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Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the
basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data
from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15–53
years) and scalp EEG data from healthy younger (20 –30 years) and older (60 –70 years) adults to test the neural noise hypothesis from a
1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic
of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency ( f ) itself. The slope of this decay,
the noise exponent (�), is often ��1 for electrophysiological data and has been shown to approach white noise (defined as � � 0) with
increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power
spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory.
These results provide electrophysiological support for the neural noise hypothesis of aging.
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Introduction
Communication is more efficient in the presence of less noise
(Shannon, 1948), whether that communication is between

friends in a crowded room or between a radio transmitter and
receiver tuned to a favorite station. As we age, we are faced with
the likelihood that our cognitive faculties will decline (Gazzaley et
al., 2007; Salthouse, 2010), our neural and behavioral response
times (RTs) will be slower and more variable (Salthouse, 2010),
our memories less certain (Nyberg et al., 2012), and our attention
less focused (Gazzaley et al., 2005). The neural noise hypothesis is
an attempt to account for these age-related changes and states
that, with aging, the effective signal to noise of neural communi-
cation diminishes (Cremer and Zeef, 1987). Reduced signal to
noise may arise as a function of increased spontaneous/baseline
neural spiking activity (Hong and Rebec, 2012), which in turn
disrupts the fidelity of neural communication, resulting in cog-
nitive impairments (Voytek and Knight, 2015).

The definition of noise adopted here derives from signal pro-
cessing wherein time-series data are characterized by the shape of
their frequency domain representation. A line in semi-log or log-
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Significance Statement

Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health
importance, especially considering the rapid aging of the world’s population. We find, in two separate human studies, that 1/f
electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates
age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing
problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced
deficits in neural communication.
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log space can approximate this “1/f noise” representation. The
slope of this line is the noise exponent where white noise, which is
serially uncorrelated in the time domain, has a flat spectral slope
of 0. Electrophysiological data, in contrast, often have a nega-
tive slope (Miller et al., 2009a; He et al., 2010; He, 2014). This
slope has been shown to change during sleep versus waking (Free-
man and Zhai, 2009) and with behavioral state (Podvalny et al.,
2015). One possible mechanism underlying this change is an al-
teration in the underlying population spiking statistics (Gao,
2015; Voytek and Knight, 2015). If the neuronal population is
highly correlated (a large number of spikes all occur relatively
simultaneously, with few aberrant units spiking at times different
from the population mode), then the aggregate local field poten-
tial (LFP) 1/f slope will be more negative. As the units within the
population spike relatively asynchronously, the LFP 1/f slope will
be flatter (Usher et al., 1995; Pozzorini et al., 2013; Podvalny et al.,
2015; Voytek and Knight, 2015). Within this framework, age-
related increases in neural noise would result in desynchronized
spiking activity, reflected by a flatter power spectrum (Hanggi
and Jung, 1995; Bédard et al., 2006; Sosnoff and Newell, 2011;
Hong and Rebec, 2012; Podvalny et al., 2015).

The second hypothesized consequence of increased neural
noise is a decoupling of population spiking activity from the on-
going low-frequency oscillatory neural field (Tort et al., 2010;
Lepage et al., 2011; Voytek and Knight, 2015). Empirical obser-
vations show that the phase of low-frequency oscillations, such as
theta (4 – 8 Hz) and alpha (8 –12 Hz), is comodulated with the
amplitude of high gamma power (80 –150 Hz) (Canolty et al.,
2006; Osipova et al., 2008; Voytek et al., 2010a). The low-
frequency oscillatory activity is thought to bias neural activity
dependent upon the ongoing oscillation phase (Canolty et al.,
2006; Voytek et al., 2010a) analogous to spike/phase coupling
(Fries, 2005; Montemurro et al., 2008; Fröhlich and Mccormick,
2010), and is proposed to play a role in coordinating neural com-
munication (Fries, 2005; Canolty and Knight, 2010; Voytek et al.,
2010a, 2013, 2015; van Der Meij et al., 2012). This phase/ampli-
tude coupling (PAC) is quantified by examining the change in
high gamma amplitude relative to the phase of a low-frequency
oscillation. In essence, when a region is strongly phase/amplitude
coupled, high gamma amplitude will be greater during some
phase intervals and less during others. By definition, if more neu-
rons are spiking in a more temporally random manner, popula-
tion spiking will be more random relative to the dominant
oscillatory mode, resulting in decreased PAC. Given that PAC
plays such an important role in cognitive functioning and inter-
regional neuronal communication (Voytek et al., 2015), we hy-
pothesize that increased 1/f noise would similarly result in
cognitive impairments (Voytek and Knight, 2015).

