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Abstract We consider a mathematical model of meso-
scopic human cortical ictal electrical activity. We compare
the model results with ictal electrocortical data recorded from
three human subjects and show how the two agree. We deter-
mine that, in the model system, seizures result from increased
connectivity between excitatory and inhibitory cell popula-
tions, or from decreased connectivity within either excita-
tory or inhibitory cell populations. We compare the model
results with the disinhibition and 4-AP models of epilepsy
and suggest how the model may guide the development of
new anticonvulsant therapies.
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Introduction

Epilepsy—recurrent unprovoked seizures—affects 2.5 mil-
lion Americans (http://www.epilepsyfoundation.org/, 2005).
Of these, approximately 20% experience medically refrac-
tory epilepsy and may undergo resective surgery to remove
the epileptogenic zone—the brain region responsible for
seizure generation. Before performing this surgery, physi-
cians must first locate the epileptogenic zone. To do so,
they may perform noninvasive (e.g., scalp electroencephalo-
gram (EEG)) and invasive (e.g., electrocortiogram (ECoG))
recordings of cortical electrical activity. Invasive ECoG
recording may be done intraoperatively to capture interictal
epileptiform activity or chronically—using implanted sub-
dural electrodes—to capture ictal activity. The latter clini-
cal scenario offers researchers the rare opportunity to study
pathological, organized cortical electrical activity.

To further understand human cortical electrical activity
recorded during a seizure, researchers have developed nu-
merous models. Many models derive from animal studies, in
which invasive single-unit recordings are made while chem-
ical manipulations are performed. Elaborate mathematical
models exist to describe the behavior of single neurons and
networks of individual neurons during a seizure (Traub et al.,
2005). Here we are interested in the ECoG data recorded
from a seizing human subject. To model this data—recorded
at a single electrode, say—we would like to simulate the
behavior of approximately 105 individual neurons (Nunez
and Cutillo, 1995). Unfortunately, using physiologically ac-
curate mathematical models, we find such simulations com-
putationally infeasible.

Therefore, we implement a mathematical model of meso-
scopic cortical electrical activity. Mesoscopic models—
unlike models of single neuron behavior such as
the Hodgkin–Huxley equations—approximate the average
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activity or mean-field generated by cell populations. To de-
velop these models, researchers determine expressions de-
scribing the spatially averaged properties of neighboring
neurons (Wilson and Cowan, 1972; Freeman, 1964). The
resulting variables and parameters describe, for example,
the spatial average of the soma membrane potential of a cell
population or the average subcortical input received by a vol-
ume of cortex. In these models, the smallest unit of activity
is the cell population, not the individual neuron.

There are (at least) two reasons for implementing a
mesoscopic model of human ECoG data. First, the elec-
trocortiograph records the summed electrical activity from
millions of individual neurons. Therefore the mesoscopic
model and ECoG recordings produce simulated and ob-
served results, respectively, at a similar spatial scale. Second,
some researchers believe that cortical columns—not individ-
ual neurons—form the effective units of cortical operation
(Singer, 1993; Mountcastle, 1997). A cortical column con-
sists of all tissue (e.g., neurons, glia cells, axons) within a
cylindrical volume of approximate area 1 mm2 at the corti-
cal surface and extending radially inward through all layers
of cortex. Using a mesoscopic model, we describe the elec-
trical activity produced by cortical columns, not individual
neurons.

In what follows, we describe one such mathematical
model of mesoscopic cortical electrical activity. We compare
the model results with ictal ECoG data recorded from three
human subjects and show that the observational and simu-
lated results agree in two important ways during seizure: the
frequency of maximum power, and the speed of voltage prop-
agation over the cortex. We also show that both quantities
(and the variability) change during the course of a seizure and
that we may account for these changes in the model. Finally,
we discuss changes in the model parameters that result in
seizure-like oscillations in the dynamics. We will show that
seizures result in the model system from increased connec-
tivity between the excitatory and inhibitory cell populations,
or decreased connectivity within the excitatory population
or within the inhibitory population. We compare the model
results with the disinhibition hypothesis, and with induction
and suppression of seizures by 4-aminopyridine (4-AP) and
benzodiazepines (BZ), respectively. For the latter pharma-
cological manipulations, we use the model to suggest the
mechanisms of action.

Methods

Mathematical model

To model human cortical electrical activity we implement
a system of eight, nonlinear, stochastic partial differen-
tial equations (SPDEs) and twenty parameters presented in

Kramer et al. (2005) by recasting in dimensionless form the
equations stated in Steyn-Ross et al. (2003). We restate the
system here:

∂ h̃e

∂ t̃
= 1 − h̃e + �e

(
h0

e − h̃e
)
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Ĩei = Nβ
e S̃e[h̃e] + φ̃i + Pei + �̃2 (1d)

(
1

Ti

∂

∂ t̃
+ 1

)2
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The eight dynamical variables in this system (h̃e, h̃i , Ĩee, Ĩei ,
Ĩie, Ĩi i , φ̃e, and φ̃i ) are functions of dimensionless space and
time, x̃ and t̃ , respectively. We define the dimensionless vari-
ables and parameters in Tables 1 and 2, respectively, and
note that in Results we relabel some parameters to allow
more specific manipulations. The interested reader may find
an implementation of this model written in IDL (Interactive
Data Language) at http://makramer.info.

Equation (1a) relates the evolution of the (dimensionless)
voltage of the excitatory population to: the voltage itself (h̃e),
the dimensionless excitatory input current ( Ĩee), and the di-
mensionless inhibitory input current ( Ĩie). Equations (1c) and
(1e) define the dynamical rules of these input currents. The
excitatory input current ( Ĩee) evolves according to local input
(Nβ

e S̃e[h̃e]), distant excitatory cortical input (φ̃e), subcortical
input (Pee), and stochastic input (�̃1). The term S̃e[h̃e] is a
dimensionless sigmoid transfer function:

S̃e[h̃e] = 1

1 + exp[−g̃e(h̃e − θ̃e)]
, (2)

that acts to convert the local voltage of the excitatory pop-
ulation into a mean firing rate of the excitatory population
(i.e., a “wave-to-pulse” conversion (Liley et al., 2002)). The
distant cortical input—which is always excitatory—evolves

Springer



J Comput Neurosci

Table 1 Dynamical variable definitions for the dimensionless SPDEs
model. The dimensionless variables (left column) are defined in terms
of the dimensional symbols (middle column) found in Table 1 of Steyn-
Ross et al. (2003). The variables are described in the right column. Sub-

scripts e and i refer to excitatory and inhibitory. We make the notational
simplifications in agreement with the values used in Steyn-Ross et al.
(2003): τe = τi = τ, Smax

e = Smax
i = Smax, and hrest

e = hrest
i = hrest

Symbol Definition Description

h̃e,i he,i /hrest Population mean soma dimensionless electric potential
Ĩee,ie Iee,ieγe/(Ge exp(1)Smax) Total e → e, i → e input to excitatory populations
Ĩei,i i Iei,i i γi /(Gi exp(1)Smax) Total e → i, i → i input to inhibitory populations
φ̃e,i φe,i /Smax Long range (corticocortical) input to e, i populations
t̃ t/τ Dimensionless time
x̃ x/(τ ṽ) Dimensionless space

Table 2 Parameter values for the dimensionless SPDEs neural macro-
column model. The dimensionless symbols (first column) are defined in
terms of the dimensional variables (second column) found in Table 1 of
Steyn-Ross et al. (2003). The variables are described in the third column

and typical values are shown in the fourth column. We make the nota-
tional simplifications in agreement with the values used in Steyn-Ross et
al. (2003): τe = τi = τ, Smax

e = Smax
i = Smax, and hrest

e = hrest
i = hrest

Symbol Definition Description Typical value

e, i (As subscript) excitatory, inhibitory cell populations

�e,i
Ge,i exp(1)Smax

γe,i |hrev
e,i − hrest| Influence of input on the mean soma membrane values 1.42 × 10−3, 0.0774

h0
e,i hrev

e,i /hrest Dimensionless cell reversal potential −0.643, 1.29
Te,i τγe,i Dimensionless neurotransmitter rate constant 12.0, 2.6
λe,i τ ṽ
ee,ei Dimensionless characteristic corticocortical inverse-length scale 11.2, 18.2
Pee,ie pee,ie/Smax Subcortical input to e population 11.0, 16.0
Pei,i i pei,i i/Smax Subcortical input to i population 16.0, 11.0
Nα

e,i – Total number of synaptic connections from distant e populations 4000, 2000
Nβ

e,i – Total number of local e and i synaptic connections 3034, 536
g̃e,i ge,i hrest Dimensionless sigmoid slope at inflection point −19.6, −9.8
θ̃e,i θe,i /hrest Dimensionless inflection point for sigmoid function 0.857, 0.857

according to a reaction diffusion type equation defined in
(1g). This expression results as an approximation to an inte-
gral of synaptic input over the cortical surface. To represent
unknown subcortical inputs, the last term �̃1 in (1c) is in-
cluded. We define this dimensionless stochastic input term:

�̃1 = αee

√
Pee ξ1[x̃, t̃]. (3)

Here ξ1 is a Gaussian distributed white noise source with
zero mean. In numerical simulations, we approximate the ξ1

as,

ξ1[x̃, t̃] = R(m, n)√
�x̃�t̃

, (4)

where x̃ = m�x̃ and t̃ = n�t̃ , (m, n integers), specify space
and time coordinates on a lattice with (dimensionless) grid
spacing, �x̃ and �t̃ , respectively. Similar equations hold for
the dynamics of the inhibitory population (1b), local inputs to
the inhibitory population (1d) and (1f), and distant excitatory
inputs to the inhibitory population (1h).

