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Over the past decade, networks have become a leading model to illustrate both the anatomical relationships
(structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain
regions. The relationship between these two levels of description remains incompletely understood and an
area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain struc-
tural architecture. In addition, although theory suggests that brain communication is highly frequency depen-
dent, how structural connections influence overlying functional connectivity in different frequency bands has
not been previously explored. Here we relate functional networks inferred from statistical associations between
source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by prob-
abilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time
scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband
signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG es-
timates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands
evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly
reduced for high frequency bands compared to low frequency bands. The association between cortical currents
and underlying white matter connectivity highlights the obligatory interdependence of functional and structural
networks in the human brain. The increased dependence on structural support for the coupling of higher
frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain
dynamics at fast time scales.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Network science provides an intuitive framework to study brain
organization. Over the past decade, networks have become a leading
model to illustrate both the anatomical relationships (structural net-
works) and the coupling of dynamic physiology (functional networks)
linking separate brain regions. Alterations in functional and structural
brain networks have been reported in normal cognitive processes
(Uhlhaas et al., 2009; Hipp et al., 2011), across development
(Hermoye et al., 2006; Micheloyannis et al., 2009; Power et al., 2010;
Boersma et al., 2011; Smit et al., 2012; Chu et al., 2014), and in a wide
range of neurological diseases (de Haan et al., 2009; Uhlhaas and
Singer, 2010; Kramer et al., 2010). Although brain functional networks
are embedded in anatomical space, a complete understanding of the
340, Boston, MA 02114, USA.
associations between functional and structural networks remains an
active research area (Rubinov et al., 2009; Honey et al., 2009, 2010). A
better understanding of how anatomical scaffolds support complex,
temporally organized brain activity is necessary to study normal cogni-
tive processes, as well as to improve identification and prediction of
alterations in brain function in disease states.

Brain structural networks are believed to conserve energy by mini-
mizing longer axonal projections while simultaneously maximizing in-
tegration between local brain regions (Bullmore and Sporns, 2009;
Chklovskii et al., 2002; Klyachko and Stevens, 2003). Tissue based
dissection and tracing methods in non-human primates have found
that functionally related cortical areas are connected by shorter ana-
tomical path length (Felleman and van Essen, 1991; Hilgetag et al.,
2000; Averbeck and Seo, 2008). New analysis techniques applied to
modern neuroimaging data have enabled in vivo evaluation of white
matter tracts to map the anatomical wiring between brain regions as
well as the correlations between hemodynamic blood-oxygen level
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dependent (BOLD) signal fluctuations in different brain regions. Work
in humans has consistently reported a strong association between
structural and functional brain networks obtained using co-registered
white matter tractography with low frequency BOLD oscillations
(Greicius et al., 2009; Damoiseaux and Greicius, 2009; Rubinov et al.,
2009; Baria et al., 2011; Goni et al., 2014). Computational models simu-
lating dynamic activity suggest that structural networks constrain func-
tional networks across many times scales (Ponten et al., 2010; Honey
et al., 2007; Hlinka and Coombes, 2012). However, in human studies
and simulations, brain anatomy does not fully predict the spontaneous
functional associations observed.

Prior work relating functional and structural brain networks has fo-
cused on functional networks derived from hemodynamic oscillations
in the brain, a surrogatemarker for neuronal activity. How andwhether
the associations between direct measures of cortical currents relate to
underlying brain structural architecture remains unclear. Recent work
has shown that fMRI BOLD signal fluctuations may co-localize with
slow fluctuations in EEG gamma power (He and Raichle, 2009; Ko
et al., 2011), suggesting that functional networks inferred from cortical
currents should correspond to underlying structural networks. But,
the relationship between the hemodynamic signals measured by
fMRI and brain electrophysiology remains controversial (Bartels
et al., 2008; Britz et al., 2010; Hlinka et al., 2010; Christen et al.,
2014). In addition, although theory and observation suggest that
higher frequencies tend to integrate more focal regions and lower
frequencies broader cortical regions (Singer, 1999; Kopell et al.,
2000; Miller et al., 2007; He and Raichle, 2009; Tallon-Baudry,
2009; Baria et al., 2011), whether structural connections influence
overlying functional connectivity in a similar manner across differ-
ent frequency bands remains unknown.

To directly address these questions, we evaluated functional net-
works inferred from statistical associations between localized cortical
currents using electrical source imaging (ESI) techniques, and corre-
sponding cortico-cortical structural brain connectivity determined by
probabilistic white matter tractography. Sophisticated techniques in
ESI provide accurate localization of cortical source activity from high-
density scalp EEG signals with fine temporal and spatial resolution
(Hämäläinen and Sarvas, 1989; Michel et al., 2004). We evaluated the
spontaneous fluctuating cortical brain activity over a long time scale
(minutes) and related the inferred functional networks to underlying
structural connectivity for broadband signals, aswell as in seven distinct
frequency bands. We found that cortical networks derived from ESI
partially reflect both direct and indirect underlying white matter con-
nectivity in all frequency bands evaluated. In addition, we found that
although long-range functional connectivity is reduced in high fre-
quency bands compared to low frequency bands, this reduction is
significantly less when structural support is present. These results
provide direct evidence for a link between structural anatomy and
cortical functional connectivity in the human brain.

Material and methods

Patients with high density EEG (70 electrodes), digitized elec-
trode coordinates, and high resolution diffusion tensor imaging
Table 1
Patient and EEG data characteristics. LEV= levetiracetam; OXC= oxcarbazepine; CBZ= carba
LRZ = lorazepam; LCM= lacosamide; GBP = gabapentin.