Materials and Methods
All data were analyzed in MATLAB (R2013b, Natick, MA) using custom
scripts.

Electrocorticography (ECoG) data collection. Data were collected from
15 patients with intractable epilepsy (4 female; 11 male) who were im-
planted with chronic subdural electrodes, the placement of which was
determined by surgeons based solely on the clinical needs of each patient
as part of a preoperative procedure to localize the epileptogenic focus.
Data were recorded at three hospitals: the Stanford School of Medicine,
the Johns Hopkins School of Medicine, or the University of California,
San Francisco. All participants gave written informed consent to partic-
ipate in the study in accordance with the procedures and review boards
established at each hospital and at the University of California Berkeley.

ECoG data were amplified �10,000, analog filtered (0.01–1000 Hz),
digitized, and downsampled to 1000 Hz. Data were rereferenced to the

common average off-line to avoid spatial bias due to the choice of intra-
cranial reference electrode (Boatman-Reich et al., 2010), high-pass fil-
tered above 1.0 Hz with a symmetrical (phase true) finite impulse
response filter (�35 dB/octave roll-off). Channels with low signal-to-
noise ratio were identified and removed from analyses (i.e., 60 Hz line
interference, electromagnetic noise from hospital equipment, amplifier
saturation, and/or poor contact with cortical surface). Epileptic channels
and epochs with seizure spread were also removed from analysis.

Only data from frontal, temporal, and supramarginal neocortical re-
gions during blocks where participants performed listening tasks were
included in analyses. These criteria were chosen based upon single-unit
data suggesting that neural noise increases in rat auditory cortical neu-
rons with age (Turner et al., 2005; de Villers-Sidani et al., 2010) and from
human ECoG findings suggesting that theta/high gamma coupling is
dominant in frontal and temporal neocortical regions during auditory
tasks (Voytek et al., 2010a).

EEG participants. All participants gave informed consent approved by
the University of California Berkeley Committee on Human Research.
EEG data were collected from 11 younger (20 –30 years old; 7 female; 4
male) and 13 older (60 –70 years old; 5 female; 8 male) adults using a
BioSemi ActiveTwo 64-channel DC amplifier with 24-bit resolution,
sampled at 1024 Hz. All subjects performed a visual working memory
paradigm (Voytek and Knight, 2010). Briefly, subjects were visually pre-
sented with one, two, or three lateralized colored squares for 180 ms;
these squares only appeared in one visual hemifield at a time. After a 900
ms delay, a test array of the same number of colored squares appeared in
the same spatial location. Subjects were instructed to manually respond
to indicate whether or not the test array was the same color as the initial
memory array.

Behavioral accuracy was assessed using a d� measure of sensitivity,
which takes into account false alarm rate to correct for response bias. To
avoid mathematical constraints in the calculation of d�, we applied a
standard correction procedure wherein, for any subjects with a 100% hit
rate or 0% false alarm rate, performance was adjusted such that 1/(2 N)
false alarms were added or 1/(2 N) hits subtracted where necessary
(where N indicates number of trials per subject). All behavioral measures
are the average performance across all three memory loads.