The main observable in the model is the (dimensional)
variable he—the spatially averaged soma membrane poten-

tial of excitatory cortical cells. In terms of the dimension-
less variable in (1): he = h̃e × (−70 mV ). To relate he to
observational data, we first note that the electrocortiograph
records a spatial average of the local field potentials gener-
ated within the cortex. We then note that these local field
potentials—generated by cell populations—are proportional
to the negative deviation of the spatially averaged soma mem-
brane potential of excitatory cortical neurons (i.e., he) from
rest (Liley et al., 2002). Therefore, the observed ECoG data
are proportional to the model variable he.

In Kramer et al. (2005) we compared the variable he to
ictal ECoG data recorded from a human subject. We showed
that—for certain parameter values—the model results and
ECoG data agreed in two important ways during seizure:
f0—the frequency of maximum power, and v—the speed of
voltage propagation across the cortex. We briefly describe the
model results. To induce seizure-like activity in the model
dynamics, we changed two parameters related to the exci-
tation of the model. We increased the parameter Pee—the
strength of the excitatory subcortical input to excitatory cells
in the cortex—by a large amount (e.g., 2000%), and de-
creased the parameter �e—the influence of excitatory input
on the mean soma membrane potentials of excitatory and
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inhibitory cells—by a small amount (e.g., 30%). We then
computed numerical solutions to the SPDEs in (1) for one-
spatial dimension and found that traveling waves of activ-
ity developed in he. To understand the nature of the tran-
sitions resulting in this activity, we considered a simplified
formulation of (1) without stochastic input (the �̃k terms)
and without spatial dependence. In this ordinary differential
equations (ODEs) version of the model, we found that abrupt
transitions from stable fixed points in he to large amplitude,
stable oscillations in he occurred near subcritical Hopf bi-
furcations. (The unstable limit cycles born in the Hopf bifur-
cations stabilized in saddle node bifurcations of limit cycles
(Kramer et al., 2005, 2006)). We interpreted these Hopf bifur-
cations in the model dynamics as the correlates of seizures
on the real human cortex. From numerical simulations of
the ODEs and the complete SPDEs we deduced approxima-
tions for the frequency of oscillation and the speed of (one-
dimensional) propagation of he during “seizure”. We found
f0 ≈ 10 Hz and v ≈ 2 m/s over a broad range of (�e, Pee)
combinations.

Analysis methods

We compare the model results for f0 and v with results
calculated from ECoG data recorded from three seizing hu-
man subjects. To do so, we apply two measures—the win-
dowed power spectra (WPS) and windowed cross-correlation
(WCC). To calculate the WPS, we first bandpass filter the
ECoG data recorded at each electrode between 1.0 Hz
and 55.0 Hz. We then partition the ECoG data into over-
lapping temporal windows of duration 1.0 s and overlap
0.5 s, multiply the data in each window by the Hanning func-
tion, and calculate the power spectrum within each window.
We store the resulting power spectra in a two-dimensional
array, with frequency along one axis and the center time
of each window along the other. Analyzing this WPS ar-
ray, we observe changes in the power spectra recorded at
each electrode over time. To compute f0, we first determine
the frequency of maximum power within each window. We
then average these frequencies of maximum power over two
subsets of windows (or equivalently two intervals of time).
The first interval—I1—begins at seizure onset and ends
10 s later. The second—I2—begins 10 s after seizure on-
set and ends at seizure termination. We will indicate the
usefulness of the two intervals in Results. Within each inter-
val, we label the average frequency of maximum power f0.
We repeat this calculation for each seizure recorded from a
subject and average the results for f0 in I1 and f0 in I2 over
the seizures.

To compute the WCC, we first filter and partition the data
as we already discussed for the WPS calculation. We then
compute the cross-correlation between the data recorded at

two electrodes within each window. We store the resulting
cross-correlations in a two-dimensional array with the time
lag along one axis and the center time of each window along
the other. We analyze this WCC result to compute the quan-
tity of interest: v. To do so, we first determine the time lag of
maximal cross-correlation within each window of the WCC.
Next, we average the resulting time lags of maximum corre-
lation over the two intervals I1 and I2. Then we divide the
electrode separation (approximately 10 mm or 14.4 mm) by
the average time lag to determine v in I1 and I2. We perform
this analysis on each seizure recorded from a subject and
average the resulting values for v in I1 and for v in I2 over
the seizures.

Subjects

In Kramer et al. (2005) we analyzed six seizures recorded
from a seizing human subject. We computed two quantities,
f0 (over the entire duration of the seizure) and v, and we
found that the observed results—deduced from the WPS and
WCC—agreed with the simulation results. Specifically, we
found that the frequencies of maximum power f0 agreed
within a factor of 2, and the speeds of voltage propagation v
within a factor of 5.

We used the results in Kramer et al. (2005) to suggest
that the SPDEs—with appropriate parameter values—can
approximate the electrical activity of the seizing human cor-
tex. To explore further the validity of the SPDEs model, we
perform here a similar analysis of ictal ECoG data recorded
from three human subjects. Each subject suffered from in-
tractable epilepsy and underwent electrode implantation as
part of his or her care at the University of California, San
Francisco (UCSF) Epilepsy Center. For each subject, a sur-
geon implanted an 8 × 8 electrode grid (10 mm spacing in
the vertical and horizontal directions) and one or two 6-
electrode strips in the subdural space, overlying the cortical
surface (also 10 mm spacing). Depth electrodes were also
employed, but we do not consider data from the depth elec-
trodes here. All strip and grid electrodes were 4 mm diameter
platinum-iridium discs embedded in a 1.5 mm thick silastic
sheet with 2.3 mm diameter exposed surfaces and 10 mm
spacing between the discs. To observe multiple seizures,
physicians recorded ECoG data continuously at 400 Hz for
several days from each subject.

In Results we present our analysis of the ictal ECoG data
recorded from the three subjects. We begin our analysis with
Subject A: a 28-year-old man. For this subject physicians
implanted an 8 × 8 electrode grid over the left frontotem-
poral region and two, 6-electrode subdural strips curled
under the left anterior and left posterior temporal lobes.
ECoG data, recorded continuously for 15 days, captured two
subclinical seizures (i.e., seizures observed in the ECoG but
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with no clinical manifestations, such as convulsions). Both
seizures arose from the proximal ends of the subtemporal
strips.

Next we consider Subject B: a 37 year old woman with
an 8 × 8 electrode grid over her left frontotemporal region,
a 6-contact electrode strip over her left suborbital frontal
lobe, and two, 6-contact left hippocampal depth electrodes.
Physicians recorded ECoG data continuously from this sub-
ject for five days and detected nine seizures. Each seizure
began near the distal end of both depth electrodes in the hip-
pocampus and, approximately 15 s later, were seen on the
electrode grid on the cortical surface.

We conclude with Subject C: a 31 year old woman with
an 8 × 8 electrode grid over her left frontotemporal region,
and two, 6-electrode subdural strips curled under her left
anterior and left posterior temporal lobe. Physicians recorded
ECoG data from this electrode configuration for fourteen
days. Three seizures were initially captured. Midway through
this recording period, the surgeon inserted an additional 6-
contact depth electrode into the left hippocampus. After this,
three more seizures were recorded. Each seizure began in the
distal end of the posterior left subtemporal electrode strip,
and then spread to the distal end of the anterior subtemporal
strip (as well as to the hippocampal depth electrode for the
last three seizures). After a minute delay, seizure activity
appeared on the electrode grid at the frontal portions of the
superior and middle temporal gyri.

For each subject we only consider seizure activity man-
ifest on the cortical surface (where the model applies)
and from a subset of electrodes identified clinically as
the location of cortical seizure onset. We compute f0 and
v for each subject and compare these results with those
determined from the mathematical model. In all cases,
UCSF and University of California, Berkeley human sub-
ject guidelines were observed and patient consent was
obtained.

