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Canards of mixed type in a neural burster
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Canards are solutions of slow-fast systems that spend long times near branches of repelling equilibria, periodic
orbits, or higher-dimensional invariant sets. Here, we report on the observation of a new type of canard orbit,
labeled a canard of mixed type. This canard orbit is a hybrid of the classical limit cycle canards, which spend
long times near attracting and repelling branches of equilibria, and torus canards, which spend long times near
attracting and repelling branches of periodic orbits. The canards of mixed type arise in a model of neural bursting
activity of fold-fold cycle type, and, as other canard phenomena, separate different dynamic states.
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I. INTRODUCTION

The voltage activity of a single neuron generates many
different types of dynamic behavior, including intervals of qui-
escence, intervals of spiking (periodic action potential gener-
ation), and intervals of bursting (spiking and quiescence inter-
spersed) [1–3]. The dynamical mechanisms of these states have
been studied extensively both experimentally and theoretically,
including through mathematical modeling [4–7]. By contrast,
the dynamical mechanisms governing the transitions between
these states are not yet as well understood, and this subject is
an active area of research. There exist a number of known tran-
sition scenarios. For example, between spiking and bursting
the transition dynamics can include a blue sky catastrophe [8],
period doubling [9], chaos [10,11], mixed-mode oscillations
(MMOs) [12], or torus canards [13–15]. Here, we examine the
transition between bursting and a fixed activity state, and show
that this transition involves a new type of orbit which we call a
canard of mixed type (CMT). In what follows, we first outline
the general canard phenomenon for both planar and higher-
dimensional systems. We then describe the model neural sys-
tem, and examine the CMT through a slow-fast decomposition.

Canards are special, yet ubiquitous, solutions of differential
equations with multiple time scales. The most well-studied
canards are limit cycle canards. First encountered in the van
der Pol model [16], limit cycle canards have been analyzed
in one-parameter families of planar slow-fast vector fields
[16–18] and arise in a diverse array of applications, ranging
from neural and chemical models [19,20] to aircraft and laser
dynamics [21,22]. These systems undergo Hopf bifurcations
in which the attractor changes from a stable equilibrium to a
stable relaxation oscillation; limit cycle canards occur exactly
for parameter values in this transition. The limit cycle canard
orbits consist of long time intervals spent, in alternation, near
the attracting and repelling branches of equilibria of the fast
system, obtained by freezing the slow dynamics and, hence,
by considering the slow variable as a bifurcation parameter.
Moreover, in bistable systems, the limit cycle canards come
in two varieties: headless canards, which alternate between
one attracting branch of equilibria and the repelling branch of
equilibria, and canards with heads, which alternate between
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both attracting branches and the repelling branch of equilibria
[16]. These limit cycle canards also arise in higher-order
models and are essential to understanding MMOs [23–26].

In higher-dimensional slow-fast systems, the canard phe-
nomenon persists with enriched dynamics. When at least two
fast variables are present, the fast system can display oscilla-
tory dynamics and another form of canards is then possible,
consisting of long segments near attracting and repelling peri-
odic orbits in alternation. Such canards are referred to as torus
canards. They have been observed in a five-dimensional model
of a Purkinje cell [15] and have also been analyzed in a minimal
three-dimensional system [13]. Moreover, torus canards occur
in many well-known neural bursters, including in sub-Hopf–
fold cycle bursting, circle-fold cycle bursting, and fold-fold
cycle bursting [14]. In each of these neural models, torus
canards appear during the transition between spiking and burst-
ing activity and therefore are important for understanding the
dynamical mechanisms of this transition [14]. Briefly, whether
or not torus canards exist, or whether period doubling or other
dynamics occur, depends on a number of factors, including
the presence of attracting and repelling branches of slow man-
ifolds, a torus bifurcation, and on local conditions of fold points
on the slow manifolds. We refer the reader to Ref. [14], as well
as to Refs. [8,12], for examples in which some conditions for
torus canard existence are necessary or sufficient.