Power spectral density (PSD). PSD was estimated using Welch’s
method wherein the PSD was estimated for each channel separately using
N 2 s time windows with 50% overlap where the data time-series, g, were
multiplied by a 2 s Hamming window w giving g�. For EEG analyses, any
window containing eye blink or eye movement artifacts (as identified
from the ocular electrodes) were not included in the PSD estimate. PSD
is defined such that,

PSD � log10�N�1 �
n�1

N

2g̃�i
2�, (1)

where g̃�i is the discrete Fourier transformation of g�i. The slope of the
power spectrum (�n) was estimated using a linear regression approach in
semi-log space where the power P at each discrete frequency f was esti-
mated from the frequency itself from the following:

Pf � f�� � �, (2)

where f� is a two-column matrix composed of the discrete frequencies of
the bands of interest and a column of ones; � is the regression coefficient
(the slope of the model), and � is the error term. The shape of the ECoG
and EEG power spectra are such that � is typically negative. The slope of
the PSD is different from the power. This is important given that task-
related increases in neural activity result in an overall increase, an upward
shift, in the broadband and high gamma PSD (Manning et al., 2009;
Miller et al., 2009b).

Because scalp EEG poses unique problems with high-frequency (�40
Hz) noise from multiple non-neural sources, including scalp and eye
muscles (Yuval-Greenberg et al., 2008; Voytek et al., 2010b) and has a
lower noise floor compared with ECoG, these factors limit the ability to
estimate of the high gamma slope and preclude high gamma-based PAC
analyses. Although the ECoG results suggest that the high gamma power
range provides a sensitive estimate of small changes in spectral slope,
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theoretically, if the 1/f noise is great enough, noise-related changes in the
slope of the power spectrum should be evident even at lower frequencies,
providing a means for observing slope changes using scalp EEG. There-
fore, for scalp EEG participants, slope was estimated not from the high
gamma range, but from the (2–24 Hz) PSD, excluding power from visual
cortical alpha (7–14 Hz), which represents nonbroadband oscillations
and is thus not suitable for including in an estimate of broadband spectral
slope (Miller et al., 2009a).

Phase/amplitude coupling. To compute the comodulogram (see Fig.
2D), the data for each channel were first filtered in the theta range using
a two-way, zero phase-lag, finite impulse response filter (eegfilt.m func-
tion in EEGLAB) to prevent phase distortion. The filter order is defined
as 3r where r is the ratio of the sampling rate to the low-frequency cutoff
of the filter, rounded down. We then applied a Hilbert transform (hil-
bert.m function in MATLAB, The MathWorks) to construct a complex
valued time-series as follows:

h� 	n
 � 	� 	n
ei
�	n
, (3)

where a�[n] and 
�[n] are the analytic amplitudes and phases, respec-
tively, of the theta passband. The Hilbert phase and amplitude estimation
method yields results equivalent to sliding window FFT and wavelet
approaches (Bruns, 2004). The phase time-series 
 assumes values
within (��, �] radians with a cosine phase such that �� radians corre-
spond to the troughs and 0 radians to the peak. Theta troughs were
identified from the local minima of 
� using a window of �5% of the
theta cycle, and these troughs were used as time-locking events with a
window of �500 ms around the trough. These theta-phase-determined
event times were then used to create event-related spectra perturbation
plots. To calculate the event-related spectra perturbation, the ECoG data
were first filtered into separate, partially overlapping, logarithmically-
spaced passbands f with a 2 Hz bandwidth with center frequencies from 4
to 250 Hz. We seeded the first pass band such that fp(n) � [fL(n) fH(n)];
where for n � 1, fL(n) � 0.5, and fH(n) � 0.9. Successive bands were
calculated such that fL(n) � 0.85( fH(n�1)) and fH(n) � 1.1 � ( fH(n�1) �
fL(n�1))fL(n). The analytic amplitude (the absolute value, or modulus, of
hf) af for each passband f was estimated using the Hilbert transform,
normalized by its z-score as follows:

zf � � f
�1	 f  � f�, (4)

where �f is the mean of af, and �f is its SD. From this time series, the
average amplitude of each passband around the theta trough was
calculated.