Patient Age Diagnosis

1 11 years L temporal cortical dysplasia
2 16 years R frontal cortical dysplasia
3 15 years Non-lesional
4 10 years Non-lesional
5 18 years R temporal cortical dysplasia
6 17 years R mesial sclerosis
7 19 years L mesial sclerosis
(DTI; 60 diffusion-encoding directions, 1.85 mm isotropic voxels)
were retrospectively identified from clinical evaluations performed at
the Massachusetts General Hospital Athinoula A. Martinos Center for
Biomedical Imaging between 1/2009 and 12/2012. Patients identified
for inclusion were 10–19 years of age, all female, and undergoing
evaluation due to epilepsy from a variety of etiologies. Clinical infor-
mation for these subjects is listed in Table 1. All EEGs were recorded
in the interictal state. Analysis of the data from these patients was
performed under protocols approved and monitored by the local
Institutional Review Board according to National Institutes of Health
guidelines.

EEGs were recorded with a 70-channel electrode cap, based on the
10–10 electrode-placement system (Easycap, Vectorview, Elekta-
Neuromag, Helsinki, Finland) in the quiet resting or sleep state. The
positions of the EEG sensors were determined prior to data acquisition
with a 3D digitizer (Fastrak, Polhemus Inc., Colchester, VA). The
sampling rate was 600 Hz and the data were filtered with high- and
low-pass filters (third-order Butterworth, zero-phase shift digital filter-
ing) from 1–50 Hz for analysis using the MATLAB Signal Processing
Toolbox and custom software. Data were visually inspected and large
movement, muscle artifacts and electrodes with poor recording quality
removed. A minimum of 2 min (range 122–199 s) of artifact-free
recording from each patient was used for analysis. This epoch size
has been previously demonstrated to be sufficient to produce high
similarity between inferred functional networks within patients
across different states of consciousness (Chu et al., 2012).
Electrical source imaging

Source analysis of EEG data was performed using the MNE software
package (Hämäläinen and Sarvas, 1989; Sharon et al., 2007; Gramfort
et al., 2013) with anatomical surfaces reconstructed using Freesurfer
(Fischl, 2012). MNE provides a distributed source estimate of cortical
currents incorporating constraints from the patients' MRI, transforming
the data to brain space without requiring heuristic choices or strong
assumptions about the sources.

Digitized electrode coordinates were aligned using the nasion and
auricular points as fiducial markers. Each patient's cortical surface was
reconstructed from T1-weighted magnetization-prepared rapid acqui-
sition gradient-echo (MPRAGE) data (Fischl, 2012). Head modeling
utilized a three-layer boundary element method (BEM) model that
was generated using the reconstructed cortical surface and fast low-
angle shot (FLASH) MRI data, composed of the scalp, skull and brain
with electrical conductivities of 0.33 S/m, 0.0042 S/m and 0.33 S/m,
respectively (Hämäläinen and Sarvas, 1989). A three dimensional grid
with 5 mm spacing was used to form the solution space. The forward
solution was calculated by using the BEM. The inverse operator was
computed from the forward solutionwith a loose orientation constraint
of 0.6 to eliminate implausible sources and 2 μV as the estimate of EEG
noise. The closest gray/white junction point corresponding proximally
to the digitized location of each scalp electrode was found for each
patient (Fischl, 2012) and the source activities were extracted from
the midpoints of these 70 regions of interest (ROIs).
mazepine; LTG= lamotrigine; CLZ= clobazam; VPA= valproic acid; PHN= phenytoin;

Medications EEG state EEG data length

LEV, OXC Wake, eyes closed 167 s
LTG, CBZ Sleep (N2) 161 s
CLZ, Sleep (N2) 199 s
VPA, CBZ Wake, eyes closed 154 s
LTG, PHN, LEV, LRZ Wake, eyes closed 122 s
GBP, LCM Sleep (N2) 162 s
CBZ Sleep (N2) 132 s
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White matter tractography

High resolution MRI data were acquired on a 3 T Magnetom Trio
scanner (Siemens, Erlangen, Germany) using a 32-channel head coil
with the following sequences: DTI (60 diffusion-encoding directions,
TE = 82 ms, TR = 8080 ms, flip angle = 90°, voxel size =
1.85 × 1.85 × 1.85 mm, diffusion sensitivity of b = 700 s/mm2),
MPRAGE (TE = 1.74 ms, TR = 2530 ms, flip angle = 7°, voxel size =
1 × 1 × 1 mm) and multiecho FLASH (TE = 1.85, 3.85, 5.85, 7.85, 9.85,
11.85, 13.85, 15.85 ms, TR = 2000 ms, flip angle = 5°, voxel size =
1 × 1 × 1 mm).

MPRAGE data were co-registered to the DTI data using an affine
transformation for each subject. The electrode positions were then
transformed into DTI space based on the co-registration matrix, and
the alignment was verified visually. ROIs with a sphere radius of
16 mm were defined as the nearest main vertex in the white matter
surface to each digitized electrode coordinate. This ROI size was deter-
mined based on the expected surface resolution obtained using high
density EEG recordings (Nunez and Srinivasan, 2005). In this way,
ROIs for structural network analysis were chosen to overlap with ROIs
used for constructing the functional networks. Overlapping volumes
between neighboring ROI pairs were manually removed prior to
tractography analysis.

For white matter connectivity analysis, probabilistic tractography
(Probtrackx2 through FSL 5.0.4/FDT — FMRIB's Diffusion Toolbox 3.0;
FMRIB's Software Library)wasused to process theDTI data, as described
in detail in (Behrens et al., 2003, 2007). Briefly, bedpostx was applied to
create an estimation of diffusion parameters (e.g., distribution of princi-
pal diffusion directions) on a voxel-wise basis. Probtrackx was then
used to repeatedly sample from the distributions, each time computing
a streamline (inferred fiber tract) through these local samples, thus
generating a connectivity distribution on the location of the true
streamline (Behrens et al., 2007). By accounting for the inherent uncer-
tainty in the distribution of diffusion vectors within each voxel, the
probabilistic tractographymethod provides greater reliability of quanti-
tative connectivity measurements than deterministic tractography
methods.

