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We report on the discovery of a novel class of bursting rhythms, called amplitude-modulated bursting
(AMB), in a model for intracellular calcium dynamics. We find that these rhythms are robust and exist
on open parameter sets. We develop a new mathematical framework with broad applicability to detect,
classify, and rigorously analyze AMB. Here we illustrate this framework in the context of AMB in a model
of intracellular calcium dynamics. In the process, we discover a novel family of singularities, called toral
folded singularities, which are the organizing centers for the amplitude modulation and exist generically in
slow-fast systems with two or more slow variables.
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Bursting—the repeated pattern of closely spaced action
potentials separated by quiescence—is a ubiquitous type
of neuronal activity, supported by diverse biological and
mathematical mechanisms [1–5]. Many different types of
bursting have been identified, including square-wave burst-
ing in the pancreas [6], brainstem [7], and cortex [8], elliptic
bursting in the basal ganglia [9], thalamic neurons [10],
rodent trigeminal neurons [11], and cortex [12], parabolic
bursting in the Aplysia abdominal ganglion [13], and
many others [4,14]. Although the functional significance
of bursting remains incompletely understood, bursts have
been proposed to support numerous functional roles. These
include the communication of specialized information with
more reliability than individual spikes [15,16], synchroniza-
tion between neuronal populations [17], attention [18],
synaptic plasticity [19], and memory and awareness [20].
In this Letter, we report on the discovery of a novel form

of bursting, called amplitude-modulated bursting (AMB).
The discovery was made for the Politi-Höfer (PH) model
[21] for intracellular calcium dynamics. The novel features
of AMB are the oscillations in the envelope during the
active phase. These oscillations extend the burst duration.
Variations in system parameters systematically alter the
number of oscillations in the envelope (Fig. 1). Moreover,
AMB turns out to be robust.
We also report that the AMB rhythms in the PH model

are controlled by torus canard dynamics, and in turn, there
is a novel class of singularities for differential equations,
which organize the torus canards and hence the AMB.
To date, analysis of torus canards has focused on models
with only one slow variable [23–26], where torus canards
mediate the transition from tonic spiking to bursting of
various types. However, these only exist in narrow param-
eter intervals and are difficult to observe in calcium
signalling and in physical systems. By contrast, the PH
model has two slow variables, and we find that the torus
canards are robust, exist on open parameter sets, and are
organized by these novel singularities.

Intracellular calcium dynamics plays a crucial role in the
biological function of most cell types. Direct effects include
cell depolarization, and indirect effects include modulation
of channels permeable to other ions [27], and synaptic
transmission. Intracellular calcium encodes information via
frequency modulation and amplitude modulation [28], and
has also been proposed as central to development and
plasticity in the nervous system [29].
The PH model [21] for calcium oscillations due to

interactions between calcium transport processes and the
metabolism of inositol (1, 4, 5)-trisphosphate (IP3) is
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Here c and ct represent the calcium concentration in the
cytoplasm and endoplasmic reticulum stores, respectively,
r represents the fraction of IP3 receptors that have not been
inactivated by calcium, and p is the concentration of IP3 in
the cytoplasm. The calcium flux through the IP3 receptors
is given by Jrelease; the active transport of calcium across the
endoplasmic reticulum and plasma membrane by Jserca and
Jpm, respectively; and the calcium flux into the cell via the
plasma membrane by Jin. The fluxes Jrelease, Jserca, Jin, and
Jpm are functions of (c, ct, r, p); see [21,22].
The c and r variables evolve rapidly, with time scales of

0.74 s and 6.6 s. The ct and p variables evolve slowly, with
time scales of 200 s and 50 s. That is, the PHmodel is a slow-
fast system with two fast variables (c, r) and two slow
variables (ct, p). The ratio, ε, of fast and slow time scales is
proportional to the parameter δ. (In fact, ε ¼ 0.0035 for the δ
value given in Fig. 1.) The PH model can be recast in the
standard slow-fast form given in [30]; see also [22,31].
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The parameter VPLC represents the steady-state IP3
concentration in the absence of calcium feedback, and is
controlled in experiments [21,22]. Variations in VPLC can
generate a wide array of different behaviors. For a range
of values including VPLC ¼ 0.151 μM, one finds bursts of
activity [Fig. 1(a)], which have been classified as subcriti-
cal elliptic bursting [4].
A novel type of activity (AMB) is observed for lower