PAC for each ECoG participant was calculated from 1000 randomly
sampled 10 s segments of data collected while the participants were per-
forming the auditory tasks, sampling equally from all channels and trials
included in the analysis. To get an estimate of the age/PAC correlation
error, 100 pulls of 1000 data segments were performed (see Fig. 2F );
however, the error around the PAC estimate was very low. Theta/high
gamma PAC was calculated by first filtering the data in separate theta
(4 – 8 Hz) and high gamma (80 –150 Hz) bands and extracting the ana-
lytic theta phase (
�) and analytic high gamma amplitude (a�) time
series. A second bandpass filter was then applied to a� using the same
filter parameters used to extract 
�, resulting in a new time series, a��. A
second Hilbert transform is then used to extract the phases of the theta-
filtered high gamma amplitude envelope as follows:

ha�� 	n
 � aa�� 	n
ei
a��	n
. (5)

PAC between theta and high gamma is defined as the length of the mean
vector between 
� and 
	�� using the following method (Penny et al.,
2008):

PAC�� � N�1� �
n�1

N

ei
�	n
�
a�� 	n
��. (6)

This gives a PAC estimate from [0,1] wherein a PAC�� of 0 means that
knowledge of the theta phase provides no information about high
gamma amplitude, whereas a PAC�� of 1 means that high gamma ampli-
tude can be perfectly predicted from the theta phase. This measure is

particularly sensitive to the level of noise (Tort et al., 2010) and is thus
ideal for our use case. To test the specificity of the PAC results, a range of
phase predictors were used to calculate PAC with high gamma ampli-
tude. These phase predictors had partially overlapping 2 Hz passband
center frequencies from 2 to 40 Hz, in steps of 1 Hz.

Results
ECoG results
We analyzed frontal and temporal cortical intracranial ECoG
data collected from 15 participants spanning 38 years of age (Fig.
1), who performed auditory passive phoneme listening, word
repetition, or auditory attention tasks (see Materials and Meth-
ods). These intracranial voltage recordings provided a means to
assess local population spiking activity in the human brain with
minimal contamination from non-neural sources (Voytek et al.,
2010b). Specifically, high gamma power in direct neocortical re-
cordings (usually in the range of 5–10 �V) correlates with neural
spiking (Mukamel et al., 2005; Cardin et al., 2009).

Consistent with the neural noise hypothesis of aging, in-
creased age is associated with a flatter, less negatively sloped high
gamma power spectrum, such that the slope of high gamma
power increases with age (r � 0.50, p � 0.027, one-tailed) (Fig.
2A,B). This effect remains significant after removing (partialling
out) the effect of high gamma power (r � 0.56, p � 0.018,
one-tailed), and high gamma power is uncorrelated with age
(r � �0.041, p � 0.44, one-tailed) (Fig. 2C), supporting a disso-
ciation between absolute high gamma power and the estimation
of 1/f noise from the high gamma power spectral slope (Podvalny
et al., 2015). In addition, aging was also associated with decreased
theta/high gamma PAC (r � �0.70, p � 0.002, one-tailed) (Fig.
2D,E), and this effect remained significant after removing the
effect of power in the theta (r � �0.62, p � 0.009, one-tailed) or
high gamma ranges (r � �0.71, p � 0.002, one-tailed). These two
empirically measured variables (slope of the power spectrum and
theta/high gamma PAC) account for 60% of the variance in age
(regression model, R 2 � 0.60, p � 0.004). To examine the spec-
ificity of the aging effect for theta/high gamma PAC, we calcu-
lated the correlation between age and the coupling of phase with
high gamma power across other phase-providing oscillatory
bands (1– 40 Hz, 2 Hz bandwidth, 1 Hz steps). A post hoc analysis
of the specificity of this age/PAC effect shows that age-related
changes in PAC were restricted to the theta range (p � 0.05, all
non-theta frequencies) (Fig. 2F).