User-specified ROI–ROI pair masks were used to calculate the con-
nectivity distribution between a seed ROI and a target ROI bidirectional-
ly for each ROI pair based on the EEG ESI location ROIs. A termination
maskwas applied to the target ROI becausewewere interested in quan-
tifying the number of streamlines that reached the target ROI and not
the number of voxels traversed by streamlines within the target ROI.
In this way, individual streamlines were counted only once when they
reached the edge of the target ROI. To normalize for target ROI volume,
the mean number of streamlines per voxel was then computed. 1000
streamlines were sampled with a 0.2 curvature threshold with distance
correction on to produce connectivity distributions representing the
mean length of the streamlinesmultiplied by the number of streamlines
that originated from the seed ROI and reach the target ROI. We note
that all of our reported results were qualitatively similar when using
distance correction off, but the number of long distance structural
connections identified was negligible without distance correction.
Because proximal nodes are known to be highly connected in both
structural and functional networks due to true anatomical and physio-
logical connectivity as well as spatial bias in measurement techniques
(Chu et al., 2012; Li et al., 2012), we report our results with distance
correction on in order to highlight correlations between long distance
structural and functional connections. Using the number of streamlines
launched from the seed ROI and the number of voxels in the target ROI
allows for calculation of a Connectivity Index (adapted from McNab
et al., 2013):

CI ¼ ½Mean # of distance weighted streamlines that reach the target
ROI = total # of streamlines propagated from seed ROI�:
The CI values for each ROI pair were placed in a connectivity matrix
to generate the structural network for each patient. The sameprocedure
was performed switching the seed and target ROIs and a symmetric
connectivity matrix generated for each patient. The structural network
processing stream is outlined in Figs. 1A–D.

Construction of functional networks

To assess the associations between activities recorded at two
ROIs, we use two measures of linear coupling: cross correlation and
coherence. For the correlation networks, the cortical current activity
obtained using MNE were segmented into contiguous 1 s intervals.
We chose this window size to balance signal stationarity and accu-
rate assessment of the coupling measure. Within each window, the
data were first normalized from each ROI to have zero mean and
unit variance before coupling analysis. The maximal cross correlation be-
tween all ROI pairs was then calculated, allowing a lag of +/−100 ms.
The choice of lag time was selected to encompass the duration of
known neurophysiological processes and cross-cortical conduction
times (Varela et al., 2001; Premoli et al., 2014). This resulted in a single
value (the maximum value of the cross correlation computer over lags
of +/−100 ms) assigned to each ROI pair. For the coherence networks,
the same segments of source activity were analyzed. The coherence was
computed using a Hann taper and treating each segment of source
activity as a separate trial. In this way, the coherence measures phase
consistency across time. The coherence was computed in the frequency
bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma
(12–15 Hz), beta 1 (15–20 Hz), beta 2 (20–30 Hz), and gamma
(30–50 Hz).

For inference of significant coupling, for eachpatientwe performed a
bootstrap procedure to create 10,000 surrogate coupling values for
each ROI pair by shuffling the time intervals and ROI labels. More
specifically, to generate a realization of surrogate data, 1 s of data
at each ROI was chosen (randomly, with replacement) from all 1 s in-
tervals and ROIs for that patient. This procedure preserved proper-
ties of the signals (e.g., the power spectrum) while disrupting the
temporal and spatial ordering. For each interval of surrogate data
created in this way, we computed a functional network using the
same procedures as applied to the observed data (described in detail
below). The resulting distribution of 10,000 coupling values was
used to compute a p-value for the observed coupling of each ROI
pair. Those ROI pairs with p-values below a threshold were assigned
an edge to create a functional network (Kramer et al. 2009). The
threshold was determined by correcting for multiple comparisons
using a linear step-up false detection rate controlling procedure
with q= 0.05. For this choice of q, 5% of the edges in a functional net-
work are expected to be falsely declared (Benjamini and Hochberg,
1995). Functional networks were then computed for each patient
using this statistical threshold to identify significant coupling and
remove spurious coupling due to the inherent properties of the dy-
namic data. For the correlation measure, a binary network was
then inferred for each 1 s segment. In some analyses and for visual
inspection, these binary networks were averaged across segments
to create a representative weighted network reflecting the average
properties of the data over time, where the edge weight or strength
reveals the consistency of an edge appearance across time. We
have previously demonstrated that this technique identifies core
functional networks that remain consistent across days (Kramer
et al., 2011; Chu et al., 2012). The calculation of the coherence differs
in that this measure requires a notion of “trials”. Here, we chose to let
each 1 s interval represent a “trial”, and therefore the coherence
assessed the phase relationship between two signals across the
entire ensemble of 1 s segments for a patient. The result is a single
coherence network that represents the entire duration of data for a
patient. A high coherence value in the resulting network represents
a consistent phase relationship between two signals over time.



Fig. 1. (A–D) Structural network processing stream. (A) For each patient, electrodes are co-registered to the patient's structural MRI (red) and ROIs at the closest gray-white junction se-
lected (green). (B) Diffusion tensor images are processed for fiber tracking using Probtrackx for quantitative probabilistic tractography. (C) Track counts between each ROI pair (diameter
3.2mm) are estimated and stored (D) in aweighted adjacencymatrix. (A, E–H) Functional network processing stream. (E) Voltage tracings are obtained from high density electrodes and
electrical source imaging estimates computed at each ROI corresponding to those used for tractography. Maximal coupling between each ROI pair is measured for each 1 s epoch and sig-
nificance determined to identify edges. This procedure is repeated for each ROI pair (F) and for each data epoch (G). Binary adjacencymatrices are averaged across the entire data sample
and (H) stored in a summary weighted matrix representing the proportion of edges in all 1 s epochs with significant correlations. A similar procedure is applied for coherence networks.
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Edges declared significant were assigned a weight or strength equal
to the coherence value. We note that both measures (the averaged
correlation network and the coherence) produce a single weighted
network that identifies the most consistent functional relationships
across segments for a patient. The functional network processing
stream is outlined in Figs. 1A, E–H.

