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Introduction
As large data sets (e.g., multisensor, high-density 
recordings) become more prevalent in neuroscience, 
analysis routines to characterize these data become 
more essential. Neuronal field data often exhibit 
rhythms, and spectral analysis techniques provide 
tools to characterize these rhythms and succinctly 
summarize important features in these large data sets. 
In this chapter, we provide a hands-on, nontechnical 
introduction to some of the spectral analysis material 
presented in this Short Course. This brief review 
necessarily provides a limited description of spectral 
analysis; excellent references exist with many more 
details (Priestley, 1983). Instead, we focus on case 
study data available for download at http://math.
bu.edu/people/mak/sfn-2013/ . Embedded within this 
chapter is MATLAB code; the reader is encouraged 
to explore these data and methods on his or her own.

Field Analysis Techniques Step  
by Step
Introduce single-sensor data: 
visualization
To start, we focus our analysis on a single field  
recording. This recording may represent an electro-
encephalographic (EEG), magnetoencephalographic 
(MEG), electrocorticographic (ECoG), or local field 
potential (LFP) observation. We collect T = 2 s of data 
(sampling frequency f0 = 500 Hz) from a single sensor  
(Fig. 1A). In this figure, the voltage trace appears as a 
continuous curve. However, closer inspection reveals 
that these data consist of discrete points in time  
(asterisks in Fig. 1B). The spacing between these points 
is small: In this case, ∆ = 2 ms, which corresponds to 
the reciprocal of the sampling frequency. Visual in-
spection of Figure 1B suggests rhythmic activity with a 

period of ~15 ms. To characterize the rhythms beyond 
visual inspection, we compute the power spectrum 
(Fig. 1C). In the next sections, we will introduce the 
notion of the power spectrum, provide intuition for 
the method, define important quantities of interest, 
and introduce the notion of tapering.

Power spectrum defined
There exist many techniques to characterize field data 
(Pereda et al., 2005; Greenblatt et al., 2012). Here, 
we compute the power spectrum of the data using a 
well-established technique: the Fourier transform. To 
summarize, the “power spectrum” is the magnitude 
squared of the Fourier transform of the data. The 
power spectrum indicates the amplitude of rhythmic 
activity in the data as a function of frequency. Many 
subtleties exist in computing and interpreting the 
power spectrum, some of which we will explore here. 
In doing so, we will strengthen our intuition and our 
ability to deal with future, unforeseen circumstances 
in other data sets.

Power spectrum: computation and 
implementation
We start by presenting the formula and MATLAB 
code to compute the power spectrum. Throughout 
the rest of this chapter, we will focus on aspects of 
this computation in more detail. The power spectrum 
(Sxx,j) of a signal x is defined as follows:

 Sxx,j = (2∆2 / T) XjXj* ,

which is the product of the Fourier transform of x 
at frequency fj (Xj) with its complex conjugate (Xj*), 
scaled by the sampling interval (∆) squared and the 
total duration of the recording (T). Notice the units 
of the power spectrum are (in this case): (μV)2/Hz. 
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Figure 1. A, T = 2 s of collected data (sampling frequency f0 = 500 Hz) from a single sensor. The voltage trace appears as a 
continuous curve. B, Closer inspection reveals that these data consist of discrete time points (asterisks). The spacing between 
these points is small: ∆ = 2 ms, corresponding to the reciprocal of the sampling frequency. Activity with a period of ~15 ms is 
apparent. C, Plot of the power spectrum, which displays the power as a function of frequency.
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NoTeS Computing the power spectrum in MATLAB and 
plotting the results require only a few lines of code:

xf = fft(x); %1.  Compute the Fourier transform 
of x.

Sxx = 2*dtˆ2/T * xf.*conj(xf); %2. Compute the power spectrum.

Sxx = Sxx(1:length(x)/2+1); %3. Ignore negative frequencies.

df = 1/max(T); %4.  Determine the frequency 
resolution.

fNQ=1/dt/2; %5.  Determine the Nyquist 
frequency.

faxis = (0:df:fNQ); %6. Construct the frequency axis.

plot(faxis, Sxx) %7. Plot power versus frequency.

xlim([0 100]) %8. Select frequency range.

xlabel('Frequency [Hz]'); 
ylabel('Power')

%9. Label axes.