Although these results are encouraging, there are several ca-
veats associated with these ECoG data. First, these ECoG data
were collected from participants with intractable epilepsy. Great
care was taken to remove data contaminated by ictal spiking ac-
tivity: channels with spread of seizure activity were identified by a
neurologist or epileptologist and, along with electrodes over sites
that were later surgically resected, were excluded from analysis.
We also note that the older participants have had epilepsy for a
longer time, which may lead to long-term neurophysiological
changes that might also affect the results. Second, even though
filter settings and digitization parameters were similar across
sites, differences in the amplifier and recording systems may have
impacted the results. We attempted to control for this effect by
including recording location as a covariate in the analyses, none
of which impacted the significant relationship between age and
spectral slope (p � 0.05 correlation after regressing out each
separate covariate).

Electroencephalographic results
To address the potential confounds that arose from the con-
straints of the ECoG recording environment, and to better exam-
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ine the relationship between behavior and 1/f noise, we collected
noninvasive scalp EEG from a group of healthy younger (20 –30
years old, n � 11) and older (60 –70 years old, n � 13) adults. All
EEG data were recorded using the same amplifier in the same
recording environment, thus minimizing possible confounds as-
sociated with recording system heterogeneity on 1/f noise esti-
mates. Both groups performed a lateralized visual working
memory task (Voytek and Knight, 2010) during EEG data collec-
tion (see Materials and Methods). Consistent with previous re-
ports of age-related working memory impairments, aging was
associated with decreased visual working memory performance
(d�: r � �0.57, p � 0.0035) as well as with slower RTs (r � 0.79,
p � 10�5) and more variable RTs (RTstd: r � 0.73, p � 10�4)
(Fig. 3A–C).

The low-frequency human electrophysiological power spec-
trum is dominated by non-broadband, high-power oscillatory
sources (Miller et al., 2009a, 2014). Furthermore, high-frequency
power is more difficult to interpret in the scalp EEG due to large,
non-neural artifacts from (e.g., saccades) (Yuval-Greenberg et
al., 2008) and scalp muscles (Voytek et al., 2010b). To avoid these
potential confounds, we focused on the slope of the power spec-
trum across a low-frequency range (2–24 Hz), excluding a 7–14
Hz alpha buffer segment to mitigate the impact of this high-
power, non-broadband spectral peak on estimates of the broad-
band slope (Fig. 3D). As reported previously (Polich, 1997), aging

was associated with decreased power in the theta and alpha (4 –14
Hz) ranges (r � 0.79, p � 10�5).

To assess the impact of 1/f noise on this low-frequency range,
we first analyzed the correlation between age and the low-
frequency spectral slope (2–24 Hz) in the ECoG data (2–24 Hz,
excluding 7–14 Hz). We find similar results as for the high-
frequency spectral slope: as age increases, the low-frequency
ECoG spectral slope also flattens (r � 0.63, p � 0.006, one-tailed,
excluding 4 – 8 Hz theta). In agreement with these ECoG results,
we also observe a significant correlation between age and low-
frequency spectral slope in the EEG cohort (r � 0.70, p �
0.00013) (Fig. 3E). Although this a priori analysis focused on
visual extrastriate 1/f noise, scalp topographic correlation analy-
ses reveal that 1/f noise over central-parietal (r � 0.66, p �
0.0004) and frontal midline scalp sites (r � 0.67, p � 0.0003) also
increases as a function of age (Fig. 3F).