Network measures

To evaluate direct and indirect anatomical connectivity, we se-
lected a fundamental measure of graph structure – the path length –

defined as the smallest number of edges traversed in traveling be-
tween two nodes, and here computed using the function reachdist.m
from the Brain Connectivity Toolbox (Rubinov and Sporns, 2010).
We note that all nodes are reachable in all networks considered
here. The average path length is defined as the average of the path
length over all node pairs. To compute the path length, we first con-
verted the weighted structural and functional networks for each
patient to a binary network by including an edge between nodes
whose weight exceeded zero.

To analyze the similarity between two networks, we computed the
normalized two-dimensional (2D) cross correlation with zero shift
between the two networks, each represented by its adjacency matrix.
The two-dimensional cross correlation is a templatematching proce-
dure used commonly to compare similarities between two images.
When applied to two images of equal size with zero lag (as used
here), it provides ameasure of the point-by-point similarity between
the two images. This method is widely used to compare pixel time
courses in fMRI imaging analysis (see for example, Hyde and
Jesmanowicz, 2012) and thus was selected for this analysis. For
each adjacency matrix, the scale, s, was calculated as the sum of its
elements squared. The 2D cross correlation is then normalized by
the square root of the product of s for each matrix. We note that, in
the normalization, the diagonal elements of each adjacency matrix
and the edges identified at zero lag are fixed to zero.

In order to interpret the similarity between the observed functional
and structural networks, we compared them to random networks.
Because network structure can be dramatically influenced by a
network's degree distribution (Faust, 2007; Newman et al., 2001),
random networks (configuration models) were generated by shuffling
each patient's functional or structural network while preserving the
degree distribution (Newman, 2010).

Statistical tests

In order to evaluate the relationship between functional connectivi-
ty, and path length and frequency band, main effects between were
evaluated using a one-way ANOVA test. For all pair-wise comparisons,
t-tests were performed.

Generalized linear models

To clarify the relationship between functional connectivity strength,
structural connectivity strength, a network measure (anatomical path
length), and inter-node linear distance, we implemented a generalized
linear model (GLM). Generalized linear models (McCullagh and
Nelder, 1989) have been utilized in many neuroscience contexts, espe-
cially in the analysis and characterization of spike train data (Brown
et al., 2004; Truccolo et al., 2005; Czanner et al., 2008; MacDonald
et al., 2011; Eden et al., 2012a, 2012b) and provide a means to evaluate
the independent contribution of different predictor variables to the
value of a response variable. Here, we related the response variable –

the functional connectivity – to three predictor variables and their
combinations: the structural connectivity strength (scaled tomaximum
of 1), the inter-node linear distance (scaled to amaximumof 1), and the
structural path length between nodes (measured in integer units). For
the correlation networks, we counted the number of times an edge
occurred between two nodes across the networks inferred from each
1 s segment.We chose a binomial distribution for the response variables
(the integer number of edges detected across segments), and the logis-
tic link,

log
μ

1−μ

� �
¼ βX

where μ is the expected value of the functional connectivity between
two nodes, the design matrix X is a function of the predictors (the
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structural connectivities, the distances, and the path lengths), and βare
the unknown coefficients to determine.

We constructed three GLMs to fit the functional connectivity as a
function of the predictors. In the first, we assumed that the number of
edges observed in the correlation network depends only on the distance
between the sources; we label this the distance (D) model, which repre-
sents the null hypothesis that the functional connectivity depends only
on distance. This is the simplest model we consider, and is consistent
with the notion that functional coupling depends strongly on distance.
To this baselinemodelwe add additional features and examinewhether
these additions improve the model accuracy. In the second model,
which we label the distance + structure (D + S) model, we assumed
that the functional connectivity depends on both distance and the struc-
tural connectivity between nodes. Again, this model is consistent with
the notion that structural connectivity will impact functional connectiv-
ity. Finally, in the third model, we incorporated a measure of the struc-
tural network – the path length (see Network measures) – as a third
predictor; we label this the distance + structure + path length
(D+ S+ PL) model. We note that many other models –with additional
predictors –may be considered. However, we focus here on these three
models, with the goal of characterizing the relationship between the
physical distances between sources and the structural connectivity on
the inferred functional networks.

To compare the three models, we compute the Akaike information
criterion (AIC), defined as

AIC ¼ Δþ 2n

whereΔ is the deviance of themodel, and n is the number of coefficients
in the model. We note that the last term (“2n”) causes the AIC to in-
crease as the model complexity (i.e., number of predictors) increases.
Therefore, a model with many predictors may have a higher AIC (and
therefore worse performance) than a model with fewer predictors. For
each model, we computed the coefficients β and deviance using the
combined results for all patients, and chose themodel with the smallest
AIC. To compare AIC, we report the change in AIC, which is the AIC value
for a given model minus the AIC of the best performingmodel. We note
that in itself, the value of the AIC for a given data set has no meaning.
But, when compared among a series of models, the model with the
lowest AIC explains the data set best. For this best performing model,
we confirm the model fit by checking that the Pearson residuals are
approximately normally distributed (Kass et al., 2014).