values of VPLC [Fig. 1(b)]. The number of oscillations in
the envelopes of the bursts increases (Fig. 1, bottom row) as
VPLC decreases. Similar behavior is observed on open and
physically relevant parameter sets for all other parameters
of (1).
In Fig. 2, we address the dynamical mechanisms that

govern AMB. The attracting and repelling invariant mani-
folds, Pε

a and Pε
r, of limit cycles are shown in red and blue,

respectively, as computed using a novel numerical method
[31], which extends existing homotopic continuation meth-
ods [25,32]. Each intersection of Pε

a and Pε
r corresponds to

a torus canard. The first intersection of Pε
a and Pε

r, denoted
ξ0 (black curve), is the strong torus canard. It is the local
phase space separatrix that divides between those bursting
solutions that exhibit oscillations in their envelope and
those that do not. The remaining intersections of the
invariant manifolds, ξi, i ¼ 1, 2, 3 (shown in cyan, brown,
and green, respectively), are the secondary torus canards.
The innermost intersection of Pε

a and Pε
r is the weak torus

canard, ξw (¼ ξ4; black curve). It plays the role of a local
axis of rotation; the invariant manifolds and the other torus
canards twist around ξw.
For each integer n ¼ 1; 2;…, families of torus canards

are observed on open intervals of VPLC. The secondary
torus canards partition the invariant manifolds into

rotational sectors. Every orbit on Pε
a between ξn−1 and

ξn for n ¼ 1; 2;…, is an AMB where the envelope executes
n oscillations about ξw.
Figure 3 illustrates the rotational sectors formed by the

maximal torus canards. For fixed parameters, the number
of oscillations in the burst envelope can be changed by
adjusting the initial condition. For example, with initial
condition on Pε

a between ξ0 and ξ1, the trajectory Γ of (1) is
an AMB with one oscillation in the envelope (Fig. 3, top
row). When the initial condition lies in the sector bounded
by ξ1 and ξ2 (Fig. 3, middle row), the envelope exhibits two
oscillations. Each time the initial condition crosses a torus
canard, an extra oscillation is added (Fig. 3, bottom row).
By generating extra oscillations in the profile of the AMB,
the torus canards reliably increase the burst duration
(Fig. 3, right column).

FIG. 2. The invariant manifolds of limit cycles, Pε
a and Pε

r,
organize the AMB. In the cross section ct ≈ 1.2844 (bottom), the
attracting and repelling manifolds of limit cycles, Pa and Pr, of
the fast (c, r) subsystem (i.e., for ε ¼ 0) meet at the TFN point.
The invariant manifolds, Pε

a and Pε
r, for ε ¼ 5 × 10−5, intersect

at the points ξ0; ξ1; ξ2; ξ3, and ξw. The torus canard solutions lie in
these intersections. Here, VPLC ¼ 0.2 μM.
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FIG. 1. The PH model (1) exhibits AMB on open parameter
sets. Parameter changes switch the system from (a) bursting to
(b)–(d) AMB. In (a) VPLC ¼ 0.151 μM, (b) VPLC ¼ 0.1498 μM,
(c) VPLC ¼ 0.1495 μM, and (d) VPLC ¼ 0.1489 μM. All
other parameters are fixed at the values in [22], except
ν0 ¼ 0.001 μMs−1 and δ ≈ 0.473. The blue curve is the solution
of (1), and the red curve is its envelope.
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The torus canards are the local mechanisms responsible
for the amplitude modulation by generating oscillations in
the envelope of the bursting waveform. A complete under-
standing of these dynamics requires determining where the
torus canards originate. We find in system (1) that there is a
novel family of singularities for differential equations,
called toral folded singularities (TFS), from which the
torus canards originate. ATFS is a special limit cycle of the
fast (c, r) subsystem with two distinguishing features. (i) It
is a saddle node of periodics (SNPO). (ii) The averaged
slow flow along the manifold, P, of limit cycles of the fast
ðc; rÞ subsystem can pass through the TFS with finite,
nonzero speed and cross from Pa to Pr, and follow Pr for
substantial times. This second property distinguishes the
TFS from regular SNPOs (where the averaged slow flow
along P blows up in finite time) and is satisfied generically
in systems with two or more slow variables.
The eigenvalues at the TFS determine the existence and