Importantly, we also found that visual cortical 1/f noise was pre-
dictive of decreased working memory performance (r � �0.50, p �
0.014) and slower (r � 0.63, p � 0.001) and more variable RTs (r �
0.50, p � 0.014) (Fig. 4). We performed mediation analyses to assess
the impact of visual cortical 1/f noise on the relationship between
aging and the three behavioral measures (accuracy, RT, and RT vari-
ability) (Fig. 4, bottom). When visual cortical 1/f noise is accounted
for in the mediation analysis, the relationship between age and
accuracy becomes insignificant (from r � �0.57, p � 0.0035 to

Figure 1. Electrode locations for research participants. Intracranial ECoG data were collected from 15 participants (15–53 years of age) performing auditory tasks. Data from artifact-free
frontotemporal neocortical sites (yellow electrodes) were included in the analyses.

13260 • J. Neurosci., September 23, 2015 • 35(38):13257–13265 Voytek et al. • Age-Related Changes in 1/f Neural Electrophysiological Noise



r � �0.36, p � 0.091). That is, although age appears to explain 33%
of the variance in behavioral accuracy, this effect appears to be largely
statistically mediated by age-related increases in 1/f noise. Removing
visual 1/f noise variance from the relationship between age and be-
havioral accuracy drops the proportion of explained variance by
20% to 13%. In contrast, removing visual cortical 1/f noise variance

from the relationship between age and RT or RT variance had no
effect on their respective significances (p�0.01, both). Interestingly,
removing 1/f noise from the motor cortical regions contralateral to
the response hand, or from midline frontal regions, also had no effect
on the significant relationship between age and RT or RT variance
(p � 0.01, both).

Figure 2. ECoG results. A, Averaging power spectra by adults younger than 21 years (blue) and older than 40 years (red) illustrates the differences in the slope of high gamma power (outlined by
the black box); the high-frequency power “flattens out,” indicative of increased 1/f noise. B, Experimental results showing that, with increasing participant age, there is increased 1/f noise without
(C) a concomitant age-related increase in gamma power. Blue and red dots represent the subjects averaged in A. D, Example PAC comodulogram from one participant showing the relationship
between theta phase (4 – 8 Hz, bottom oscillation) and amplitude at frequencies from 4 to 150 Hz. E, Experimental results showing that theta/high gamma PAC decreases as a function of participant
age. F, Age-related changes in frontal and auditory PAC are specific to theta/high gamma PAC, as opposed to other phase-giving frequency bands. Dashed lines in F indicate significance cutoff ( p �
0.05, uncorrected). Error bars indicate SEM.

Figure 3. Behavioral and EEG results. In a visual working memory task, compared with younger adults (blue), older adults (red) are less accurate (A) and respond more slowly (B), with more
variability (C). D, The slope of the low-frequency power spectrum in the a priori visual cortical region of interest (F, white outline) is flatter in older adults compared with younger adults. 1/f noise
is estimated from the slope of the power spectrum (dashed lines), ignoring alpha oscillatory power (shaded region, 7–14 Hz). E, Older adults have more visual cortical 1/f noise compared with
younger adults. F, This effect is most prominent in visual extrastriate, parietal, and midline frontal cortex. Error bars indicate SEM.
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Discussion
These convergent results across invasive and noninvasive hu-
man electrophysiology provide strong evidence that aging re-
sults in increased 1/f noise in humans. Moreover, the EEG data
revealed a relationship between a marker of neural noise and
cognitive performance. Overall, these results form a general
framework that links aging, neural noise, oscillatory brain
voltage dynamics, and behavior. It is important to note that,
whereas most studies on neural noise in aging operationalize
noise as either behavioral or neural activity variability, the
main marker of neural noise used in this manuscript is a signal
processing definition based on the shape of the PSD. By defi-
nition, white noise is a stochastic signal with equal, positive
power at all frequencies, whereas 1/f noise, as seen in human
EEG, ECoG, fMRI, and even behavioral processes (Gilden et
al., 1995), arises due to the presence of temporal correlations
within the data (although the nature of the underlying process
giving rise to this phenomenon remains in contention)
(Wagenmakers et al., 2005).