Results

In this section we compare the observational results from
three seizing human subjects with results from a mathemati-
cal model. Specifically, we compare two quantities: f0—the
frequency of maximum power, and v—the speed of volt-
age propagation over the cortex during seizure. We have
found that f0 ≈ 10 Hz and v ≈ 2 m/s for the mathemat-
ical model with a choice of pathological parameter val-
ues (as we discussed in Methods: Mathematical Model).
Here we compute similar quantities—and the variation of
each—from the ECoG data and show a qualitative agree-
ment between the observational and model results. We begin
with:

Subject A

To compare the observational and model results we follow
the procedure in Kramer et al. (2005) and outlined in Meth-
ods to determine f0 and v. For Subject A, we analyze ECoG
data recorded from one region of seizure initiation identi-
fied by the physicians; namely, we consider the three most
proximal electrodes on the subdural strip that traverses the
inferior aspect of the temporal lobe with the most distal end
approximating the parahippocampal gyrus. For convenience,
we label these neighboring electrodes a, b, and c, with c the
most proximal of the three. We illustrate these WPS re-
sults for the second subclinical seizure in Fig. 1. Subfigures
(a), (b), and (c) correspond to electrode labels a, b, and c,
respectively. Here we plot power in logarithmic greyscale
with powers greater than 50 µV2 in black and less than
0.3 µV2 in white. We show time in seconds along the hor-
izontal axis and frequency in Hertz along the vertical axis.
This subclinical seizure begins at t = 15 s; we denote this
time with a vertical dashed line in each subfigure. The sub-
clinical seizure continues until t = 49 s; we denote the end of
the subclinical seizure with a second vertical dashed line in
each subfigure. We find that of the three electrodes the mid-
dle electrode—shown in Fig. 1(b)—displays the most power
(i.e., the darkest regions) during the subclinical seizure. We
also note the abrupt decreases in power below 55 Hz both
preceding and following the subclinical seizure.

A careful inspection of Figs. 1(a)–(c) suggests that the
frequency of maximum power typically decreases slightly
through the course of the seizure. To illustrate this, we com-
pute the frequency of maximum power within each time
window of the WPS and plot the results for electrodes a, b,
and c in Figs. 1(d), (e), and (f), respectively. We indicate
the duration of the ictal event with two, vertical dashed lines
and divide the subclinical seizure into intervals—I1 and I2—
with a vertical dotted line. We note that, for this subclinical
seizure, the frequency of maximum power tends to decrease
during the ictal event. We quantify this observation in Table 3
where we list the results for f0 in I1 and I2. We find that the
mean values for f0 lie between 8.2 Hz and 10.0 Hz with
a maximum uncertainty in the mean of 0.8 Hz in I1, and
between 4.1 Hz and 7.5 Hz with a maximum uncertainty in
the mean of 0.4 Hz in I2. We note that the values of f0 in
I1 tend to exceed those in I2 and that the variability in f0

tends to be larger in I1 than in I2. We will show below that
the decreased mean and variability of f0 during the course
of the seizure may be induced in the model by changes in
parameters Pee and �e.

The second quantity we determine is the speed of wave
propagation v between the middle electrode b and its two
neighboring electrodes a and c. To do so we follow the pro-
cedure outlined in Methods and compute the WCC between
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(a) (b) (c)

(d) (e) (f)

Fig. 1 (a)–(c): The windowed power spectra (WPS) for three ECoG
time series recorded during the second subclinical seizure of Subject A.
Subfigures (a), (b), and (c) correspond to neighboring electrodes along
a subdural strip with (c) the most proximal. The WPS are plotted in
logarithmic greyscale with black and white denoting regions of high
power (greater than 50 µV2) and low power (less than 0.3 µV2), re-
spectively. For the purpose of visual presentation, we smooth the WPS
results with a boxcar average of size 1.5 s in time and 3 Hz in frequency.

(d)–(f): The frequency of maximum power plotted as a function of time
during the second subclinical seizure. Subfigures (d), (e), and (f) cor-
respond to neighboring electrodes along a subdural strip with (f) the
most proximal. In all subfigures, the vertical dashed lines at t = 15 s
and t = 49 s denote the approximate beginning and end of the seizure.
We indicate the division between I1 and I2 with a dotted vertical line
in the last three subfigures

electrodes b and a, and b and c. We note that here we de-
termine only the one-dimensional component of v along the
direction of the subdural electrode grid. We show the results
for the second subclinical seizure in Fig. 2 where we plot the
WCC between b and a, and b and c in Figs. 2(a) and (b), re-
spectively. In each figure we plot the correlation as a function
of time (in s) and time lag (in ms), and indicate the seizure
onset with a vertical dashed line, and the location of zero lag

with a horizontal solid line. We show the correlation in linear
greyscale, with black denoting regions of correlation greater
than 0.8 and white denoting regions of anti-correlation less
than −0.8. We found in Kramer et al. (2005) that two inter-
vals (I1 and I2) of wavelike character occurred in the ECoG
data recorded from that subject. The same appears to be true
here with a different subject. From Fig. 2(a) one notes that
the magnitude of the WCC between b and a is not large with

(a) (b)

Fig. 2 The windowed cross correlation (WCC) between the ECoG
time series recorded from the second subclinical seizure of Subject A.
We show in subfigures (a) and (b) the WCC between electrodes b and
a, and b and c, respectively. The WCC are plotted in linear greyscale
with regions of strong correlation (greater than 0.8) and anti-correlation

(less than −0.8) denoted by black and white, respectively. We denote
the seizure onset and termination with vertical dashed lines at the left
and right of the figure, respectively. We indicate the boundary between
the intervals I1 and I2 with a vertical dotted line. The solid horizontal
line denotes the location of zero lag
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Table 3 Results for Subject A. The average frequency of maximum
power f0 and average propagation velocity v in I1 and I2 for the ECoG
time series data recorded during two subclinical seizures. We label the
neighboring electrodes a, b, c, with c most proximal. We compute v
from the middle electrode b. To compute the uncertainty in the average,
we assume the uncertainties in f0 and the magnitude of v for each
seizure are independent and random and propagate the uncertainties in
the standard way. For comparison, we list the approximate values for f0

and v determined from the mathematical model in the last row (Kramer
et al., 2005)

f0 (Hz) v (m/s)
Electrode I1 I2 I1 I2

a 9.1 ± 0.6 7.0 ± 0.3 −0.6 ± 0.2 −1.7 ± 0.7
b 8.2 ± 0.8 4.1 ± 0.2 – –
c 10.0 ± 0.5 7.5 ± 0.4 7 ± 12 3.4 ± 0.6

Model ∼ 10 ∼ 2 (magnitude)

any time lag in I1 (i.e., for 15 s < t < 25 s). Only in I2 (i.e.,
for 25 s < t < 49 s, between the vertical dotted line and the
right vertical dashed line in Fig. 2(a)), is the correlation be-
tween b and a significant. For electrodes b and c—whose
WCC we show in Fig. 2(b)—we find correlations of large
magnitude in both I1 and I2.

We list the results for v in the fourth and fifth columns of
Table 3, respectively. We note that in I1 the magnitudes of the
observational (0.6 m/s and 7 m/s with maximum uncertainty
in the mean of 12 m/s) and model (v near 2 m/s) results agree
within a factor of four, although we note the large uncer-
tainty in the mean for v between electrodes b and c. We find
that in I2 the magnitudes of the observational (1.7 m/s and
3.4 m/s with maximum uncertainty in the mean of 0.7 m/s)
and model (v near 2 m/s) results agree within a factor of two.
For both intervals, we find that v from b to a is negative,
while v from b to c is positive (although we again note the
large uncertainty in I1 between electrodes b and c). Thus dur-
ing seizure a component of the wave appears to propagate in

the proximal direction, from electrodes a to b to c. We note
that for Subject A we only collect and analyze data from two
subclinical seizures. A larger sample would be preferable for
better validation of the model.

