of the AUCs allows us to summarize
the differences between the models over the entire time period
(see Figs. 6–10).

IV. RESULTS

A. Birth and death processes

The ER and PR percolation models were simulated on
graphs with n = 100 and n = 1000 vertices. We first explored
the effect of varying the birth and death rates (i.e., p) on the
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FIG. 6. Percentage of vertices in the giant connected component
(GCC) in the main window, and the corresponding sizes of the second-
largest component (SLC) in inset, for a birth rate of p = 1 and death
rate of q = 0, for the ER (black) and the PR (gray) percolation models,
for Nv = 1000, in which the x axis denotes the number of steps in
the process divided by Nv . In bold, these results are reported for a
noise-free model, whereas the thin lines represent noisy simulations
with type-I and type-II error rates of α = 0.0075, β = 0. Observe
that the ER and PR models are nearly indistinguishable once noise is
added to these percolation processes.

behavior of the two statistical criteria of interest, under the ER
and PR models. The results of these Monte Carlo simulations
are reported in Fig. 11, where each curve is the mean of 1000
independent synthetic data sets. In these simulations, the death
rate is set to q = 1 − p, and therefore the value of p controls
both the birth and death rates.

The main effect of a change in p is to delay percolation, and
to diminish the steepness of the phase transition. Observe that
as p decreases, percolation tends to occur at a later time step in
both the ER and PR models (see Fig. 11). In particular, for the
lowest birth rate that we investigated (p = 0.7), the ER model
did not produce a fully connected graph within the number of
iterations considered, as can be seen from Fig. 11(a). When p

was set to values equal to or less than 0.5, no phase transition
could be observed, and these results are not reported.

The size of the second component was similarly affected
by changes in p. Decreasing the birth rate delayed the time at
which the size of the SLC attained its highest value. Moreover,
lower values of p also yielded SLCs with smaller maximal
sizes, under both the ER and PR models. Interestingly, we
note that the time points at which the SLC reaches a maximal
size tended to coincide in both models. Thus, it would be
difficult to distinguish between these two percolation models
on the sole basis of the timing of the occurrence of the maximal
size of the SLCs. By contrast, the relative maximal size of the
SLCs in the ER and PR models differ by approximately one
order of magnitude, thereby providing a natural criterion for
discriminating between these two types of percolation, as can
be observed by comparing Figs. 11(a) and 11(b).

We formally quantified these differences in discriminatory
powers by studying the ROC curves of these two criteria under
different choices of p (see Fig. 8). The maximal size of the
SLC substantially outperforms the relative size of the first
component, for all values of p. The stark difference between
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FIG. 7. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in (a) and (b),
respectively; with respect to scaled time (t/Nv), for Nv = 1000 in
which the x axis denotes the number of steps in the process divided
by Nv . These results are reported for both the ER and PR models, in
black and gray, respectively; and for different choices of the birth rate
p. Each curve represents the mean of 1000 independent simulations.

these discriminatory criteria can be understood by considering
the amount of overlap of the distributions of these two criteria
in Fig. 5. Whereas the distributions of the IQR of the size of the
GCC under the two models exhibit a large amount of overlap,
the distributions of the maximal sizes of the SLC, by contrast,
share very little common support. These differences in support
account for the substantive gains in discriminatory power by
the maximal size of the second component, as reported in
Fig. 10.

In addition, we note that the IQR of the size of the
first component was more sensitive to choices of p than
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FIG. 8. Receiver operating characteristic (ROC) curves for tests
based on the IQR and SLC statistics for networks of size Nv = 100
and Nv = 1000, in (a) and (b), respectively, for different choices of
birth rate p.

the maximal size of the SLC. As p diminishes, it becomes
increasingly more difficult to discriminate between the ER and
PR percolation models, using the IQR of the size of the first
component. This suggests that this criterion is more sensitive to
a nonzero death rate than the maximal size of the SLC, which
provides further support for the use of this latter criterion, in
practice.

B. Percolation under noise

Second, we considered the effect of introducing noise in
these models. The results reported in Fig. 12 were produced
using our proposed hidden Markov graph model, and were
averaged over 1000 simulations. We were especially interested
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FIG. 9. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in (a) and (b),
respectively, with respect to scaled time (t/Nv), for Nv = 1000; in
which the x axis denotes the number of steps in the process divided
by Nv . These results are reported for both the ER and PR models, in
black and gray, respectively, and for different choices of the error rate
α. Each curve represents the mean of 1000 independent simulations.

in the effect of type-I and type-II errors on our ability
to discriminate between classical and explosive percolation,
using the two criteria under scrutiny. Both the type-I and
type-II error rates were made to vary between 0 and 0.01.