In general, canard orbits are solutions in slow-fast systems
that follow attracting and repelling manifolds in the fast
system, in alternation, as the slow system evolves. With this
understanding, it becomes natural to expect additional types of
canard orbits other than limit cycle canards and torus canards,
corresponding to other types of connections between attracting
and repelling manifolds of the fast system. The CMT orbits
described in this paper are an example of this more general
canard phenomenon, connecting a one-dimensional attracting
manifold associated with equilibria in the fast system to
a two-dimensional repelling manifold associated with limit
cycles in the fast system. We find such canards in a simple
model for interacting neural populations—an extended version
of the Wilson-Cowan model [27]. The Wilson-Cowan model
is a mean-field model representing the collective properties
of large numbers of interacting neurons [28,29]. This model
has served as a building block in a number of other models
[30–33], in which the activity of each population modulates
according to external inputs. We consider a modification of
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the Wilson-Cowan model, utilized in Ref. [1], in which a
slowly evolving variable modulates the excitability of the
neural populations, and show that the canards of mixed type
in this model separate regimes of bursting and fixed activity.

II. THE WILSON-COWAN-IZHIKEVICH (WCI) MODEL.

The WCI model, proposed by Izhikevich in Ref. [1], is a
three-dimensional set of ordinary differential equations

ẋ = −x + S(rx + ax − by + u), (1a)

ẏ = −y + S(ry + cx − dy + f u), (1b)

u̇ = ε(k − x), (1c)

where S(x) = 1/[1 + exp(−x)]. With 0 < ε � 1, the vari-
ables x and y are fast and u is slow. The WCI model can exhibit
a wide variety of bursting dynamics, including fold-fold cycle
bursting, where the active (i.e., rapid oscillation) phase of
the burst initiates in a fold of fixed points and terminates
in a fold of periodic orbits [1]. In Ref. [14] it was shown
that, with the fixed parameters ry = −9.7, a = 10.5, b = 10,
c = 10, d = −2, f = 0.3, ε = 0.03, and for rx in the range
−5.203 � rx � −4.740, the WCI model exhibits a transition
from fold-fold cycle bursting to rapid spiking as k increases,
and that this transition involves torus canards. Here we use the
same values for the fixed parameters but consider larger values
of rx , in the range −4.8 < rx < −3. We find in this case that the
model exhibits a transition from fold-Hopf bursting to a state
of fixed activity as k increases, and that this transition involves
CMT. In what follows, all computations were performed using
the software XPPAUT [34] and AUTO [35].

III. CANARDS OF MIXED TYPE IN THE WCI MODEL (1)

In this section, we give a detailed description of the CMT
that appear in the WCI model and show how these dynamics
arises naturally as one varies the parameter k. In addition, we
analyze the saddle-focus equilibrium of the full system and
identify its role in the creation of the CMT. Finally, we present
a more complete two-parameter bifurcation analysis of the
CMT in this model, and show that the CMT and torus canards
exist in different parameter intervals.

A. Fundamental dynamics of CMT

Figure 1 shows an example of a CMT orbit at (k,rx) =
(0.7752, −4.3). The time series of x, shown in Fig. 1(a),
includes active (x ∼ 0.75) and inactive (x ∼ 0) phases of
the orbit. The active phase includes three separate stages:
an initial stage of active oscillations, followed by a stage of
nearly fixed activity, followed by a second stage of active
oscillations. To further describe this canard behavior, we
consider a slow-fast decomposition of the system. First, we
freeze the slow dynamics by setting ε = 0 in (1); in this way,
u is treated as a bifurcation parameter in the fast system. The
resulting bifurcation diagram [Fig. 1(b)] includes an S-shaped
branch of fixed points which undergoes two saddle-node
bifurcations (labels SNf, at u ∼ −1.8 and u ∼ 1.1) and three
Hopf bifurcations (labels H, at u ∼ −1.6, u ∼ 0.44, and
u ∼ 5.6, though the third Hopf bifurcation is off scale in the
figure). Two of these Hopf bifurcations are supercritical and

arranged so that periodic orbits born in one terminate in the
other. The third Hopf bifurcation at negative u is subcritical
with an associated branch of periodic orbits that terminates in
a homoclinic bifurcation (label HC).