Subject B

For Subject B we consider only the electrical activity
recorded at the electrode grid because the model applies
only to seizure propagation on the cortical surface. Specifi-
cally, we investigate a 3 × 3 subgrid of electrodes identified
clinically as a location of cortical seizure onset (the lateral
aspect of the middle to posterior left temporal lobe, abut-
ting the temporo-occipital junction.) An analysis of a more
inclusive electrode subgrid—or the entire 8 × 8 electrode
grid—may be performed. To consider the usefulness of such
an expanded analysis, we compute the maximum value of the
cross-correlations between the center electrode of the 3 × 3
subgrid and all 64 electrodes of the entire 8 × 8 grid. We sort
these values according to increasing electrode separation and
plot the results for intervals I1 and I2 in Figs. 3(a) and (b),
respectively. We fit each distribution with an exponential of
the form: A exp[−Bx] + C , and determine the decay con-
stants B to be 0.37 ± 0.02 cm−1 in I1 and 0.25 ± 0.02 cm−1

in I2. We note that the distance between two grid electrodes
may underestimate the separation between two cortical ar-
eas (because of an intervening sulcus, say). Therefore the
values for B represent, at best, an upper bound for the de-
cay constants. We also note that in the mathematical model
the characteristic length scale of long-range (i.e., cortico-
cortical) connections follows an exponential decay with ap-
proximate characteristic length scale of 0.4 cm−1 (see Fig. 5
of Liley et al. (2002)). We show in Fig. 3 that, even for
grid separations greater than 6 cm, the maximum values of
these cross-correlations remain greater than 0.2. Thus—for

(a) (b)

Fig. 3 The maximum value of the cross-correlation as a function
of electrode separation (in cm) for Subject B. We compute the cross-
correlation between the center electrode of the 3 × 3 grid and all other
grid electrodes during intervals I1 and I2 for each of the subject’s eight

seizures, and plot the value of maximum cross-correlation for each
electrode pair as an asterisk. We plot the exponential fit to each distri-
bution as a solid line. (a) Maximum cross-correlation values in I 1, (b)
maximum cross-correlation values in I2
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(a) (b)
Fig. 4 Results for f0 and v from Subject B recorded from the 3 × 3
electrode subgrid on the lateral aspect of the middle to posterior left
temporal lobe, abutting the temporo-occipital junction. The radius of
each circle corresponds to the mean value of f0 at the electrode. We
write the mean and uncertainty in f0 (in Hz) within each circle. The
arrows indicate the value and uncertainty of v between neighboring
electrodes. If the uncertainty in v is less than ten times the magnitude

of v, then we draw an arrow connecting the two electrodes. We indicate
the direction of v with the arrow and write the mean value of v and its
standard deviation along the line segment. If the mean value of v ex-
ceeds one standard deviation from zero, then we draw the line segment
solid and the arrowhead filled. Otherwise, we draw the line segment
dashed and the arrowhead unfilled. (a) f0 and v in I1. (b) f0 and v in I2

Subject B during seizure—the correlation between the ini-
tial location of cortical seizure onset and a wide cortical area
tends to decay exponentially with distance and asymptotes
to a nonzero value. An analysis of an extended subgrid may
therefore reveal more characteristics of the frequency and
velocity of traveling waves on the seizing cortex. Here, for
simplicity, we compare only data recorded from the 3 × 3
subgrid of clinical interest with the model results.

To determine f0 we follow the procedure described for
Subject A. For each of the nine electrodes in the 3 × 3 sub-
grid, we compute the WPS and determine the average fre-
quency of maximum power during the intervals I1 and I2.
We repeat this analysis for eight of the subject’s seizures
(we were unable to extract data for the ninth seizure) and
average the results over the seizures to determine f0 at each
electrode. We show the results for the 3 × 3 subgrid in Fig. 4
where we plot at each grid position a circle whose radius
corresponds to the mean value of f0 at the electrode. We
also write the value of f0 (in Hz) and the uncertainty in the

mean within each circle. We find values for f0 in I1 between
6.5 Hz and 12.6 Hz, and a maximum uncertainty in the mean
of 0.4 Hz, and for f0 in I2 between 8.0 Hz to 11.7 Hz with
a maximum uncertainty in the mean of 0.2 Hz, in agreement
with the model results ( f0 near 10 Hz) within a factor of two.
We note that, for this subject, the mean values of f0 are larger
in I1 than in I2 for two electrodes (e.g., the center electrode)
and smaller for the others (e.g., the left and right columns).
We also find that the variability of f0 appears to be larger in
I1 than in I2. To show this, we plot in Fig. 5(a) a histogram of
the percentage uncertainty in f0 for intervals I1 (solid line)
and I2 (dashed line). During I1 the percentage uncertainty
tends to be larger than during I2. We will compare these
results for f0 with the mathematical model below.

Now we determine v. For Subject A, we computed the
component of v in one spatial dimension—along the direc-
tion of the subdural electrode strip. In this section, we deter-
mine the components of v along the two spatial dimensions
of the electrode grid for Subject B. To do so, we compute

(a) (b)

Fig. 5 Histogram of the
percentage uncertainty in f0 and
v for intervals I1 (solid line) and
I2 (dashed line) of Subject B.
We use the mean values and
standard deviations from Fig. 4
to compute the percentage
uncertainties. (a) Histogram
values for f0. (b) Histogram
values for v. We express the
histogram values as ratios
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the WCC between each electrode of the 3 × 3 subgrid and
its (three, five, or eight) neighbors. We follow the procedure
discussed in Methods and show the results for v in I1 and
I2 in Figs. 4(a) and (b), respectively. Here we plot an arrow
connecting each electrode—denoted by a circle of radius
f0—with its neighbors if the uncertainty in v is less than
ten times the magnitude of v between the two electrodes.
For example, in Fig. 4(a) we do not draw an arrow between
the electrode in the lower left corner and its neighbor to the
right; for this electrode pair, we find v = 3 ± 96 m/s, and
96 > 3 × 10 = 30. When an arrow is drawn, we indicate the
direction of v with an arrowhead and write the mean value
of v and its standard deviation along the line segment. If the
mean value of v exceeds one standard deviation from zero,
we draw the line segment solid and the arrowhead filled.
Otherwise, we draw the line segment dashed and the arrow-
head unfilled. There are 10 dashed arrows in Fig. 4(a), and
13 solid and 3 dashed arrows in Fig. 4(b). We note that the
uncertainty in the mean—expressed as a percentage—tends
to be larger for v in I1 than in I2 (i.e., we draw only dashed
arrows in Fig. 4(a) and mostly solid arrows in Fig. 4(b)). To
illustrate this we plot in Fig. 5(b) a histogram of the percent-
age uncertainties in v shown in Fig 4(a) for intervals I1 (solid
line) and I2 (dashed line). Here we only consider percentage
uncertainties less than 1000%; we omit results with larger
uncertainties from Fig. 4(a). In I2 the percentage uncertainty
tends to be less than 200%; in I1 the percentage uncertainty
tends to be greater than 200%. We interpret this result to
suggest that the variability in v typically decreases during
the course of a seizure. Below we compare these results for
v with those from the mathematical model.

We find for Subject B that the magnitudes of v shown
in Fig. 4(a) range from near 0.3 m/s to 2.4 m/s, with a
maximum uncertainty in the mean of 10.2 m/s; and shown
in Fig. 4(b) range from 0.4 m/s to 9.0 m/s, with a maximum
uncertainty in the mean of 79.1 m/s. For most electrode pairs,
the magnitudes of the observational results agree with those
determined from the model (v near 2 m/s) within a factor of
four, although we note the large uncertainties in the means.
An inspection of Fig. 4(b) reveals an approximate motion of
the wave from the upper left corner to the lower right corner.
This motion is not apparent during the first interval I1 shown
in Fig. 4(a).

Subject C

To investigate the seizing activity recorded on the electrode
grid of Subject C, we consider a 3 × 3 subgrid of electrodes
situated on the lateral aspects of the anterior to left tem-
poral lobe. We repeat the analysis performed for Subject B
to compute f0 and v for Subject C. For each of the nine
electrodes, we compute the WPS, and determine the average
frequency of maximum power during the seizing interval.
We repeat this analysis for three of the subject’s seizures (we
were unable to extract the data for the other three seizures)
and average the results over the seizures to compute f0 in
intervals I1 and I2. We show the results for f0 from the 3 × 3
subgrid in Fig. 6. We illustrate the f0 results by following
the plotting scheme we used to create Fig. 4. We find that for
Subject C the values of f0 in I1 range from 8.8 Hz to 12.5 Hz,
with a maximum uncertainty in the mean of 0.7 Hz, and for
f0 in I2 from 7.3 Hz to 9.0 Hz with a maximum uncertainty

(a) (b)
Fig. 6 Results for f0 and v from Subject C recorded from the 3 × 3
electrode subgrid. The radius of each circle corresponds to the mean
value of f0 at the electrode. We write the mean and uncertainty in f0 (in
Hz) within each circle. The arrows indicate the value and uncertainty
of v between neighboring electrodes. If the uncertainty in v is less than
ten times the magnitude of v, then we draw an arrow connecting the

two electrodes. We indicate the direction of v with the arrow and write
the mean value of v and its standard deviation along the line segment.
If the mean value of v exceeds one standard deviation from zero, then
we draw the line segment solid and the arrowhead filled. Otherwise, we
draw the line segment dashed and the arrowhead unfilled. (a) f0 and v
in I1. (b) f0 and v in I2
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(a) (b)

Fig. 7 Histograms of the
percentage uncertainty in f0 and
v for intervals I1 (solid line) and
I2 (dashed line) of Subject C.
We use the mean values and
standard deviations from Fig. 6
to compute the percentage
uncertainties. (a) Histogram of
the uncertainty in f0. (b)
Histogram of the uncertainty in
v. We express the histogram
values as ratios

in the mean of 0.3 Hz, in agreement with the model results
( f0 near 10 Hz) within a factor of two. We note that the mean
value and variability (shown as a histogram of percentage
uncertainties in Fig. 7(a)) of f0 in I1 tend to exceed that in
I2. We compare these results with the mathematical model
below.