From Fig. 12, one can observe that the two types of
errors had markedly different effects on the AUCs of the
two discriminatory criteria. Introducing type-I errors led to
a substantial diminution of the AUCs for both the IQR of the
size of the first component in Fig. 12(a), and the maximal
size of the SLC in Fig. 12(b). In particular, note that the two
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FIG. 10. Receiver operating characteristic (ROC) curves for tests
based on the IQR and SLC statistics for networks of size Nv = 100
and Nv = 1000, in (a) and (b), respectively, for different choices of
error rate α.

criteria reached equivalent levels of discriminatory power for
α = 0.01. Thus, although the maximal size of the SLC remains
a more useful criterion for distinguishing between the ER and
PR models than the IQR of the size of the first component,
these two criteria exhibited comparable performance, under a
moderate amount of type-I error.

The impact of increasing the type-II error rate on the
behavior of these two criteria was negligible. Introducing false
negatives in the ER and PR models slightly increased the AUCs
of both the IQR of the first component’s size, and the maximal
size of the second component. Thus, large type-II error rates
may be marginally advantageous for discriminating between
these two models of percolation, under the scenarios studied.
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FIG. 11. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in panels (a) and (b),
respectively; with respect to scaled time (t/Nv), with Nv = 100; in
which the x-axis denotes the number of steps in the process divided
by Nv . These results are reported both the ER and PR models, in
black and gray, respectively; for different choices of birth rates, p.
Each curve represents the mean of 1,000 independent simulations.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have extended existing models of percola-
tion by allowing for edge deletion steps and noisy observations.
These modeling extensions have been articulated within a
hidden Markov graph process, which builds links with the
existing literature on the statistical properties of this family
of models [32–34]. Moreover, we have compared different
summary statistics for distinguishing between the ER and PR
percolation models. Overall, for different birth and death rates,
and for a range of noise levels, the maximal size of the SLC
was found to have greater discriminatory power than the IQR
of the size of the GCC.

Several methodological challenges remain before such
models can be directly used for percolation detection on
real-world data. Throughout this paper, we have considered
the IQR of the size of the first component, using a particular
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FIG. 12. Area under the curve (AUC) surface plot for the receiver
operating characteristic (ROC) curves of the IQR of the GCC, and of
the maximal size of the SLC, for different choices of the error rates
α and β, and with p = 1 and q = 0, under the simulation settings of
Fig. 13, and with Nv = 100.

choice of quantiles for this discriminatory criterion. In practice,
an optimal choice of quantiles for quantifying the steepness of
such phase transitions may be motivated by different factors,
including (i) the range of the observations, and (ii) the need
for early detection. We discuss these two practical aspects, in
turn.

First, note that when considering real-world applications,
we rarely observe fully connected networks. In the data re-
ported in Fig. 1, for instance, the size of the GCC encompasses
at most 90% of the edges in the saturated network. The choice
of the quantile interval of interest for the first component will
be therefore automatically constrained by the range of the
observations in the data at hand. Therefore, as in sequential
detection analysis, the statistical objective is to detect the
outcome, on the basis of as little data as possible. Such
constraints would naturally lead to a relatively narrow quantile
range.

Second, in the context of clinical neuroscience and with
particular emphasis on the prevention of a seizure, the
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FIG. 13. Percentage of vertices in giant connected component
(GCC), and in second largest component (SLC), in (a) and (b),
respectively, with respect to scaled time (t/Nv), for Nv = 100, in
which the x axis denotes the number of steps in the process divided
by Nv . These results are reported for both the ER and PR models, in
black and gray, respectively, and for different choices of the error rate
α. Each curve represents the mean of 1000 independent simulations.

detection of a percolation regime may be linked with patients’
health and survival. In such cases, early detection will
usually be favored, as this is likely to be associated with
desirable clinical outcomes. Explosive percolation, such as
the Achlioptas’ PR process studied in this paper, is consistent
with the sudden manifestation of a seizure as a highly
synchronized event. Classifying models of percolation may
then be utilized to deepen our understanding of seizures, and
to gain a greater understanding of the mechanisms underlying
epilepsy.