number of torus canards that persist for ε small and
positive. In (1), for VPLC > 0.386 42 μM, the TFS has
complex eigenvalues. Hence, they are of focus type, and
there are no torus canards. For 0.129 011 μM < VPLC <
0.386 42 μM (Fig. 4, top row), the TFS has two real

negative eigenvalues and is termed a toral folded node
(TFN). Torus canards exist on this parameter interval and
AMBs are observed. For VPLC < 0.129 011 μM, the TFS
has real eigenvalues of opposite sign. Hence, they are of
saddle type and have precisely one torus canard. At the
transition VPLC ¼ 0.129 011 μM where one of the eigen-
values is zero, the TFS is of saddle-node type. Toral folded
saddle nodes mark the boundary between spiking and
amplitude modulated rhythms.
The TFNs are the central TFS of interest for AMB. They

behave like stable nodes in that all trajectories on Pa in
their basins of attraction will converge to them. The torus
canards of a TFN will exist for ε small and positive. With
μ ≔ λw=λs, where λs < λw < 0 are the eigenvalues of the
TFN, the floor function ⌊ðμþ 1Þ=2μ⌋þ 1 gives the num-
ber of torus canards.
In the case of a TFN, each time μ−1 increases through an

odd integer, an additional secondary torus canard (i.e., an
additional oscillation in the envelope of the waveform)
appears. Figure 4 (bottom row) illustrates this mechanism
in (1). As VPLC decreases and μ−1 increases, the invariant
manifolds of limit cycles become more twisted, resulting in
additional intersections.
Having identified the torus canards and the TFS that are

the local mechanisms responsible for the amplitude modu-
lation, we now identify the global return mechanism that
completes the AMB rhythm. We begin by constructing the
singular attractor, i.e., the orbit that the system converges to
in the limit ε → 0 (Fig. 5, black trajectory). The singular
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FIG. 3. Transitions through the rotational sectors establish
AMBs of different duration. Each torus canard is the boundary
between AMB solutions with different numbers of oscillations in
the envelope. Parameter values are as in Fig. 1(d). Left column:
projection into the (ct, c) phase space. Four torus canards (ξ0 to ξ3)
and the weak torus canard (ξw) are shown. The black dot indicates
the TFN. Right column: time evolution of the AMB solution Γ.
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FIG. 4. Top: eigenvalue ratio, μ, of the TFS as a function of
VPLC. Black markers indicate odd integer resonances, where
secondary torus canards bifurcate from the weak torus canard.
Bottom row: cross sections of the invariant manifolds of limit
cycles, Pε

a and Pε
r, for ε ¼ 5 × 10−5 in an Oð ffiffiffi

ε
p Þ neighborhood

of the TFN; see Fig. 2. Bottom left: VPLC ¼ 0.16 μM and
μ ≈ 0.063 44 (2 primary and 7 secondary torus canards).
Bottom right: VPLC ¼ 0.23 μM and μ ≈ 0.1297 (2 primary and
3 secondary torus canards).
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attractor is the concatenation of four orbit segments.
Starting in the quiescent phase, there is a slow drift (black,
single arrow) along the attracting equilibria, Sa, of the fast
subsystem (i.e., the critical manifold) that takes the orbit up
to the curve H of (subcritical) Hopf bifurcations of the fast
subsystem, where the stability of S changes. This initiates a
fast upward transition (black, double arrows) away fromH
towards the attracting manifold of limit cycles, Pa. Once
the trajectory reaches Pa, there is an average slow drift
(black, single arrow) that moves the orbit along Pa towards
the SNPO, labeled PL, and into the basin of attraction of
the TFN. The slow drift brings the trajectory to the TFN
(green dot), where there is a fast downward transition
(black, double arrows) that projects the trajectory to Sa,
completing one full cycle of the singular orbit.
Figure 5 shows that the singular attractor perturbs to an

AMB rhythm for small ε (colored trajectories). As stated
above, the oscillations in the envelope are due to the
twisting of the invariant manifolds of limit cycles in the
neighborhood of the TFN. The size of the oscillations in

the envelope varies with ε. First, the invariant manifolds
of limit cycles spiral around the weak torus canard with
amplitudeOð ffiffiffi