The results of this computation are plotted in  
Figure 1C. Notice the large peak in power at 60 Hz. 
This peak agrees with our visual inspection of the 
EEG data (Fig. 1B), in which a dominant rhythm at 
60 Hz can be approximated. In subsequent sections, 
we will explore some subtleties of the power spectrum 
and strengthen our intuition for this measure.

Power spectrum: intuition
The power spectrum is proportional to the squared 
Fourier transform of the data. We may think of 
the Fourier transform as “comparing” the data x to 
sinusoids oscillating at difference frequencies fj . When 
the data and sinusoids “match,” the power at frequency 
fj is large, whereas when the data and sinusoids do not 
match, the power at frequency fj is small. To illustrate 
this principle, we consider an example in which the 
data are a perfect cosine function with frequency  
10 Hz (Fig. 2A, gray). Choosing fj = 4 Hz, we construct 
another cosine function (Fig. 2A, red) oscillating at 
4 Hz. To calculate the power in the data at 4 Hz, 
we multiply the data (Fig. 2A, gray) by the sinusoid  
(Fig. 2A, red) at each point in time, then sum the 

result. This point-by-point multiplication is plotted in 
Figure 2B. Notice that the product alternates between 
positive and negative values over time. Therefore, 
when we sum the product (i.e., when we sum the red 
curve in Fig. 2B over time), we expect a value near 
zero. In this case, the sinusoid at frequency fj = 4 Hz 
does not align with the data, and the power at this 
frequency is nearly zero.

Now consider the case in which we choose a cosine 
function at frequency fj = 10 Hz. With this choice of 
fj, the data and the cosine function align perfectly 
(Fig. 2C). The product of the cosine function and 
the data is always nonnegative (Fig. 2D); therefore, 
the summation is a large positive number, and the 
power in the data at frequency fj = 10 Hz is also 
large. In this sense, the power spectrum reveals the 
dominant frequencies that “match” the data.

Important quantities: frequency 
resolution and Nyquist frequency
Two important quantities to consider when 
computing the power spectrum are as follows:

1. The frequency resolution, df = 1/T, is the 
reciprocal of the total recording duration.

2. The Nyquist frequency, fNQ = f0/2 = 1/(2 ∆), is 
half of the sampling frequency f0 .

For the data considered here, the total recording 
duration is 2 s (T = 2 s), so the frequency resolution 
df = 1/(2 s) = 0.5 Hz. We can therefore resolve 
frequency differences of 0.5 Hz, but no smaller. To 
improve the frequency resolution (i.e., make df 
smaller), we must increase the duration of recording 
(i.e., make T bigger). The sampling frequency f0 is 
500 Hz, so fNQ = 500/2 Hz = 250 Hz. We can therefore 
observe frequencies up to 250 Hz, but no higher. To 
increase the highest frequency observable, we must 
increase the sampling frequency.
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Figure 2. Example intuition for computing the power spectrum. A, The data consist of a perfect cosine function with frequency 
10 Hz (gray). We choose fj = 4 Hz, a cosine function (red) that oscillates at 4 Hz. B, Plotted point-by-point multiplication for the 
two curves in A. The product alternates between positive and negative values over time. C, We choose another cosine function 
(red) at frequency fj = 10 Hz, which aligns perfectly with the data (gray). D, The product of this cosine function and the data is 
always nonnegative. Calibration: A–D, 100 ms.
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MATLAB relates the indices of vector Sxx (line 2 
of MATLAB code) to the frequencies as shown in 
Figure 3. Because the field data are real (i.e., the 
observed data have zero imaginary components), the 
negative frequencies are redundant. We therefore 
ignore the second half of the frequency axis (line 3 
of MATLAB code) and define a frequency axis in 
MATLAB that spans 0 to fNQ in steps of df (Fig. 3).