For the correlation networks, the model performance was consis-
tently poor when all observed functional connections were used; the
Pearson residuals deviated strongly from the normal distribution
when the weakest functional network edges were included (Supple-
mentary Fig. 1, Left). To focus the model and improve performance,
we refined the fitting procedure by selecting only the most common
functional connections for each patient, here defined as edges that ap-
pear in more than 10% of the 1 s networks for a patient. Modeling this
more restricted set of strong functional connections, the Pearson resid-
uals better approximated the normal distribution. We note that the
functional connections are not completely described (as measured by
the proportion of deviance explained, see Results) with the three
predictor variables evaluated here. This is consistent with existing
experimental and modeling work which has shown that functional
connectivity cannot be completely explained by underlying structural
connectivity (Greicius et al., 2009; Damoiseaux and Greicius, 2009;
Rubinov et al., 2009; Baria et al., 2011; Goni et al., 2014; Ponten et al.,
2010; Honey et al., 2007; Hlinka and Coombes, 2012). Higher resolution
structural connectivity data and introduction of additional covariates
(e.g., intracortical and subcortical connectivity patterns, etc.) may fur-
ther improve model performance.

For the coherence networks, we followed a similar approach to im-
plement a generalized linearmodel. For these networks, the edge values
are continuous numbers from 0 to 1. To model these edge values, we
chose in the GLM an inverse Gaussian distribution for the response
variables, and the identity link. The inverse Gaussian distribution is con-
sistent with the expectation of many small coherence values, and few
large values. As for the correlation networks, the predictors are the
distance between sources, the structural connectivity, and the path
length, and we estimate the unknown coefficients β for the different
models: distance (D), distance + structure (D + S), and distance +
structure + path length (D + S + PL).
Results

Functional network connectivity partially reflects the underlying structural
network

On direct visual inspection, each patient's weighted functional
(correlation and coherence) and structural adjacency matrices were
non-random and had overlapping features (Fig. 2A). To evaluate
the similarity of the network connections, we computed the two-
dimensional crosscorrelation between the weighted functional correla-
tion and coherence networks and the underlying structural network for
each patient. Functional and structural networks were significantly
more similar within patients than when compared to configuration
models, which randomize the edgeweights but preserve the degree dis-
tribution of the functional and structural networks (correlation and co-
herence networks for each frequency band evaluated p b 0.00001;
Fig. 2B). For coherence networks, we found that the gamma band net-
works were significantly more similar to the structural networks than
the delta (p = 0.026) and theta band networks (p = 0.047, Fig. 2B).
There was no detectable main effect of age on functional and structural
network similarity (ANOVA, p = 0.99) and no difference detected be-
tween data obtained in the wake versus sleep state (p = 0.63). To fur-
ther evaluate the relationship between each patient's functional and
structural networks, we computed the average edgeweight in the func-
tional connectivity correlation networks for structurally connected and
for structurally unconnected nodes. We found that within each patient,
the functional connectivity between structurally connected nodes was
significantly stronger than between structurally unconnected nodes
(p b 0.00001, Fig. 2C). This finding held for the coherence networks in
each frequency band evaluated (p b 0.00001). In addition, we evaluated
the similarity of functional and structural networks obtained across
patients. We found some consistency in both functional and structural
networks beyond random; however, structural networks were signifi-
cantly more similar between patients than functional networks (Fig. 2B,
p b 0.00001), consistent with the notion that all patients share some
common features of anatomical connectivity.
Connections are more common between nodes that are spatially close

For each patient, we found that both structural and functional
edges were more common between physically neighboring nodes
(Fig. 3). The data possess a broad distribution of distances between
nodes, ranging from 0.6 cm to 11.9 cm, with a mean inter-node dis-
tance of 5.9 cm (Fig. 3A). Both the functional connectivity correlation
network strength and the structural connectivity strength tended to
decrease as the inter-node distance increased, with the decrease
in the structural connectivity strength occurring more rapidly
(Figs. 3B,C). Qualitatively similar results were found for coherence
networks in all frequency bands evaluated. These results are consis-
tent with the notion that brain connectivity tends to decrease with
distance. However, we note that weak functional and structural con-
nectivity appear across all inter-node distances; therefore, although
spatial proximity strongly impacts network connectivity, distance
alone is not sufficient to deduce the functional or structural associa-
tion between two nodes.



Fig. 2. Structural and functional networks are topologically similar. A. Examples of structural and functional adjacency matrices from one patient. Similarity between structural network
architecture and crosscorrelation and coherence functional networks is visually evident. B. The network similarity as measured by the two-dimensional cross correlation (+/− standard
error) is plotted for configuration models with degree distribution preserved (black), each patient's structural and functional correlation network (light gray), all patient's structural and
functional coherence networks (colored bars), and between all patients functional networks (mediumgray), and all patients structural networks (dark gray). Patients' structural and func-
tional (correlation and coherence) networks are significantly more correlated than random (p b 0.00001). Coherence networks in the gamma band were more similar to structural net-
works than coherence networks in the delta (p = 0.026) and theta (p = 0.047) bands. Between patients, both structural and functional correlation networks were more similar than
random networks (p b 0.00001). Structural networks were significantly more similar across patients than functional networks (p b 0.00001). C. Average correlation network functional
connectivity edge strength (+/− standard error) is plotted for each patient for structurally connected (blue) and structurally unconnected (red) node pairs.Mean functional connectivity
between structurally connected nodes is significantly higher in each patient (p b 0.00001). Similar findings occur for coherence networks in each frequency band evaluated (p b 0.00001).