ε
p Þ. [Thus, the amplitude of the modulations

is Oð ffiffiffi
ε

p Þ.] Second, the position of the AMB trajectory
changes relative to the maximal torus canards as ε
increases; the cyan and brown trajectories in Fig. 5 are
closer to one of the maximal torus canards than the green
trajectory. The green solution lies in a different rotational
sector than the cyan and brown solutions. Hence, the green
solution has fewer oscillations.
Eventually, the trajectory leaves the neighborhood of the

TFN and enters the silent phase of the burst. The silent
phase is a small OðεÞ-perturbation of the slow drift on Sa.
The trajectory does not immediately leave the silent phase
when it reaches H. Instead, the initial exponential con-
traction along Sa allows trajectories to follow the repelling
slow manifold, Sr, to the left of H for substantial times
[33]. However, there eventually comes a moment where the
repulsion on Sr overwhelms the accumulated contraction
and the trajectory transitions to be near Pa. This returns
the trajectory to one of the rotational sectors formed by the
maximal torus canards, and completes the AMB cycle.
The interburst frequency is determined by the amount of

time the trajectory spends in the silent phase. To leading
order (for ε ¼ 0), this is the time taken for the orbit to move
from where it lands on Sa to where it encounters H. For ε
small and positive, the interburst frequency changes
slightly each time the AMB returns to the silent phase.
In summary, we have reported on the existence of novel

amplitude-modulated bursting (AMB) solutions in the
PH model (1) for intracellular calcium dynamics and found
that they originate from a combination of local and global
mechanisms. The local mechanism consists of the toral
folded nodes (TFN), which control the number of oscil-
lations in the burst envelope and organize the attendant
torus canards. The global mechanism funnels orbits into the
rotational sectors of the TFN.
Motivated by this discovery of the AMB and the TFN in

(1), we developed a new mathematical framework in [31]
for TFN, torus canards, and AMB solutions in slow-fast
systems with two (or more) slow variables. This theory
shows that the TFN, torus canards, and AMB solutions are
generic, so that they exist robustly in neuroscience, including
the Hindmarsh-Rose [34], Morris-Lecar-Terman [35], and
Wilson-Cowan-Izhikevich [4] models, as shown in [31].
Also, connections are made in [31] to torus canards in the
forced van der Pol equation [25], which is a prototypical
nonlinear oscillator in biology, electrical engineering,
and physics. Moreover, the numerical study of [36] shows
that generic torus canards also exist in a model of coupled
respiratory neurons in the pre-Bötzinger complex.
The robustness of the torus canards in these models

indicates that it may be possible to observe AMB exper-
imentally. While no direct examples have been found yet, a
possible example of AMB in experimental recordings can
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FIG. 5. The AMB rhythm consists of a local mechanism of
amplitude modulation and a global return mechanism. (a) Geo-
metric construction of the AMB rhythm. The critical manifold
(red surface), Sa∪Sr, possesses a curve of Hopf bifurcationsH of
the fast subsystem. The manifold of limit cycles (blue surface),
Pa∪PL∪Pr, emanates from H. The colored trajectories are the
ε-unfoldings of the singular attractor for ε ¼ 1 × 10−4 (cyan),
ε ¼ 5 × 10−4 (brown), and ε ¼ 1 × 10−3 (green). The time
evolution of the AMB solution is shown for (b) ε ¼ 0,
(c) ε ¼ 1 × 10−4, (d) ε ¼ 5 × 10−4, and (e) ε ¼ 1 × 10−3. In
each subfigure, the blue curve is the AMB rhythm itself. The
envelope color in each subfigure corresponds to the colors in (a).
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be found in leech heart interneurons [37,38]. The time
series reported in [39] from a model of leech heart exhibits
a rhythm generated by local mechanisms that appears to be
somewhat similar to AMB.
AMB solutions represent a form of combined amplitude

and frequency modulation (AM, FM). The oscillations in
the burst amplitude introduce a second, lower frequency
modulating the high-frequency fast oscillations, while at
the same time the envelope of the burst exhibits AM. As
shown in [28], both AM and FM are crucial to intracellular
calcium signalling. The potential of combined AM and FM
may also be of significance in communication and laser
technology.
Finally, we observe that our study of the PH model has

also identified the entire class of toral folded singularities
(TFS) to which the TFN belong. The other types of TFS,
which are presented in [31] have different types of torus
canard dynamics associated with them. Hence, there is the
potential for discovering further novel solutions.
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