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Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal

phenomena, such as waves and bumps, have been observed in various areas of the brain and

proposed as critical to brain function. While there is a long and distinguished history of studying

rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of

rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of

diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson’s, and sleep disorders,

are associated with transitions or disruptions of neurological rhythms. This focus issue brings

together articles presenting modeling, computational, analytical, and experimental perspectives

about rhythms and dynamic transitions between them that are associated to various diseases.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4856276]

To have and to hold—and to oscillate—in sickness and in

health.

INTRODUCTION

Dynamic phenomena, such as rhythmic oscillations and

waves, are ubiquitous in the nervous system and have been

associated with cognition and motor behavior in both health

and disease.1–5 Oscillations in different frequency ranges

have been associated with healthy brain function, including

learning, memory, spatial navigation, attention, sleep, and

motor behavior.2,6–14 Wave-like phenomena have been asso-

ciated with sensory processing15 and working memory.16

Rhythmic neuronal activity—and transitions between

rhythms—are also central phenomena in neurological dis-

ease.5,17 Perhaps the most famous manifestations occur in

epilepsy, which is characterized as a paroxysmal cerebral

dysrhythmia (see, e.g., Ref. 18). More recently, similar phe-

nomena have been proposed in other neurological disorders,

including schizophrenia (see, e.g., Refs. 19–22), Alzheimer’s

disease (see, e.g., Ref. 23), Parkinson’s disease (see, e.g.,

Refs. 24 and 25), and sleep disorders (see, e.g., Ref. 26).

A broad range of rhythms, and transitions between dif-

ferent rhythmic regimes, have been observed for these dis-

eases. In epilepsy, the rhythms range from extremely fast

(e.g., hundreds of Hertz27–30) to slow (e.g., a few Hertz31,32)

and are bracketed by abrupt transitions at the onset and ter-

mination of seizure events.33–36 Schizophrenia—character-

ized as a failure of cognitive integration—manifests in brain

rhythms as altered beta and gamma band (15–70 Hz) syn-

chronization.22,37 In Alzheimer’s disease, brain rhythms shift

to power at lower frequencies, and the coherence of fast

rhythms decreases.23,38,39 In Parkinson’s disease,

pathologically exaggerated beta oscillations characterize the

abnormal rhythms.25,40–44 Transitions between dynamic

regimes have been observed during sleep, and abnormal tran-

sitions have been associated with sleep disorders.26,45–51

Finally, the slow waves of cortical spreading depression52

underlie the reduction of excitability in neuronal tissue asso-

ciated with migraine,53,54 in particular, migraine with aura.52

On the three fronts of modeling, computation, and

experiment, there have been a series of important recent

advances, and many new avenues of research have emerged.

These include: (1) new techniques to record high-density

brain activity;55–57 (2) theoretical advances and clinical

application of deep brain stimulation methods;58 (3) sophisti-

cated biophysical models of rhythms and disease;59,60 (4)

novel optogenetic techniques that permit interrogation of

neural circuits in vivo;61 and, (5) increasingly-sophisticated

data-analysis techniques.62 The modeling and computational

work—both deterministic and stochastic—have focused in

part on reproducing experimental results, and on the investi-

gation of the underlying biophysical and dynamical mecha-

nisms, especially when experiments are not possible or very

difficult to perform.

The dynamic transitions between healthy and diseased

regimes may occur in many ways, including through altera-

tions in the intrinsic properties of the participating neurons,

changes in the network connectivity between neurons, modu-

lation in the extracellular environment, or combinations of

these and other mechanisms. Dynamic transitions may

involve bifurcations or abrupt transitions, which do not

involve local bifurcations but rather result from the multi-

plicity of time scales present in neurons and neuronal net-

works. The basic ingredients of dynamic transitions may

exist at the individual cell level or, alternatively, may result

from circuit interactions (i.e., at the network level). The

complexity of these interactions spanning spatial and tempo-

ral scales often leads to counterintuitive results. Identifying

the mechanisms that govern these transitions and where

these transitions originate is one of the challenges of systems
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neuroscience that may shed light on the cellular and network

substrate of diseases of the nervous system.

THIS FOCUS ISSUE

This focus issue brings together scientists from widely

disparate fields, who collectively apply a variety of techni-

ques to assess the features of rhythmic neuronal activity and

the transitions between rhythms. Despite the different objects

of study and terminologies, common underlying mechanisms

and similarities exist. We think that both experimental and

theoretical scientists will benefit from exploring the mecha-

nisms and ideas described in the presented articles. Also, we

hope that this focus issue will further foster cross-

fertilization of techniques and ideas between different fields,

and promote continued collaboration between these fields.