To determine v we follow the procedure described for
Subject B. We show the results for v in I1 and I2 from
Subject C in Figs. 6(a) and (b), respectively. The plotting
scheme follows that used to create Fig. 4. As in Fig. 4,
we draw arrows only between those neighboring electrodes
whose uncertainty in v is less than ten times the magnitude
of v. We indicate the direction of v with an arrowhead and
write the mean value of v and its standard deviation along the
line segment. If the mean value of v exceeds one standard
deviation from zero, we draw the line segment solid and
the arrowhead filled. Otherwise, we draw the line segment
dashed and the arrowhead unfilled. There are 8 solid and 10
dashed arrows in Fig. 6(a) and 14 solid and 5 dashed arrows
in Fig. 6(b). As for Subject B, we note that the uncertainty
in the mean—expressed as a percentage—tends to be larger
in I1 than in I2. To illustrate this, we plot in Fig. 7(b) a
histogram of the percentage uncertainty. In this case, we find
that the distribution for I2 is more sharply peaked near zero
than that for I1, although this difference is weak.

We find that the magnitudes of v range from 0.2 m/s to
27.2 m/s with a maximum uncertainty in the mean of 191.4
m/s in I1, and from 0.1 m/s to 10.6 m/s with a maximum
uncertainty in the mean of 62.3 m/s. In most cases, the mag-
nitudes of v agree with those calculated from the model
calculations (v near 2 m/s) within a factor of ten. An inspec-
tion of Fig. 6(b) reveals an approximate propagation of the
waves to the center of the subgrid. This propagation is not
apparent during the interval I1 shown in Fig. 6(a).

Comparison of observational and model results

In the previous three subsections we computed two quantities
( f0 and v) from ictal ECoG data recorded from three human
subjects. We compared these results with identical quanti-

ties computed from a mathematical model of human cortical
electrical activity. The model—stated in Methods—consists
of a system of SPDEs with solutions that can exhibit wave
propagation suggestive of a seizure when we alter two pa-
rameters (Pee and �e) that affect the excitation of the model
cortex. We found that the simulated and observed results for
f0 and v agreed during seizures. We have also found that the
characteristics of the ECoG data change during the course
of the seizure. To determine a crude measure of this change,
we divided the ECoG data into two temporal intervals and
computed f0 and v in each. We found that, for two subjects
(Subject A and Subject C), f0 in I1 typically exceeded f0 in
I2 (this relationship held for two electrodes of Subject B). We
also found that the observed variability in f0 and v tends to
be larger in I1 than in I2 for Subject B and Subject C. We use
these observations to deduce two qualitative conclusions: (1)
the frequency of maximum power, and (2) variability in the
velocity of propagation and frequency of maximum power
tend to decrease during the course of a seizure.

We now suggest that both qualitative results are consis-
tent with the mathematical model. We first consider (1):
that f0 tends to decrease during the course of a seizure. To
change the frequency of maximum power in the mathemat-
ical model, we adjust the two parameters Pee and �e. We
show the dependence of the dominant oscillation frequency
of he on Pee and �e in Fig. 8. To create this figure, we
follow the procedure in Kramer et al. (2005) and Kramer
et al. (2006) and compute numerical solutions to a simpli-
fied model: the dimensionless ordinary differential equations
(ODEs). The ODEs differ from the SPDEs in two ways. First,
the ODEs lack stochastic input. Second, the ODEs lack spa-
tial dependence; it is a perhaps helpful oversimplification to
think of the ODEs as modeling ECoG data recorded at a
single electrode. We define a “seizure” as a solution to the
ODEs for which he undergoes large amplitude, stable oscilla-
tions (Kramer et al., 2005). We compute numerical solutions
to the ODEs for 11.0 < Pee < 1000.0 and 0.4 × 10−3 <

�e < 1.5 × 10−3 using a fourth-order Runge–Kutta method
with a time step of 0.4 ms. For each solution, we cal-
culate the power spectrum of he after transient behavior
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Fig. 8 The frequency of oscillations in he for solutions of the ODEs
model as a function of parameters Pee (vertical axis) and �e (horizontal
axis). The frequency is plotted in linear greyscale with white repre-
senting 0 Hz (no oscillations) and black representing 10 Hz and larger.
We indicate the typical values of Pee and �e with a solid circle in the
lower right corner of the figure, and draw a trajectory—consisting of
four arrows labeled A, B, C , and D—suggestive of how seizures might
evolve in the model

has decayed and determine the frequency of maximum
power. We note that the frequency resolution of this calcu-
lation is 0.5 Hz, and that the power spectra possess a single,
well-defined peak. We show the results of this calculation
in Fig. 8. Here we use to white represent parameter regions
without oscillations in he (i.e., fixed points), and a linear
grayscale to indicate the dominant frequency of oscillation
in he; black represents oscillations with frequency greater
than 10 Hz and the lightest gray represents oscillations with
frequency less than 2 Hz. We note that, to induce seizure-like
oscillations in the model, we must decrease the typical value
of �e by at least 12%, and increase the typical value of Pee

by at least 2200%. We indicate the typical parameter values
with a solid black circle in the figure.

We use the results shown in Fig. 8 to speculate how
parameters Pee and �e might evolve to produce a seizure.
We start at the typical parameter values (�e, Pee) = (1.4 ×
10−3, 11.0)—the solid circle. We then decease �e by a small
amount and increase Pee by a large amount without invoking
a seizure. We indicate this initial trajectory with an arrow
emanating from the default parameter values and with label
A. The seizure initiates when we adjust the parameters (here
decrease �e) to enter the shaded region (trajectory B). At
this point, he undergoes large amplitude, stable oscillations
at a dominant frequency greater than 10 Hz. These seizure-
like oscillations persist at lower frequencies as we decrease
Pee and �e along trajectory C; this trajectory begins at the
dark shaded region (high frequency oscillations) and ends at

the lighter shaded region (low frequency oscillations). The
physiological motivation for the decrease in Pee and �e may
be, say, exhaustion of excitatory subcortical input or AMPA
(affecting the dimensional parameter Ge and thus �e—see
Table 2), respectively. The seizure halts as these physiolog-
ical mechanisms continue and we adjust Pee and �e to exit
the shaded region (trajectory D). The parameters might then
return to the typical values (the filled circle) and the cycle re-
peat. This putative trajectory in the (�e, Pee) plane provides
an example of how seizures might initiate (trajectory B), de-
crease in dominant frequency (trajectory C), and terminate
(trajectory D) in qualitative agreement with the observational
f0 results.

We may also adjust the model parameters to account for
the second observed qualitative result: the decreased vari-
ability in f0 and v during the course of a seizure. To do
so, we consider the complete SPDE model in (1). We com-
pute two numerical solutions to the model using the Euler-
Maruyama algorithm with fixed steps in space and time, 14
mm and 0.1 ms, respectively, and periodic boundary condi-
tions in space. Here we consider the dynamics in one spatial
dimension and set all parameters at the typical values ex-
cept for: �e = 0.8 × 10−3 (a decrease in the typical value
by 40%), the stochastic input (set so that the variance at a
fixed point of he is approximately 3 mV), and Pee. In both
simulations, we fix Pee to be Gaussian in space with center at
x = 350 mm, a minimum value of 11.0, a maximum value
of P0

ee, and a half-width of xH W . We adjust P0
ee and xH W so

that the Gaussian distributions possess different peaks and
widths. We employ this change in Pee as a crude speculation
of how the excitatory subcortical input to the seizing cortex
might evolve during the course of a seizure.