Decades of human behavioral and neuroimaging evidence
suggest that neural noise increases with age, but these studies
have relied upon proxies for neural noise. One such proxy is
behavioral RT, the use of which is predicated on the inference
that a noisier brain would have greater behavioral variability
and slower information processing (Welford, 1981; Salthouse
and Lichty, 1985). fMRI studies define noise as signal variabil-
ity (Aguirre et al., 1998; D’Esposito et al., 1999; Huettel et al.,
2001) or related information theoretic measures (McIntosh et
al., 2008). However, the variability definition of noise may be

problematic given that trial-by-trial variability need not arise
from noise per se but rather may represent shifts in cognitive
strategy and/or represent an adaptive neural mechanism un-
derlying behavioral plasticity with aging (Ghosh et al., 2008;
Garrett et al., 2010, 2013). Defining neural noise is further
complicated by the fact that it is difficult to distinguish noise
from true signal in neural activity (Pinneo, 1966; Faisal et al.,
2008).

The scalp EEG spectral findings show a flattening of the
slope with decreases in power from 8 to 14 Hz and increases
between 14 and 25 Hz. These results have been previously
observed (Polich, 1997) without a contextual interpretation of
changes in spectral slope. The ECoG data show that gamma
activity increases with age, providing further evidence for age-
related flattening of the power spectrum (Hong and Rebec,
2012). We argue that, by considering the entire power spec-
trum as a unified statistical representation of the signal rather
than examining semiarbitrary frequency sub-bands, age-
related low-frequency power decreases and high-frequency
power increases underlie the same phenomenon: increased 1/f
noise causing a flattening of the power spectrum (Voytek and
Knight, 2015).

The PSD can be represented as the mixture of several pro-
cesses, namely, the 1/f noise component and any narrowband
oscillations present in the signal as well (Podvalny et al., 2015;
Voytek and Knight, 2015). The 1/f component itself reflects a
total offset (the broadband power) and the slope. Recent find-
ings provide evidence that the broadband power reflects the
aggregate spiking activity of the underlying neuronal popula-

Figure 4. 1/f noise and behavior. A, Greater visual cortical 1/f noise across younger (blue) and older (red) adults predicts lower working memory performance (top). Mediation analyses
(bottom) shows that visual cortical 1/f noise statistically mediates age-related visual working memory decline. Although aging is associated with both increased 1/f noise and decreased
visual working memory accuracy, and visual cortical 1/f noise predicts accuracy impairments, the relationship between age and accuracy became insignificant after including 1/f noise
in the model (bottom r/p value pairs). 1/f noise is also associated with longer RTs (B) and greater RT variability (C); however, it does not act as a mediating variable for either of these RT
measures.
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tion (Manning et al., 2009; Miller et al., 2009a, 2014). Com-
putational work shows that the slope of the PSD flattens when
the populating spiking activity is decoupled from an oscilla-
tory regimen (Freeman and Zhai, 2009; Voytek and Knight,
2015). This effect may be driven by increases in the local exci-
tation/inhibition ratio, which has been defined more broadly
as “noise” (Rubenstein and Merzenich, 2003). Additionally,
recent evidence has found that ECoG PSD slope changes with
behavioral state (Podvalny et al., 2015). These slope changes
are interpreted as possible changes in the temporal correlation
of the underlying neuronal population, consistent with the
hypothetical framework presented herein, as well as with pre-
vious reports (Usher et al., 1995; Pozzorini et al., 2013; Gao,
2015; Voytek and Knight, 2015). Of note is the observation
that, in some neural populations, changes in 1/f slope are
correlated with band-limited gamma activity, although this
effect may be more restricted to visual cortical populations
(Hermes et al., 2015; Podvalny et al., 2015). Although we re-
stricted our ECoG analyses to frontotemporal populations, we
controlled for overall high gamma power, which did not affect
the observed relationship between age and 1/f slope. Further-
more, we observe a striking specificity of the age/PAC rela-
tionship limited to the theta band (Fig. 2F ), with no effect in
other frequencies. This is likely due to our use of a narrower
bandwidth (2 Hz) for the full post hoc analysis of the full
spectrum, as opposed to the 4 Hz a priori theta band analysis.
Such narrowband theta effects in the human neocortex are not
without precedent, with interelectrode phase locking during
listening/word processing across even long cortical distances
significantly higher for narrowband theta compared with even
nearby frequencies (Canolty et al., 2007; compared their
Fig. 8 A).