28 C.J. Chu et al. / NeuroImage 108 (2015) 23–33
White matter connectivity predicts functional connectivity beyond
inter-node distance alone

Given the strong relationship between inter-node distance and both
functional and structural connectivity (Fig. 3), we implemented a
generalized linear model to evaluate the relationship between structur-
al and functional connectivity while accounting for distance&& (see
Methods — Generalized linear models).
Fig. 3. Structural and functional connectivity strength depends on spatial proximity. A. Inter-nod
correlation network (B) and structural network (C) connectivity strength decreases with inter-
to occur between nodes that are physically close (b3 cm). In these figures, each dot indicates a
For the correlation networks, we evaluated 3 models that includ-
ed the predictor variables: distance, structural connectivity, and path
length. We found that the model that contains all three predictors
(i.e., the inter-node distance, structural connectivity strength, and
inter-node structural path length, the D+ S+ PLmodel) outperformed
a model consisting of distance alone (the D model) and the distance
and structural connectivity (the D + S model, change in AIC N 1100 in
both cases). We note that an additional model that includes three
e distance ranged from 0.2 cm to 9.4 cmwith a grossly normal distribution. B, C. Functional
node distance, with strong connections in both structural and functional networks tending
single edge (or equivalently, single nodepair) for each patient (in color, see legend).
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predictors – the distance, structural connectivity, and an interaction
term between distance and structural connectivity – also did not im-
prove performance. Compared to a model consisting of only a constant
predictor, the proportion of deviance (or variability) explained by the
addition of three variables (D+ S+ PL) is 0.21, and is highly significant
(p b 0.00001, by a likelihood ratio test using the chi-squared distribu-
tion with three degrees of freedom). The D + S + PL model predicts
that, as the (scaled) distance between two nodes increases by 0.1, the
odds of a functional connection decreases by a factor of 0.79 (95% CI
[0.77, 0.81]). However, as the scaled structural connectivity between
two nodes increases by 0.1, the odds of a functional connection in-
creases by a factor of 1.14 (95% CI [1.11,1.18]). Finally, an increase of
path length by one edge decreases the odds of a functional connection
by a factor of 0.81 (95% CI [0.75, 0.87]).We note that distance and struc-
tural connectivity values are scaled from 0 to 1 and path length is mea-
sured in integer units ranging from 1–4. In summary, these GLM results
show that the odds of a functional connection between two nodes
decreaseswith distance, as expected.While accounting for this distance
dependence, we also find that the presence of a structural connection
increases the odds of a functional connection. Moreover, the longer
the structural path length between two nodes, the lower the odds of a
functional connection. Comparing the subsets of patients in the wake
and sleep states, we find that the proportion of deviance explained by
the addition of three variables (D + S + PL) to a constant predictor
model is highly significant (p b 0.00001) in both cases, and there was
no significant difference in the deviance explained between states
(p = 0.11).

In order to further characterize the relationship between struc-
tural and functional correlation network connectivity strength, in-
dependent of distance, we evaluated the functional connectivity of
structurally connected and unconnected node pairs at 3 inter-node dis-
tances: short (b3 cm), medium (3–6 cm) and long distance (N6 cm).
Consistent with the GLM results, we found that functional connectivity
strength tended to be higher in structurally connected node pairs at
each distance (p = 0.045, p = 0.022, p = 0.057, respectively, Fig. 4A).
Notably, fewer data points were available for long distance bins,
whichmay account for the lack of a significant effect in the long distance
bins. Similar trends were found for coherence networks (delta: p =
0.014, p = 0.029, p = 0.092; theta: p = 0.050, p = 0.058, p = 0.088;
alpha: p = 0.047, p = 0.048, p = 0.10; beta 1: p = 0.055, p = 0.021,
p = 0.062; beta 2: p = 0.090, p = 0.030, p = 0.040; sigma: p =
0.040, p=0.010, p=0.050; gamma: p= 0.068, p= 0.016, p= 0.047).
Fig. 4. The relationship between structural and functional connectivity persists at different di
error) is plotted for structurally connected (blue) and structurally unconnected (red) node pair
strength between structurally connected nodes is significantly higher at short distances (p b 0
0.057). The relative paucity of data points available in longer distance bins may contribute t
shown). B. Average correlation network functional connectivity strength (+/− standard error
connectivity (path length 1) had significantly higher functional connectivity than node pairs co
to persist for each incremental increase in path length (path length 1 versus 2, p b 0.00001, path
were found for coherence networks in all frequency bands (not shown).
Finally, to evaluate the impact of indirect structural connectivity on
functional connectivity strength, we evaluated the correlation network
functional connectivity of structurally connected and unconnected node
pairs grouped by anatomical path length. We found a significant main
effect between functional connectivity strength and path length
(ANOVA, p b 0.00001). Node pairs supported by direct white matter
connections (i.e., separated by a path length of one) had the highest
functional connectivity values, and a step-wise decrease in connectivity
was seen for each increase in anatomical path length (path length 1
versus 2, p b 0.00001, path length 2 versus 3, p b 0.005; path length 3
versus 4, p = 0.18; Fig. 4B). Thus, cortical functional connectivity was
found to reflect both direct and indirect white matter connectivity.
Qualitatively similar results were found for coherence networks at
each frequency band (delta: p b 0.00001, p = 0.032, p = 0.22; theta:
p b 0.00001, p = 0.039, p = 0.36; alpha: p b 0.0001, p = 0.0057, p =
0.42; beta 1: p b 0.00001, p = 0.026, p = 0.34; beta 2: p b 0.00001;
p = 0.0023, p = 0.083, sigma: p b 0.00001, p = 0.071, p = 0.31;
gamma: p b 0.00001, p = 0.021, p = 0.28).

Structural networks influence coupling of high frequency oscillations more
than low frequency oscillations

To evaluate the impact of structural connectivity and inter-node dis-
tance on functional connectivity in differing frequency bands,we imple-
mented a generalized linear model for the coherence networks. We
evaluated the predictor variables: distance, structural network strength,
path length, and combinations of these variables. The response variables
were the functional network edge weights in the coherence networks
observed for each frequency band: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), sigma (12–15 Hz), beta 1 (15–20 Hz), beta 2
(20–30 Hz), and gamma (30–50 Hz). We found that the distance +
structure+ path length (D+S+PL)model performed the best in all fre-
quency bands (change in AIC N 130; range 130–1620). We show in
Table 2 the results for the coefficient estimates for the D + S + PL
model in each frequency band. Compared to a model consisting of only
a constant predictor, the proportion of deviance explained by the addi-
tion of three variables (D+ S + PL) ranges from 0.13 to 0.38 (Table 2),
and is highly significant for all frequency bands (p b0.00001, by a likeli-
hood ratio test using the chi-squared distribution with three degrees
of freedom). The deviance explained by the (D + S + PL) model is
significantly greater for the gamma networks than the correlation
networks or the lower frequency coherence networks (correlation:
stances. A. Average correlation network functional connectivity strength (+/− standard
s for three inter-node distances: b3 cm, 3–6 cm, and N6 cm. Mean functional connectivity
.045) and medium distances (p = 0.022), and tends to be higher at long distances (p =
o the lack of significant effect. Similar results were found for coherence networks (not
) is plotted for node pairs by anatomical path length. Node pairs with direct white matter
nnected by longer path lengths (p b 0.00001 for all comparisons). This relationship tended
length 2 versus 3, p b 0.005; path length 3 versus 4, p= 0.18). Qualitatively similar results