We show the results of the two simulations in Fig. 9. Here
we plot (dimensional) space on the horizontal axis, (dimen-
sional) time on the vertical axis, and the value of he in linear
greyscale; white corresponds to he = −100 mV, and black
to he = 0 mV. To create Fig. 9(a) we set P0

ee = 1000.0 and
xH W = 56 mm. For reference, we plot the spatial distribution
of Pee as a thick, solid line in Fig. 9(a). Seizures—large am-
plitude oscillations in he represented by the alternating light
and dark ridges—occur mainly in the spatially localized re-
gion of large Pee. As a voltage wave propagates outward,
it decays into the background activity. We may compare
this simulation with the observational results by consider-
ing the dynamics of he at two fixed spatial locations, both
near the edge of the seizing region. For example, consider
he recorded at x = 500 mm and x = 550 mm. At both lo-
cations the traveling wave has decayed significantly and the
oscillations are weak and sometimes do not occur. We may
follow the procedure in Methods and use the WPS and WCC
to compute f0 and v, respectively. The large variability in the
WPS and WCC—due to the inconsistent arrivals of traveling
waves—results in larger variabilities in f0 and v.
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Fig. 9 Numerical solution to the SPDEs. We set Pee Gaussian in space
with center at x = 350 mm, a maximum value of P0

ee, and a half-width
of xH W . Space (in mm) and time (in ms) are plotted along the hori-
zontal and (left) vertical axes, respectively. The value of he is plotted

in linear greyscale over space-time with he = −100 mV in white and
he = 0 mV in black. We plot Pee as a thick solid line and indicate its
value on the right vertical axis. (a) P0

ee = 1000.0 and xH W = 56 mm.
(b) P0

ee = 500.0 and xH W = 224 mm

In the second case, we set P0
ee = 500.0 and xH W =

224 mm. We show Pee in Fig. 9(b) as a thick solid line
and note that, compared to the Pee distribution in Fig. 9(a),
this subcortical excitatory input is broader and weaker. In
this case the seizure-like oscillations cover more of the one-
dimensional surface. Here Pee decays slowly and the oscil-
lations propagate further from the distribution’s center. If
we use the WPS and WCC to compute f0 and v at locations
x = 500 mm and x = 550 mm, we find less variability in the
results. In this case, traveling waves persists and the oscilla-
tions are robust at both locations. We note that the decrease
in Pee results in a decreased temporal oscillation frequency,
as shown in Fig. 8 for the ODEs model.

In the observational data the variability in f0 and v arose
from two sources. First, for each seizure, we computed the
WPS or WCC and averaged the frequency of maximum
power or averaged the time lags of maximum correlation,
respectively, over intervals I1 and I2. This averaging proce-
dure produced an uncertainty in the result for each seizure.
Second, we averaged these results over the seizures to com-
pute f0 and v. This averaging introduced a second source
of variability in the observational results. We use the sim-
ulations above to suggest a mechanism for the first type
of variability. We postulate that during interval I1 a strong,
compact focus of cortical seizing activity exists so that the
propagating waves quickly decay and large variability in f0

and v result at most locations (as in Fig. 9(a)). Then, dur-
ing interval I2, the region of seizing activity weakens and
broadens so that the propagating waves travel further over
the cortical surface and the variability in f0 and v decrease
at most locations (as in Fig. 9(b)).

Analysis of model parameters

Having found agreement between the observational and
model results, we suggest that the SPDEs can approximate

the electrical activity of the seizing human cortex. Therefore,
in this subsection, we interpret the model results to determine
what changes in cortical physiology might result in seizures.
In Kramer et al. (2005) we computed numerical solutions to
the ODEs and showed that seizures—large amplitude, stable
oscillations in he—result from changes in two model param-
eters: an increase in Pee and a decrease in �e. We considered
changes in these two parameters because both affect the exci-
tation of the model cortex. In what follows, we now consider
whether other parameter changes can result in seizure-like
oscillations in he. To do so, we keep Pee increased to nearly
50 times its typical value. Therefore, the excitatory cell pop-
ulations still receive strong, subcortical excitatory input; we
call this model cortex “hyper-excited.” It is neurobiologi-
cally plausible that the “hyper-excited” state is a common
initiating factor in seizures, because pre-ictal depolarization
of the soma potential in neuronal populations is almost al-
ways observed as a precursor to seizure (Dzhala and Staley,
2003). We then vary those parameters affecting connectivity
between cell populations (i.e., within and between the exci-
tatory and inhibitory populations). To examine all types of
connectivity, we relax several assumptions made in Kramer
et al. (2005). In that work, we assumed that connections
between neuronal populations were independent of the post-
synaptic population. For example, in Kramer et al. (2005), we
defined the parameter �e as the influence of excitatory input
on both excitatory and inhibitory postsynaptic cell popula-
tions. A change in �e, therefore, affected excitatory and in-
hibitory populations equally. To enable exploration of more
specific connectivity changes, we replace �e with two pa-
rameters: �ee and �ei . The new parameter �ee defines the
influence of excitatory input on postsynaptic excitatory pop-
ulations, and the new parameter �ei defines the influence
of excitatory input on postsynaptic inhibitory populations.
We perform similar changes to three other model parameters
(�i , Nβ

e , and Nβ

i ) that affect connectivity between neuronal
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Table 4 Definitions of dimensionless parameters effecting connectiv-
ity between excitatory and inhibitory neural populations in the ODEs.
The original parameters in the first column are from Kramer et al.,
(2005). We list the symbols for the new parameters in the second col-
umn and define these parameters in terms of dimensional components

from Steyn-Ross et al. (2003), and in words in the third and forth
columns, respectively. We write the typical value from Kramer et al.
(2005) in the fifth column, and the percentage change in the typical
parameter value necessary to induce seizure-like oscillations in the
hyper-excited model cortex (i.e., Pee = 548.066) in the last column

Old New Dims Definition Typical �

�e �ee
Gee exp(1)Smax

γee|hrev
ee − hrest

e | influence of excitatory input on the mean soma membrane
values of excitatory neurons

1.42 × 10−3 −12%

�ei
Gei exp(1)Smax

γei |hrev
ei − hrest

i | influence of excitatory input on the mean soma membrane
values of inhibitory neurons

1.42 × 10−3 +28%

�i �ie
Gie exp(1)Smax

γie|hrev
ie − hrest

e | influence of inhibitory input on the mean soma membrane
values of excitatory neurons

0.0774 +14%

�i i
Gii exp(1)Smax

γi i |hrev
i i − hrest

i | influence of inhibitory input on the mean soma membrane
values of inhibitory neurons

0.0774 −22%

Nβ
e Nβ

ee – number of local excitatory synapses on excitatory neurons 3034 −28%
Nβ

ei – number of local excitatory synapses on inhibitory neurons 3034 +39%

Nβ

i Nβ

ie – number of local inhibitory synapses on excitatory neurons 536 +12%
Nβ

i i – number of local inhibitory synapses on inhibitory neurons 536 −19%

populations. We define the eight new parameters and list the
typical values in the second and fifth columns of Table 4,
respectively.

Having established the validity of the model and defined
the eight new parameters, we now determine which parame-
ter changes result in seizure-like oscillations in the dynamics.
To do so, we fix seven of the new parameters at the typical val-
ues, change one parameter by a small amount, and compute
a numerical solution to the ODEs. We compute the numer-
ical solutions here, and in what follows, using a forth-order
Runge-Kutta method with time step of 0.4 ms. We find that
the variable he—the observable variable we compare to the
ECoG data—either approaches a steady state value, or under-
goes large amplitude oscillations. If he approaches a steady
state value, we change the same parameter by a small amount
and compute another numerical solution to the ODEs. We
continue this procedure until the parameter becomes implau-
sible (e.g., negative) or he undergoes oscillations. If a small
change in the parameter results in oscillations in he, then we
say that this parameter induces a seizure in the model. In the
last column of Table 4, we list the percentage change in each
parameter necessary to induce seizure-like oscillations in
he.

We illustrate the results of this analysis in Fig. 10. In
this figure, we show a schematic of the mathematical model
(Kramer et al., 2005). The eight rectangular boxes represent
the 8 model (dimensionless) variables (h̃e, h̃i , Ĩee, Ĩei , Ĩie, Ĩi i ,
φ̃e, and φ̃i ) we define in Table 1. We again note that the di-
mensional variable he is related to the dimensionless variable
h̃e by a simple scaling: he = −70 mV ×h̃e. The arrows rep-
resent connections between the variables, and between the
variables and subcortical inputs (Pee, Pei , Pie, and Pii at

Fig. 10 A schematic representation of the connections between the
8 (dimensionless) variables (h̃e, h̃i , Ĩee, Ĩei , Ĩie, Ĩi i , φ̃e, and φ̃i ) and the
4 subcortical inputs (Pee, Pei , Pie, Pii ) in the model. We indicate the
interactions between the variables using arrows and label the eight con-
nections that affect the connectivity within and between the excitatory
and inhibitory cell populations. We have increased Pee by nearly a fac-
tor of 50; we denote this increase with the thick, solid arrow. To induce
seizures in the hyper-excited model dynamics, we may increase the
strength of any single one of the black, dashed connections or decrease
the strength of any single one of the grey, solid connections by the
amounts shown in Table 4

the bottom of the figure). Because we have increased Pee

by nearly 5000%, we draw a thick arrow connecting it to
Ĩee. To make the model “seize” we change the parameters
listed in the second column of Table 4 one at a time. We
label the connections affected by each of these parameters
in the figure. For example, to alter the strength of connec-
tion from h̃e to Ĩee we change the parameter Nβ

ee. We find
that seizure-like oscillations result in h̃e (or he) when we
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decrease Nβ
ee by 28%. We indicate that a decrease in Nβ

ee

results in a seizure by shading the arrow and label for this
connection in grey. We find that the model dynamics “seize”
as we increase or decrease each of the eight parameters.
We indicate the direction of change in Fig. 10; we find that
seizure-like oscillations results in he when we increase the
strength of the connections drawn in black and with dashed
lines, or decrease the strength of the connections drawn in
grey and with solid lines. We note that seizures result in the
model from an increased connectivity between the two cell
populations (i.e., between the excitatory and inhibitory popu-
lations), and a decreased connectivity within each population
(i.e., within the excitatory population or within the inhibitory
population).