The bursting orbits of the full system [Fig. 1(b)] evolve
through the bifurcation diagram of the fast system. The active
phase of the burst initiates near the saddle-node of fixed
points at u ∼ 1.1 and terminates near the subcritical Hopf
bifurcation at u ∼ −1.6. The three stages of the active phase
of the burst are labeled in the bifurcation diagram. During
the first stage of active oscillations, the full system trajectory
follows the attracting branch of limit cycles of the fast system.
As u decreases the trajectory passes through the supercritical
Hopf bifurcation of the fast system at u ∼ 0.44 and follows
the attracting branch of equilibria of the fast system; this
corresponds to the stage of nearly fixed activity. As the slow
variable u decreases further, the orbit of the full system
approaches the subcritical Hopf bifurcation of the fast system
at u ∼ −1.6. During the second stage of active oscillations,
the trajectory follows the repelling branch of limit cycles
of the fast system, with u reversing direction and slowly
increasing [Fig. 1(c)]; the evolution of the slow variable u

during the CMT orbit can be understood by considering the
average 〈x〉—see Ref. [8]. During the time interval when
the canard is near the branch of attracting equilibria, the
average 〈x〉 is greater than k = 0.7752 and the slow drift
is in the direction of decreasing u. In contrast, during the
time interval when the canard is near the branch of repelling
periodic orbits, 〈x〉 is less than 0.7752 and u increases slowly.
The second stage of active oscillations ends when the trajectory
returns to the lower branch of attracting fixed points of the
fast system, corresponding to the inactive phase of the burst.

We conclude that, during the burst’s active phase, the full
system dynamics involves a combination of attracting limit
cycles, attracting fixed points, and repelling periodic orbits in
the fast system. By definition, this corresponds to a canard
behavior and, to our knowledge, this form of canard trajectory
(CMT) has not been previously reported.

B. The second stage of active oscillations and its trigger

In the previous section we described the CMT phenomenon
for a fixed value of k. We now describe the model dynamics
for a range of k and show that the CMT separates the bursting
and fixed regimes of the neural dynamics.

For k � 0.7, the system displays the standard fold-Hopf
type bursting [1]. That is, the full system attractor exhibits an
active phase of rapid oscillations that begins in a fold of fixed
points of the fast system and ends in a Hopf bifurcation in
the fast system. For slightly larger values of k ∈ [0.7,0.722],
the saddle equilibrium in the full system starts affecting
the shape of the bursting attractor. In the classic fold-Hopf
bursting (for k � 0.7), when the active burst stage ends, the
orbit escapes in the (vertical) direction of the fast fibers.
But, for k ∈ [0.7,0.722], the unstable manifold of the saddle
equilibrium in the full system affects the direction of the orbit
escape, causing a subtle bend in the near-vertical descent [Figs.
2(a1)–2(b1), where k = 0.72 and the inset panel]. The impact
of this saddle equilibrium in the full system on the transition
from fold-Hopf bursting is further discussed in Sec. III C.
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FIG. 1. (Color online) Canard of mixed type in the WCI model (1) at (k,rx) = (0.7752, −4.3). (a) shows the time series for variable x of
the canard of mixed type trajectory. The labels indicate the inactive phase of the burst, as well as the three different stages of the active phase
of the burst. (b) shows the same trajectory (blue or gray) in the phase plane (u,x) together with the bifurcation diagram of the fast system. The
black curves indicate branches of stable (solid) or unstable (dashed) fixed points, and the red (gray) curves indicate the extrema of stable (solid)
or unstable (dashed) limit cycles. Note that the bifurcation diagram of the fast system for (b) is valid for any value of k. (c) is an enlargement
of (b) showing the second stage of active oscillations, where the canard orbit in the full system is observed to spend a long time near the family
of repelling periodic orbits (a two-dimensional surface, shown here at the extrema in x) in the fast system. (d) shows a three-dimensional view
of the canard orbit in the phase space (x,y,u) together with the two-dimensional unstable manifold (light-shaded surface) of the saddle-focus
equilibrium that exists for this parameter value. Finally, (e) shows the same orbit together with the u-dependent family of repelling limit cycles
of the fast system (surface). Note that the surface on (d) lies outside that shown in (e).
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FIG. 2. (Color online) Dynamical transition in the WCI
model from fold-Hopf bursting [(a1)–(b1), k = 0.72] to a stable
equilibrium via fold-Hopf bursting with additional (small-
amplitude) fast oscillations close to a saddle-focus equilib-
rium [(a2)–(b2), k = 0.74], the canard of mixed type regime
[(a3)–(b3), k = 0.7752], small-scale oscillations [(a4)–(b4),
k = 0.776], and fixed activation [(a5)–(b5), k = 0.78]. Labels
and curves as in Fig. 1. Note that (a3) is identical to Fig. 1(b).