Table 2
Generalized linearmodel results for the coherence reveal similar results across frequency bands. Each column indicates a different predictor, and the rows indicate the different frequency
bands. The values in square brackets indicate 95% confidence intervals.

Constant Structural connectivity Inter-node distance Path length Proportion deviance explained

Delta [0.50, 0.53] [0.17, 0.34] [−0.34, −0.30] [−0.036, −0.027] 0.13
Theta [0.56, 0.58] [0.14, 0.30] [−0.37, −0.34] [−0.042, −0.034] 0.19
Alpha [0.53, 0.55] [0.29, 0.45] [−0.36, −0.34] [−0.030, −0.022] 0.23
Sigma [0.50, 0.53] [0.31, 0.50] [−0.35, −0.33] [−0.038, −0.031] 0.22
Beta1 [0.46, 0.48] [0.40, 0.58] [−0.33, −0.31] [−0.033, −0.026] 0.27
Beta2 [0.40, 0.42] [0.49, 0.67] [−0.31, −0.29] [−0.023, −0.018] 0.33
Gamma [0.34,,0.35] [0.64, 0.82] [−0.26, −0.24] [−0.016, −0.011] 0.38
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p= 0.0002; delta: p b 0.000001, theta: p= 0.0004; alpha: p= 0.0007;
sigma: p = 0.0045; beta 1: p = 0.0137; beta 2: p = 0.17).

The GLM results also show that, as the frequency increases, the func-
tional connectivity strength decreases. We note that the constant term
in the GLM represents the expected value of the functional connectivity
(here, the coherence), excluding the impact of the other covariates (dis-
tance, structural connectivity, and path length). We find that the values
of the constant term in the GLM model (i.e., the term with a constant
predictor of 1) are smaller in the higher frequency bands (e.g., gamma
and beta 2) than in the lower frequency bands (e.g., delta, theta, and
alpha). This result is consistent with notion that higher frequency
bands exhibit decreased long distance coupling (Singer, 1999; Miller
et al., 2007; Tallon-Baudry, 2009; Chu et al., 2012). These results also
show that, for all frequency bands, as the structural connectivity be-
tween two nodes increases, the functional connectivity increases. No-
tice that for the structural connectivity predictor (second column of
Table 2), the 95% confidence intervals exceed 0 in all frequency bands.
Finally, for all frequency bands, as the distance between two nodes in-
creases, or the path length increases, the functional connectivity de-
creases. We note that, as the frequency increases, the impact of the
structural connectivity becomes stronger and the impact of inter-node
distance and path length become weaker (i.e., closer to zero). Compar-
ing the subsets of patients in the wake and sleep states, we find that
the proportion of deviance explained by the addition of three variables
(D + S + PL) to a constant predictor model is highly significant (p b

0.00001) for both subsets of patients in all frequency bands. The rela-
tionship between the predictors (distance, structural connectivity,
path length) and the functional coherence is the same in the wake
and sleep states, and there was no significant difference in the deviance
explained by themodel betweenwake and sleep states in any frequency
band evaluated (p N 0.15, range 0.15–0.91).

Consistent with the GLM results, we found that higher frequency
networks had lower functional connectivity. A significant main effect
Fig. 5. The average functional connectivity varies with frequency and structural connectivity. A
decreases at higher frequencies (ANOVA, p b 0.00001). B. Average functional connectivity streng
(blue) and structurally unconnected (red) nodepairs for coherence networks in 7 frequencyban
pairs in the higher frequency bands. Structurally unconnected nodes (red) have significantly lo
gamma frequencies (B1, B2, and G, p b 0.00001) but not lower frequency bands. In both subfigur
was found between mean edge weight of the functional networks and
frequency, with lower coherence seen in higher frequency bands
(ANOVA, p b 0.00001, Fig. 5A).

In order to further evaluate whether the decrease in functional con-
nectivity strength with higher frequencies was related to underlying
structural connectivity, we computed the average functional connectiv-
ity strength for structurally connected and p b 0.00001 for each compar-
ison, Fig. 5B). Consistent with our finding that gamma band networks
have highest similarity to underlying structural networks (Fig. 2B),
these findings suggest that the decrease in functional connectivity
strength evident in higher frequency bands is primarily due to the loss
of coherence between structurally unconnected nodes.

Discussion

Here we evaluated the relationship between functional and
structural human brain networks using principled measures to
infer networks from source estimates of scalp EEG and probabilistic
tractography, enabling the comparison of cortical activity with high
temporal resolution and across multiple frequency bands to underlying
white matter connectivity. We have found that the coupling of brain
activity in each frequency band is shaped by the observed underlying
structural connectivity, including both direct and indirect paths. These
associations highlight the obligatory interdependence of structural
and functional networks in brain function. In addition, we found
that high frequency oscillations exhibit sparse functional connectivity
that is highly dependent on the existence of underlying structural
connections.