Rhythms and dynamical changes of states are of critical

importance in the development of migraines, as has been

known for over 70 years. Significant current research is

devoted to determining the upstream mechanisms, including

cortical spreading depression, responsible for the onset of

various types of migraines. Miura et al.63 present a thorough

review of eight of the mathematical models that have been

used to study the physiological and dynamical mechanisms

underlying the development of cortical spreading depression,

and its role in migraine with aura. These models incorporate

ion diffusion, membrane currents and pumps, spatial buffer-

ing, osmosis, and cell swelling. The authors also identify

some important open questions. Dahlem64 develops a novel

mathematical model of the migraine generator network that

takes into account the chemical imbalances associated with

the generation of migraine. This network model incorporates

the trigeminal nerve, which innervates the cranial circula-

tion, an associated network of brainstem nuclei, and para-

sympathetic vasomotor efferents. It also includes the

important physiological process of cortical spreading depres-

sion, as a spatio-temporal perturbation of homeostasis. The

author shows how this extended network model may be used

to understand the nonlinear interactions between the key

physiological processes and to develop new experiments

involving noninvasive and minimally-invasive neuromodula-

tion techniques.

The intrinsic properties of individual cells, and synaptic

connections between cells, typically affect network behavior

in complicated ways. Proddutur et al.65 use network models

of fast spiking basket cells to examine how biophysical

changes occurring in inhibitory synaptic interactions in

epileptic-like (pilocarpine-treated) animals modulate net-

work activity in the gamma frequency range (30–100 Hz).

These synaptic changes consist mostly in the enhancement

of extra synaptic gamma-amino butyric acid (GABA) cur-

rents and the depolarization of the GABA reversal potential.

Cabral et al.66 examine the effects of alterations in the con-

nectivity properties that underlie the development of schizo-

phrenia. These authors examine whether changes in the

functional connectivity necessarily result from changes in

the structural connectivity or whether other dynamic mecha-

nisms are involved. Rotstein67 investigates the conditions

under which the interaction between E1-Amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid excitation and the intrin-

sic properties of neurons leads to abrupt transitions between

low and high firing frequencies. This has been associated to

the phenomenon of hyperexcitability in medial entorhinal

cortex layer II stellate cells in pilocarpine treated rats.

How synaptic connections support robust neuronal dy-

namics remains an active research area. Jalil et al.68 consider

a mathematical model of a central pattern generator, a small

network of synaptically-coupled interneurons, governing

various motor behaviors in animals. The authors develop a

four-cell network of biophysically-motivated model neurons,

and examine the observed phase-locked activity states using

Poincare return maps. Through variations of the model pa-

rameters, the authors match the model dynamics with

observed electrophysiology, and thereby investigate the min-

imal wiring of synaptic connections supporting robust neuro-

nal dynamics observed in experimental studies.

While brain disease is often characterized by intervals of

strongly correlated activity, healthy brain activity is typically

irregular and neuronal activity uncorrelated. Terman et al.69

use conductance-based models to describe a novel mecha-

nism by which irregular neuronal activity emerges in a two-

cell network reciprocally connected by synaptic inhibition.

In addition to the computational modeling of neuronal

activity, a fundamental issue in understanding the brain’s

rhythmic dynamics is the development of statistical tools to

assess the data associated to these rhythms and their changes.

To this end, Deng et al.70 develop a point process modeling

framework to characterize rhythmic spiking dynamics, test

for significant changes in those dynamics, and track the tem-

poral evolution of those changes. The authors apply this

approach to spike train data recorded from patients with

Parkinson’s disease.

In a related vein, it is important to understand the rela-

tionships between results obtained from computational mod-

els and experiments. In particular, when models are built to

address specific experimental questions, but the subsequent

construction of hypotheses and the testing of predictions

involve details not included in the original models, techni-

ques are required to modify the original models. Skinner and

Ferguson71 propose a multi-level integrative approach to

address the cyclic interactions between modeling and experi-

ments. Using whole hippocampus in vitro preparations as a

prototypical system, they show how to incorporate experi-

mental measurements made at the cellular- and network-

levels into a computational model and simultaneously how

model output can be used to control the experiments. Their

proposed cycling dynamically in real-time between experi-

ment and model may help with resolving the accuracy of the

models and for hypothesis testing regarding the transitions

observed between rhythms in healthy organisms and those

observed in neurological disease.

More broadly, these latter two research topics fall in the

broader category of “data assimilation,” which is also playing

an increasingly-important role in other fields of science and

engineering, including Lagrangian mixing in geophysical fluid

mechanics, complex turbulent flows, among many others.

The two final articles focus on complicated dynamic

activities that emerge in single cells. Osinga and Tsaneva-
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Atanasova72 study spike-adding as a transient response in

fast-slow models of transmembrane voltage. Based on the

classical Hindmarsh-Rose system, their model consists of

one slow and two fast variables with a polynomial vector

field, and its underlying structure is similar to that of models

of pyramidal CA1 and CA3 excitable cells. They demon-

strate how an applied current can take the cell out of the

globally-attracting quiescent state and lead to the formation

of spikes. They also analyze how the number of spikes in the

transient response is determined by the amplitude of the

applied current and by the geometry of the system’s slow

manifold. Desroches et al.73 analyze a novel mechanism that

governs the abrupt transitions between two oscillatory

modes: subthreshold oscillations (STOs) and bursting. A key

ingredient is the slow passage through a spike-adding bifur-

cation. These results extend previous work on mixed-mode

oscillatory behavior between sub- and supra-threshold activ-

ity, which has almost exclusively focused on abrupt transi-

tions between STOs and spikes.
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