So far we have discussed how to make the model “seize”
by changing the dimensionless parameters listed in the sec-
ond column of Table 4. We now discuss the relationship
between these parameter changes in the model and physio-
logical changes in the cortex. To do so, we first define each
dimensionless parameter in terms of dimensional quantities
as in Kramer et al. (2005). We list these definitions in the
third column of Table 4. We note that the four parameters Nβ

ee,
Nβ

ei , Nβ

ie, and Nβ

i i have no dimensional counterparts; each of
these parameters represents a true dimensionless quantity:
the mean number of synapses.

The dimensional definitions of �ee, �ei , �ie, and �i i are
more complicated. Each contains four quantities: G jk, γ jk ,
hrev

jk , and hrest
k ; where j ∈ {e, i} and k ∈ {e, i}; as well as Smax

and the exponential exp(1). To allow more types of connec-
tivity than what we considered in Kramer et al. (2005) we
again assume that the parameters depend upon the postsy-
naptic cell population (i.e., the values differ for synapses
terminating on an excitatory or inhibitory postsynaptic cell).
For example, we define the neurotransmitter rate constants
γ jk with two subscripts. The first (j) defines the presynaptic
neuron and the second (k) defines the postsynaptic neuron.
Other researchers who investigate the SPDEs model do not
make this assumption (Steyn-Ross et al., 2003). We allow
this parameter (as well as the parameters G jk, Nβ

jk, hrest
k , and

hrev
jk ) dependence on the postsynaptic neuron to explore more

specific behavior in the model; we assume that the cell rest-
ing potential hrest

k depends only on the postsynaptic neuron
k. A change in a dimensionless parameter can result from
a change in any of the dimensional parameters of which
it is comprised. For example, to decrease the dimension-
less parameter �ee and induce seizure-like oscillations in the
model dynamics, we can: decrease Gee or Smax, or increase
γee or the difference |hrev

ee − hrest
e |. We list these dimensional

quantities, their definitions, and the direction of change nec-
essary to produce seizing dynamics in the model in Table 5.
We include the parameters Nβ

ee, Nβ

ei , Nβ

ie, and Nβ

i i in this ta-
ble, although these parameters are dimensionless.

Fig. 11 A cartoon of two interconnected neuronal populations
(excitatory—EX—on the left and inhibitory—IH—on the right) and
16 physiological parameters. The filled circles denote synapses (Nβ

jk ),
the triangles denote peak amplitudes of the postsynaptic potentials
(G jk ), and the vertical arrows within EX and IH denote the rate con-
stants (γ jk ). We also indicate the voltage difference between the re-
versal and resting potential by the label | �h jk |. To induce seizure-
like oscillations in the model dynamics, we must either increase
any one of the black parameters or decrease any one of the grey
parameters

We illustrate the changes in the dimensional quantities
listed in Table 5 in Fig. 11. We show in this figure a car-
toon representation of the local connections between the two
cell populations. (By local connections we mean connec-
tions established within a small spatial neighborhood, not
long-range, corticocortical connections). We draw the exci-
tatory and inhibitory populations as rectangles on the left
and right of Fig. 11, respectively. The populations establish
feedback and reciprocal synaptic connections. We draw these
connections leaving the bottom of the excitatory population
and the top of the inhibitory population. We illustrate the
number and strength of the synapses formed by each con-
nection with a filled circle labeled Nβ

jk and a filled triangle
labeled G jk , respectively. Inside the rectangular label for
each population we show the rate constants γ jk with vertical
arrows and the voltage differences |hrev

jk − hrest
k | ≡ |�h jk| in

text. The rate constants incorporate the time course of somat-
ically recorded postsynaptic spike activity in a neuron due
to the combined effects of passive dendritic cable delays and
neurotransmitter kinetics, such as excitatory AMPA and in-
hibitory GABA (Liley et al., 2002). The voltage differences
scale the synaptic input by the reciprocal of the magnitude
difference between the reversal and resting potentials. We
shade the labels for Nβ

jk, Gjk , and γ jk , and the text |�h jk|
to indicate changes in each quantity that result in seizing
dynamics. To induce a seizure in the model dynamics we
may increase the dimensional parameters drawn in black or
decrease the dimensional parameters drawn in grey.
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Table 5 Definitions of dimensional parameters from Kramer et al.
(2005) effecting connectivity between excitatory and inhibitory neural
populations in the ODEs. We define each parameter in words in the
second column. We indicate the direction of change in each parameter

necessary to induce seizure-like oscillations in the hyper-excited model
cortex (i.e., Pee = 548.066) in the last column. Here PSP stands for
postsynaptic potential, EPSP for excitatory postsynaptic potential, and
IPSP for inhibitory postsynaptic potential

Parameter Definition � for seizure

Gei,ie mean peak amplitude of the PSP induced by a single presynaptic spike from an
(excitatory, inhibitory) neuron at the synapses of an
(inhibitory, excitatory) postsynaptic neuron

↑

Gee,i i mean peak amplitude of the PSP induced by a single presynaptic spike from an
(excitatory, inhibitory) neuron at the synapses of an
(excitatory, inhibitory) postsynaptic neuron

↓

Nβ

ei,ie the number of local (excitatory, inhibitory) synapses on (inhibitory, excitatory) neurons ↑
Nβ

ee,i i the number of local (excitatory, inhibitory) synapses on (excitatory, inhibitory) neurons ↓
γee,i i the neurotransmitter rate constant for

(EPSPs, IPSPs) to travel from the dendrites to the soma of an
(excitatory, inhibitory) neuron

↑

γei,ie the neurotransmitter rate constant for
(EPSPs, IPSPs) to travel from the dendrites to the soma of an
(inhibitory, excitatory) neuron

↓

|hrev
ee,i i − hrest

e,i | the difference between the reversal potential associated with
(excitatory, inhibitory) synaptic activity on (excitatory, inhibitory) cells and the
(excitatory, inhibitory) cell rest potential

↑

|hrev
ei,ie − hrest

i,e | the difference between the reversal potential associated with
(excitatory, inhibitory) synaptic activity on (inhibitory, excitatory) cells and the
(inhibitory, excitatory) cell rest potential

↓

Smax the maximum value of the sigmoid transfer function that maps the
soma voltage to average output spike rate

↑ ↓

Discussion

In Results we computed two quantities ( f0 and v) from
ictal ECoG data recorded from three human subjects. We
compared these results with identical quantities computed
from a mathematical model of human cortical electrical ac-
tivity, stated in Methods, and found that the simulated and
observed results agreed in two ways during seizures: f0—the
frequency of maximum power, and v—the speed of voltage
propagation. We note that the speed of voltage propagation
(near 2 m/s) is similar to the velocity of axonal conduction
in cortical white matter (variously reported as 0.5–5 m/s).
Other investigators have observed propagation of seizure ac-
tivity at these velocities in intact brains, particularly in cross
callosal spread (Gotman, 2003). In contrast, seizure activ-
ity in slice preparations—which have minimal white mat-
ter connections—spreads several orders of magnitude more
slowly (only about 1 mm/s) (Weissinger et al., 2005). This
hints that white-matter conduction—rather than local cor-
tical grey-matter spread—may be an important mechanism
in seizure propagation (Sutherling and Barth, 1989; Nowak
et al., 1997).

We also found that the characteristics of the ECoG data
changed during the course of a seizure. We characterized
these changes by dividing the observational data into two
temporal intervals and computing f0 and v in each. From this

we deduced two qualitative conclusions: (1) the frequency
of maximum power, and (2) the variability in the velocity
of propagation and frequency of maximum power tended to
decrease during the course of a seizure. In Results we sug-
gested how parameters Pee and �e might evolve to produce
similar qualitative results in the model. Namely, we showed
that a decrease in f0 and decreases in the variability of f0

and v may result from large temporal changes and spatial
broadening of Pee and small temporal changes in �e. Both
parameter changes could plausibly be caused by a variety of
physiological mechanisms (e.g., changes in the resting po-
tential of both neural populations, the neurotransmitter rate
constant, the maximum firing rate, and/or the synaptic gain).