Further work in this area could be focused on estimating
a percolation model from a given sequence of observed
networks. In this sense, this work also contributes to the

growing literature on time-indexed graph processes [35]. In
such cases, the birth and death rates will need to be estimated,
as well as the type-I and type-II error probabilities. These
different parameters may not be fully identifiable from the data,
and further assumptions are likely to be necessary, in order to
discriminate between the two percolation models considered
in this paper. Such estimation, however, may be amenable to a
Bayesian formulation, as commonly implemented for hidden
Markov models [36]. Note also that this work may be extended
to some of the recently proposed generalized versions of the
Achlioptas model [37–39].
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APPENDIX: DETAILS OF BIRTH
AND DEATH ER PROCESS

Here, we describe the closed-form formulas of the prob-
abilities of edge inclusion and edge deletion in the observed
graph processes under the ER model. These analytic results
are obtained by assuming that the birth and death probabilities
are straightforwardly related, such that p = 1 − q. Such
derivations may be useful for other authors, who may want
to replicate these results, or extend the applications of the
noisy model of percolation.

In this birth and death graph process, each edge is treated
separately by integrating out the dependence of all other edges
in the graph, and considering the marginal distribution of every
Xt (e). As before, we will here refer to Xt (e) as the latent edge
status, and mt := |Et | will indicate the number of edges in
the graph at time t . Given the Markov random variable Yt , the
conditional transition matrix for every Xt+1(e), given some
value of Yt , takes the following form:

Xt+1(e) = 0 Xt+1(e) = 1

Xt (e) = 0 (n

2)−mt−I {Yt=1}
(n

2)−mt

I {Yt=1}
(n

2)−mt

Xt (e) = 1 I {Yt=0}
mt

mt−I {Yt=0}
mt

where (n2) denotes the number of edges in a saturated graph

of size n, and where I {f (x)} is the indicator function, which
takes a value of 1 if f (x) is true and 0, otherwise.

In this paper, we have concentrated on a special case of this
birth and death process, where we have set p = 1 − q. This
choice of p and q leads to the following characterization of
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the Yt process:

P[Yt+1 = 1] = P[Yt+1 = 1|Yt = 0]

= P[Yt+1 = 1|Yt = 1] = p,
(A1)

and similarly, P[Yt+1 = 0] = 1 − p. Under this simplifying
assumption, the preceding conditional transition matrix be-
comes

Xt+1(e) = 0 Xt+1(e) = 1

Xt (e) = 0 (n

2)−mt−p

(n

2)−mt

p

(n

2)−mt

Xt (e) = 1 1−p

mt

mt−1+p

mt

Each entry is obtained by taking the expectation with respect
to Yt . That is, P[Xt+1(e) = ω|Xt (e) = ω′] = E[P[Xt+1(e) =
ω|Xt (e) = ω′,Yt ]], for every ω,ω′ ∈ {0,1}, and where the
marginal distribution of Yt is known from Eq. (A1).

One can then combine the noise process described in
Sec. II C with the birth and death stochastic process in order to

link the latent and observed parts of the Markov hidden model.
This gives the following table:

X∗
t+1(e) = 0 X∗

t+1(e) = 1

Xt (e) = 0 (1 − α)
(

(n

2)−mt−p

(n

2)−mt

)
α
(

p

(n

2)−mt

)
Xt (e) = 1 β

(
1−p

mt

)
(1 − β)

(
mt−1+p

mt

)
Since this transition matrix links the latent and observed
stochastic processes, one can immediately derive the marginal
probabilities of the X∗

t (e)’s, such that

P[X∗
t+1(e) = 0] = (1 − α)

((
n

2

) − mt − p(
n

2

) − mt

)
+ β

(
1 − p

mt

)
,

and similarly for P[X∗
t (e) = 1]. Observe that the resulting

Xt process is nonstationary. Moreover, nonstationarity also
holds when considering the case p = 1 − q. Indeed, since the
probability of adding a new edge at time t + 1 is dependent on
the number of existing edges, mt := |Et |, at time t ; it follows
that the resulting joint distribution of any subset of the Xt ’s
depends on the choice of t .
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[3] P. Erdős and A. Rényi, The evolution of random graphs, Magyar
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