The EEG results suggest that age-related changes in visual
cortical 1/f noise are associated with cognitive decline. It is
important to note that this effect occurred in a specific work-
ing memory task. Interestingly, whereas many studies exam-
ining the neural noise hypothesis of aging use RT variability as
a proxy metric for neural noise, our mediation analyses sug-
gest that visual cortical, motor cortical, or frontocentral 1/f
noise does not contribute substantially to age-related RT vari-
ability, but rather 1/f noise statistically mediates the relation-
ship between age and visual working memory decline. Here,
mediation means that the relationship between aging and
working memory decline is reduced when 1/f noise is taken
into account, which suggests that the observed correlation
between aging and working memory decline is partially dri-
ven by age-related changes in 1/f noise. This finding is parsi-
monious with prior fMRI work showing that aging and signal
variability mediate an age-related behavioral impairment in
financial risk-taking (Samanez-Larkin et al., 2010).

Our results stand in contrast to other studies that use dif-
ferent metrics of noise. Both interindividual and intraindi-
vidual behavioral variability has been shown to correlate with
structural, functional, and neuromodulatory systems (Mac-
donald et al., 2006). For example, reductions in frontocentral
theta intertrial phase coherence, a measure of phase consis-
tency that decreases with increasing phase noise, are predictive
of increased RT variability across the lifespan (Papenberg et
al., 2013). RT variability has also been shown to increase with
decreased dopamine binding potential across frontal and pa-
rietal cortices, the cortical distribution of which differs with
aging (MacDonald et al., 2012). Both of those experiments,
however, made use of tasks without delay periods, substan-

tially different from the visual working memory task used in
our experiment. Although we focus on the potential detri-
ments of 1/f noise, in certain cases noise plays an important
role in the CNS and may actually improve signal detection in
some situations with weak stimuli via stochastic resonance (Li
et al., 2006b; McDonnell and Abbott, 2009). Previous neuro-
computational models show that increased noise in aging is
associated with deficits in neuromodulatory systems, leading
to diminished neuroplasticity (Li et al., 2006a) and reduced
efficacy of stochastic resonance for stimulus detection (Li et
al., 2006b). The method of estimating neural noise used here is
computationally efficient and easily estimated from scalp
EEG, making it useful for studying the effects of noise on
cognitive functioning and in disease states associated with in-
creased noise, such as autism and other neuropsychiatric dis-
orders (Dinstein et al., 2012; Voytek and Knight, 2015).

Understanding the basic neurophysiology underlying age-
related cognitive decline is an emerging public health issue.
The world’s population is rapidly aging: adults 55 years or
older are the fastest growing population in the labor market
(Toossi, 2012). Combating cognitive decline will require an
increased understanding of the fundamental anatomy and
physiology of aging. Here, through the use of a general neuro-
computational framework, neural electrophysiology is linked
to age-related cognitive decline. Given that cognitive decline is
considered the most disabling consequence of aging (Bayles et
al., 1987), insights into the biological basis of age-related cog-
nitive decline provides new possibilities for improving the
quality of life in an increasingly aging world. In addition to
revealing a neurophysiological correlate of cognitive deficits
with aging, this approach may provide an estimator for ex-
ploring neural underpinnings of cognitive changes across a
variety of disease states.
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Macdonald SW, Nyberg L, Bäckman L (2006) Intra-individual variability in
behavior: links to brain structure, neurotransmission and neuronal activ-
ity. Trends Neurosci 29:474 – 480. CrossRef Medline

MacDonald SW, Karlsson S, Rieckmann A, Nyberg L, Bäckman L (2012)
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