Finally we studied parameter changes in the simplified
ODEs model. We defined eight dimensionless parameters af-
fecting the connectivity between the excitatory and inhibitory
cell populations and found that seizure-like oscillations can
result from changes in each. We used these results to sug-
gest two methods for inducing seizure-like oscillations in the
ODEs. First, we may increase the (dimensionless) strength of
connections between the excitatory and inhibitory cell pop-
ulations (the inter-population connectivity). We illustrated
these connections in Fig. 10 with black, dashed lines. Sec-
ond, we may decrease the (dimensionless) strength of con-
nections within the excitatory cell population or within the
inhibitory cell population (the intra-population connectiv-
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ity). We illustrated these connections with grey, solid lines
in Fig. 10. We concluded that strong interactions between the
excitatory and inhibitory cell populations result in seizure-
like oscillations in the model dynamics.

To allow an easier comparison of the model results with
cortical physiology, we defined each dimensionless parame-
ter in terms of its dimensional components. We listed these
definitions in the third column of Table 4. Because both
increases and decreases in the dimensional parameter Smax

result in seizure-like oscillations, we do not consider this pa-
rameter further. We illustrated the results for the dimensional
parameters in Fig. 11. We found that seizure-like oscillations
can result from both increases (shown in black) or decreases
(shown in grey) in the model parameters and summarized
these results in Table 5.

The novel result from the model is the suggestion that the
balance of intra-population (e → e and i → i) versus inter-
population (e → i and i → e) connectivity is an important
mechanism in the causation (or propagation) of seizures in
the hyper-excited cortex. From this two questions arise: what
physiological homeostatic (self-organizing) mechanisms are
present in the nervous system to maintain this balance in
health, and thus prevent seizures? And, what biological or
pharmacological effects could cause a neuronal population
imbalance of 10%–40%, thus making the cortex vulnera-
ble to convulsions? There is not much experimental work
reported in the literature that explicitly, and quantitatively,
describes such imbalances but we will compare predictions
from the model with some reported data. In doing so we
shall attempt—perhaps naively and on purely theoretical
grounds—to connect tentatively these agents or mechanisms
with the foregoing discussion of our mathematical model.
The value of such an undertaking at this early stage of model
development is in clarifying thoughts about the mechanism
of action of drugs or pathological states and their relationship
to our model. A more robust analysis may prove or disprove
these relationships, and perhaps suggest new parameters re-
quired in the model.

First we mention that various neurological diseases or
trauma have pathological effects at the anatomic/neuronal
scale. These could be modeled as imbalances in Nβ

ee and
Nβ

ie. It would be easy to imagine imbalances in Nβ
ee and Nβ

ie

occurring in neuronal scar tissue. Neuronal loss and gliosis
are characteristic of tissue in which seizures arise, and indeed
this pathological effect is used to increase the propensity
for convulsions in several experimental animal models of
epilepsy (e.g., (Dichter, 2006)).

Second, there are numerous different types of inhibitory
neuron with specific anatomical connections to different cell
types. For example the so-called “chandelier” and “basket”
interneurons target the axonal segments of the pyramidal
cells—and thus would form an important part of the in-
hibitory to excitatory connectivity in our model (Krimer

et al., 2005). It has been postulated that inactivity, discon-
nection, or deficiency of these (inhibitory-onto-excitatory)
chandelier and basket interneurons may allow uncontrolled
excitatory activity and hence seizures—the so-called disinhi-
bition hypotheses of seizure causation (for a critical review,
see (Bernard et al., 1998)). Inactivity of basket cells in the
CA1 of the rat hippocampus has been called the dormant bas-
ket cell hypothesis (Bekenstein and Lothman, 1993). Sim-
ilarly, a deficiency of chandelier cells has also been pro-
posed as a cause of seizures (DeFelipe, 1999). However
recent work suggests that this hypothesis is over-simplified
(Arellano et al., 2004), and that the converse may be true.
There is experimental evidence that seizure activity is as-
sociated with strong firing of chandelier cells, and a strong
positive feedback circuit between the pyramidal cells and the
chandelier inhibitory neurons (Fujiwara-Tsukamoto et al.,
2004). This is precisely the pattern of activity that is predicted
by our model. Although our mathematical model describes
cortical seizure propagation—not hippocampal seizure
genesis—the relative effects of disinhibition-induced hyper-
excitability versus intra-population and inter-population con-
nectivity clearly need more detailed quantitative experimen-
tal investigation.

We may also use the model to understand pharmacologi-
cal induction, or suppression, of seizures. To do this we must
consider the effects of drugs acting on receptor molecules
(usually proteins). There are typically many subtypes of these
receptors, which are heterogeneously distributed between
different populations of neurons. It must be acknowledged
that many drug effects are erratic and context-dependent.
The same drugs that induce seizures may also treat seizures,
and antiepileptic drugs are occasionally proconvulsant. We
would speculate that this phenomenon could be the result
of subtle differences in the action of the drugs on different
receptor subtypes which are present on different, intercon-
nected neuronal populations.

In experimental preparations the proconvulsant 4-
aminopyridine (4-AP) is commonly used to generate
seizures. The effects of 4-AP include enhancement of both
excitatory and inhibitory synaptic transmission, perhaps by
enhanced neurotransmitter release at the presynaptic cells
(Rutecki et al., 1987), or leak potassium channel closure
(Netoff and Schiff, 2002). The end result is an increased
connectivity within the cell network. We relate these phys-
iological changes to changes in the model parameters that
increase the network connectivity, namely: an increase in
Gjk—the mean peak amplitude of the postsynaptic potential
induced by a presynaptic population j on postsynaptic popu-
lation k—or Nβ

jk—the number of local synapses from presy-
naptic population j to postsynaptic population k. We have
found in model simulations that seizures result from rela-
tively increased inter-population connectivity (i.e., increases
in Gei , Gie, Nβ

ei , and Nβ

ie) and decreased intra-population
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connectivity (i.e., decreases in Gee, Gii , Nβ
ee, and Nβ

i i ). This
would be supported by the 4-AP model if 4-AP acts to
increase inter-population connectivity more strongly than
intra-population connectivity.

We have shown how to induce seizure-like oscillations
in the ODEs and how these model results compare to other
proposed seizure mechanisms. We may also apply the anal-
ysis to suggest epilepsy treatments. We note that to prevent
a seizure from occurring in the model dynamics, we may
decrease the strength of the black, dashed connections (the
inter-population connectivity) or increase the strength of the
grey, solid connections (the intra-population connectivity)
shown in Fig. 10. These changes correspond to a decrease
in the black (dimensional) parameters or an increase in the
grey (dimensional) parameters of Fig. 11.

We find that changes in many dimensional parameters
(Gjk , Nβ

jk, γ jk, hrest
k , and hrest

jk ) may prevent seizures in the
model dynamics. This result may be useful in the develop-
ment of medications to which patients do not develop toler-
ances. For example, one might develop treatments that target
different physiological parameters (and different pathways
in Fig. 11) so as not to exploit and perhaps desensitize any
single pathway in particular.

To suggest how these preventative mechanisms deter-
mined from the model may relate to experimental results, we
consider benzodiazepines (BZ). BZ are an important class
of anticonvulsant drugs that act to enhance the action of
GABA at GABAA receptors. We follow (Liley et al., 2002)
and assume that the effect of BZ are to increase the model
parameters Gie or Gii —the mean peak IPSP induced on ex-
citatory and inhibitory postsynaptic cells, respectively. We
have shown that an increase of Gie induces seizure-like oscil-
lations in the model dynamics. The observed anticonvulsant
effects of BZ would be consistent with the model if it acts
to increase Gii rather than Gie—perhaps mediated by dif-
fering distributions of GABA receptor subtypes on different
classes of neurons. Once we know which receptor subtypes
are present on a specific neuronal population (for example
the (i → e) basket cells), we may be able to design a specific
GABA agonist that will act more strongly on other (i → i)
connections, but is less active (or even antagonistic) at the
basket cell (i → e) synapses. Analysis of the relationships
between anticonvulsant medications and model parameters
may eventually suggest how these drugs produce their ther-
apeutic effects.

We conclude by noting two issues concerning our anal-
ysis. First, the electrode separation of 10 mm in the ECoG
recordings may be too large to capture voltage propagation.
To determine the properties of voltage propagation more ac-
curately, one would like to use an electrode strip or grid with
smaller inter-electrode distances. Smaller electrode spacing
might also help ensure that neighboring electrodes are true

neighbors (and not separated by a sulcus, for example). Sec-
ond, in comparing the observational and simulated results,
we make an important assumption about the mathematical
model. Namely, we set the parameter Pee to 50 times its typi-
cal value (to “hyper-excite” the model cortex). Of course this
assumption may be incorrect. Moreover, the ODEs model
(and the complete SPDEs model) provides only a crude
approximation to the true dynamics of the seizing cortex.
Although simple, we find the model useful in making our
assumptions explicit.
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