Multiple studies have demonstrated a robust relationship between
structural brain networks and spontaneous coupling dynamics in
brain BOLD fluctuations (Baria et al., 2011; Damoiseaux and Greicius,
2009; Rubinov et al., 2009; Goni et al., 2014). We have extended this
work to show that cortical brain currents are likewise yoked to
. Average coherence network functional connectivity edge strength (+/− standard error)
th (+/− standard error) normalized to the delta band is plotted for structurally connected
ds. Functional connectivity decreasesmore rapidly between structurally unconnectednode
wer functional connectivity compared to structurally connected nodes (blue) in beta and
es: delta (D), theta (T), alpha (A), sigma (S), low beta (B1), high beta (B2), and gamma (G).
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underlying anatomy.We have previously shown that long-term human
EEG reveals persistent functional networks across days and states of
consciousness (Chu et al., 2012). Here we show that persistent struc-
tures in functional brain networks reflect not only the impact of spatial
proximity, but also the direct structural connectivity between brain
regions, as well as indirect structural topology as measured through
path length.

Our finding of increased functional and structural connectivity
between neighboring brain regions is consistent with prior work in an-
imals and humans. Increased connectivity between spatially proximal
and functionally related units has been observed in structural networks
across spatial scales ranging frommicrons to centimeters (Bullmore and
Sporns, 2009; Braitenberg and Schüz, 1998; Hellwig, 2000; Hagmann
et al., 2008). Similarly, evaluation of human brain networks with fMRI
has demonstrated increased functional connectivity between anatomi-
cally proximal regions (Bullmore and Sporns, 2009; Salvador et al.,
2005; Achard et al., 2006). This modular network architecture has
been proposed to both increase computational efficiency and decrease
energy costs by organizing highly clustered modules that can be linked
by few long distance connections (Cherniak, 1994; Sporns, 2011).

How the brain's relatively static structural scaffolding molds dy-
namic information processing and sophisticated cognitive processes
remains an active question in neuroscience. Many studies have pos-
ited that coupling of complex signals between and across different
frequency bands support and encode the integration of simultaneous
brain processes (Buzsáki, 2004; Buzsáki and Draguhn, 2004; Fries,
2005; Singer, 1999; Fingelkurts and Fingelkurts, 2004; Laufs, 2008;
Bullmore and Sporns, 2009; Deco et al., 2011). Here we show that
long-range integration of cortical activity in each frequency band is
biased toward anatomically linked regions. These observations
suggest that cortico-cortical connections provide a reliable physical
substrate for the long-range transmission of composite signals with
high dimensional frequency content (Lakatos et al., 2005; Klimesch,
1996; Friston, 1997; von Stein, et al., 2000; Varela et al., 2001; Laufs,
2008; He and Raichle, 2009).

Here, we applied two measures of functional connectivity: the
correlation (a broadbandmeasure) and coherence (a narrowbandmea-
sure). Although both measures produced qualitatively similar results,
consistent with our finding that gamma coherence networks are most
similar to underlying structural networks, the best performing model
(D+ S+ PL) accounted for themost deviance in the gamma coherence
networks. Increasing evidence suggests a spatial gradient in which
slower oscillations couple more distributed brain regions, while faster
oscillations are more focally distributed (Singer, 1999; Miller et al.,
2007; He and Raichle, 2009; Tallon-Baudry, 2009; Baria et al., 2011).
Our observations that faster oscillations are dependent on underlying
structural connectivity for long-range integration complement this
growing body of literature. In contrast, long-range cortical integration
between lower frequency oscillations could be preferentially facilitated
by alternate processes, such as high amplitude traveling waves
(Ermentrout andKleinfeld, 2001; Sato et al., 2012), or shared subcortical
pathways that synchronize neocortical delta activity (Steriade et al.,
1993).

The observed relationship between cortical currents and underlying
structural connectivity reported here likely underrepresents the true
relationship between brain structural and functional connectivity, due
to the limitations of current imaging and measurement techniques.
For example, unmyelinated axons are not routinely reconstructed
using current tractography techniques, including intracortical axonal
and dendritic processes. Furthermore, inter-regional couplingmediated
via shared subcortical sourceswere not evaluated.We focus here on ob-
served long distance connectivity patterns between superficial cortical
regions in order to emphasize brain regions that can be anatomically
approximated with surface EEG. In addition, current tractography tech-
niques are known to underestimate inter-hemispheric connectivity,
which is substantial between homotopic brain regions; this limitation
was mitigated by using probabilistic tractography with multiple fiber
orientations (Behrens et al., 2007). Furthermore, the b-value utilized
for DTI in this study was relatively low, and diffusion data with higher
angular resolution would improve accurate tract identification, espe-
cially in regions of crossing fibers (Setsompop et al., 2013). Finally, we
evaluated young patients across a wide range of ages with epilepsy
due to varying etiologies,whomay have age or disease dependent alter-
ations in local structural (Liu et al., 2014; Ji et al., 2014; Barkovich et al.,
1988; Ashtari et al., 2007) and functional (O'Muircheartaigh et al., 2012;
Bartolomei et al., 2013; Chu et al., 2014) networks at baseline. We note
that in spite of any individual variations expected in this population, our
finding that large-scale brain structural networks support overlying
brain functional connectivity in a frequency-dependent manner was
evident in each patient, suggesting a robust finding. However, future
work should evaluate whether these findings persist in a healthy popu-
lation, across the lifespan, and in other disease states. In addition,
detailed evaluation of these relationships at the site of known structural
or functional lesions could identify subtle variations that were not
investigated in this global analysis.

Conclusion

This work shows that coupling between human cortical brain
dynamics partially reflects observed white matter connectivity across
multiple brain rhythms. The increased dependence on structural sup-
port for the coherence of faster brain rhythms provides new evidence
for how underlying anatomy directly shapes emergent brain dynamics
at fast time scales. Although brain structure has not been shown to
fully predict overlying cortical physiology, capturing the influence of
brain structure on spontaneous brain activity provides new opportuni-
ties to manipulate these relationships to alter brain function and treat
neurological disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.12.033.
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