For 0.722 � k � 0.775287, the bursting profile of the full
system attractor remains qualitatively similar to the fold-Hopf
bursting observed at smaller values of k. However, a second
epoch of fast oscillations within each burst period emerges,
resulting from a saddle-focus equilibrium point in the full
system. This “second active stage” within each burst appears
just before the return to the quiescent burst stage [Figs. 2(a2)–
2(b2), where k = 0.74]. Therefore, this type of bursting can
effectively be described as fold-Hopf bursting “augmented” by
a second oscillatory stage that is entirely due to the saddle focus
in the full system. Initially, the duration of this second active
stage does not vary upon an increase of k, only its position in
the u-x phase space shifts to larger values of u, following the

movement of the saddle-focus equilibrium of the full system;
see Fig. 2(a2), inset panel.

Further increases in k result in a large increase in the
amplitude of the second active stage of the burst. This dramatic
increase corresponds to the emergence of the CMT, in which
the full system dynamics follow the branch of repelling
limit cycles of the fast system [Figs. 2 (a3)–2(b3), where
k = 0.7752]. The interval of parameter values in which the
CMT exist is approximately k ∈ [0.7752,0.77528].

At a value of k slightly larger than k ∼ 0.77528, the full
system undergoes a torus bifurcation, resulting in weakly
damped quasiperiodic oscillations that mark the end of the
CMT regime and correspond to the solutions of system (1)
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displaying weakly damped quasiperiodic oscillations. Increas-
ing k further ends the bursting dynamics of the full system.
The attractor of the full system becomes a stable limit cycle
toward which the full system converges after some weakly
damped quasiperiodic oscillations [Figs. 2(a4)–2(b4), where
k = 0.776]. Stable limit cycles persist until k increases beyond
the supercritical Hopf bifurcation that generates this branch of
stable limit cycles in the full system, at k ∼ 0.77665. Further
increases in k past this value cause the full system’s trajectory
to converge toward a stable equilibrium; see Figs. 2(a5)–2(b5),
where k = 0.78. This stable equilibrium is located on the
upper branch of the curve of equilibria of the fast system and
marks the end of the bursting regime. Biophysically, we may
interpret these dynamics as a persistent activity state without
modulations.

We conclude that the CMT regime occurs within
the transition between the bursting and fixed activity regimes
as k increases in this model. In the next section we examine
this dynamical transition through the CMT regime from the
viewpoint of the invariant manifolds of the saddle-focus
equilibrium of the full system.

C. The roles of the saddle-focus equilibrium in the full system
and its invariant manifolds in CMT

CMT can be further understood by examining the stable
and unstable manifolds of the saddle-focus equilibrium that
exists in the full system. This saddle-focus equilibrium has a
one-dimensional stable manifold that approaches it close to the
attracting branch of equilibria of the fast system—that exists
between the subcritical and supercritical Hopf bifurcations in
Fig. 1(b)—and a two-dimensional unstable manifold that has
locally the shape of a paraboloid [Fig. 1(d)] and is close to
the family of repelling cycles of the fast system [Fig. 1(e)].
We computed this two-dimensional unstable manifold by
continuation of a family of orbit segments whose initial
conditions lie on a circle of small radius in the unstable
eigenspace of the equilibrium; for more details about such
computations, see, e.g., Ref. [36]. Hence, the CMT trajectory
follows successively both invariant manifolds of the saddle-
focus equilibrium in the full system.

As observed in other canard phenomena, the CMT appear
only in a narrow range of parameter values. For k greater
than approximately 0.722, the equilibrium of the full system,
located close to the upper fold of fixed points shown in
Fig. 1(b), has complex eigenvalues. Consequently, the bursting
attractor of system (1) leaves the vicinity of the upper branch
of equilibria of the fast system by spiralling out along
the two-dimensional unstable manifold of this saddle focus.
However, such a bursting orbit does not correspond to a CMT
yet. Indeed, the saddle-focus equilibrium of the full system is
located sufficiently far from the subcritical Hopf bifurcation
point of the fast system such that the fast spiralling motion
is not close to the envelope of the repelling orbits in the
fast system. Increasing k to 0.7752 brings the saddle-focus
equilibrium close enough to the subcritical Hopf bifurcation
so that this fast spiraling motion stays close to the family of
repelling cycles, hence giving a canard segment. From this
moment on, the evolution of the CMT is explosive and the
canard segment gets longer until, at k ∼ 0.775 287, the global

bursting dynamics is destroyed. For this value of k and slightly
higher values as well, any trajectory with initial conditions
close to the upper attracting branch of equilibria of the fast
system displays weakly damped quasiperiodic oscillations
which, after a transient has passed, eventually converge to
a stable equilibrium. Hence, it is useful to study the full
system’s bifurcations and invariant manifolds in order to better
understand the dynamics of CMT.

The saddle equilibrium in the full system also affects the
dynamics of the fold-Hopf bursting. In particular, the shape
of its strong unstable manifold changes upon variation of k

and dictates how the periodic orbit behaves near the saddle
equilibrium and evolves from fold-Hopf bursting to the CMT
regime. A more thorough investigation of the role of the strong
stable manifold in this transition will be considered in future
work.

D. The locus of CMT in the (u,rx) parameter space

To explore how the dynamics also depend on parameter
rx , we consider the bifurcations of the fast system in the
two-parameter plane (u,rx). In this plane different types of
canard behaviors can be encountered; see Fig. 3. Several
branches of codimension-one bifurcations are highlighted,
in particular, loci of Hopf bifurcation points (H), of saddle
nodes of equilibria (SNf), of saddle nodes of periodic orbits
(SNp), and of homoclinic points (HC). Along these branches,
codimension-two points (circles) play the role of organizing
centers for the dynamics of the full system. In particular, the
Bautin point (B) corresponds to a transition from supercritical
Hopf bifurcation to subcritical Hopf bifurcation, and also to
the end of the SNp branch. In this model, the Bautin bifurcation
separates the region where torus canards are expected from the
region where CMT can occur. Torus canards require a fold of
periodic orbits [14], while the CMT described here require a

rx

u

BT

SNf

HC

SNp
B

H

SNpHC

SN
f

Torus
Canard

Canard of
Mixed Type

FIG. 3. (Color online) Two-parameter bifurcation diagram of the
fast system of the WCI model in the (u,rx) plane. Several branches are
shown, corresponding to loci of codimension-one bifurcations; these
include supercritical Hopf bifurcations (H, solid curve), subcritical
Hopf bifurcations (H, dashed curve), saddle node of fixed points
(SNf), and homoclinic bifurcations (HC). Codimension-two points
organize the dynamics; these include a Bautin point (B), a Bogdanov-
Takens point (BT), and a point where a saddle node of periodic orbits
collides with a homoclinic bifurcation (SNpHC). The regions of this
parameter plane where torus canards and CMT are expected to occur
are labeled and highlighted by gray boxes.

021920-5



M. DESROCHES, J. BURKE, T. J. KAPER, AND M. A. KRAMER PHYSICAL REVIEW E 85, 021920 (2012)

subcritical Hopf bifurcation. We therefore conclude that this
model exhibits two types of canard behavior—torus canards
and CMT—both of which occur at the transitions from bursting
to another type of activity.

IV. CONCLUSION

In this paper, we presented a new form of canard dynamics,
the canards of mixed type (CMT), in the context of a neural
burster, the Wilson-Cowan-Izhikevich (WCI) model. Such
orbits follow successively a branch of attracting equilibria and
a branch of repelling limit cycles of the fast system. In this
particular model, CMT organize the transition from bursting
to a regime of fixed activity in the neuron. In the CMT regime,
the bursting attractor of the system develops another active
rapid oscillation corresponding to the orbit spiraling on the fast
time scale close to the repelling cycles of the fast dynamics.
This new type of bursting dynamics is reminiscent of another

form of canards, the torus canards, which can be related to
the transition from bursting to spiking regimes; in particular,
torus canards can also be found in the WCI model but for
a different set of parameters. Finally, we note that this new
form of canard dynamics arises due to a relatively commonly
occurring configuration in terms of bifurcations of the fast
system and, hence, can be expected to occur in a large class of
neural bursters.
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