The impact of aliasing
The Nyquist frequency is the highest frequency we 
can hope to observe in the data. To illustrate this fact, 
we consider a simple example data set: a sinusoid that 
oscillates at some frequency fs. We do not observe 
these true data. Instead, we observe a sampling of these 
data that depends on our sampling interval ∆. If we 
sample the data at a high rate, f0 >> fs, then we can 
accurately reconstruct the underlying data (Fig. 4A) 
given only the discrete samples. However, if we sample 

the data at a lower rate, such that f0 < 2fs, the sampling 
produces an oscillation occurring at a different, lower 
frequency (Fig. 4B). This phenomenon of a true high-
frequency signal appearing as a low-frequency signal 
upon sampling is known as “aliasing.”

The decibel scale
Often, weak rhythms of interest remain hidden from 
visual inspection because of large peaks at other 
frequencies in the power spectrum. One visualization 
technique to emphasize lower-amplitude rhythms 
is to change the scale of the power spectrum to 
decibels. The decibel is a logarithmic scale and is 
easily computed in MATLAB (Fig. 5A).

The default rectangular taper
By doing nothing, we automatically apply a 
rectangular taper to the data (Fig. 5B, red). The 
rectangular taper multiplies the observed data by 1 and 

An Introduction to Field Analysis Techniques: The Power Spectrum and Coherence

© 2013 Kramer

4A 4BSinusoid at frequency fs Sinusoid at frequency fs

Sampling at f0 >> f s Sampling at f0 < 2f s

Figure 4. Illustration of aliasing. A, A sinusoid that oscillates at frequency fs (black) with sampling (green) at a high rate, f0 >> 
fs. B, Sampling (red) of the data at a lower rate, f0 < 2fs, produces an oscillation at a different, lower frequency, i.e., “aliasing.”
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Figure 5. A, The power spectrum of the data in Fig. A plotted on a decibel scale emphasizes lower-amplitude rhythms. B, A 
rectangular taper (red) applied to the data that multiplies the observed data by 1 and the unobserved data by 0. The data continue 
perpetually, although only a small interval (lower trace) is observed.
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the unobserved data by 0. We can think of the value 
1 as representing the time period when our recording 
device is operational; the data continue “forever” 
(Fig. 5B, upper trace), but we observe only a small 
interval (Fig. 5B, lower trace). The rectangular taper 
makes explicit our knowledge about the observed 
data (in this case, the 2 s interval) and our ignorance 
about the unobserved data, which are assigned the 
value zero. By computing the power spectrum of the 
2 s of data, we actually compute the power spectrum 
as the product of two functions: the observed data 
and the rectangular taper. The impact on the power 
spectrum is the emergence of “side lobes”—regions of 
increased power that surround spectral peaks. These 
side lobes can potentially mask important, lower-
power activity (Fig. 5A).

Impact of the Hanning taper
The Hanning taper acts to smooth the sharp edges of 
the rectangular taper. The Hanning taper gradually 
increases from zero, reaches a maximum of 1 at the 
center of the taper, then gradually decreases to zero 
(Fig. 6A, blue). Notice that data at the edges of the 
taper become dramatically reduced (Fig. 6A, lower). 
The power spectrum (Fig. 6B) possesses two main 
differences: (1) The peaks are wider when using 
the Hanning taper compared with the rectangular 
taper (Fig. 5A), and (2) the side lobes are reduced 
when using the Hanning taper compared with the 
rectangular taper. These two features illustrate 

the tradeoff between the two window choices. By 
accepting wider central peaks, we reduce the power 
in the side lobes. To compute and apply the Hanning 
window in MATLAB, we must replace line 1 of the 
MATLAB code with the following:

>> xf = fft(hann(length(x)).*x); %1.  Apply Hanning taper to x, then 
compute Fourier transform.

Note that two peaks at low frequency become more 
apparent after applying the Hanning taper (compare 
Fig. 5A with 6A at frequencies <20 Hz). Modern 
approaches to tapering include the multitaper 
method (Thomson, 1982; Bokil et al., 2010).

A measure of association: coherence
Thus far, we have focused on field data recorded 
from a single sensor. However, brain recordings often 
consist of multiple sensors, and recent advances in 
recording technology promise observations of brain 
activity from many sensors simultaneously (Viventi 
et al., 2011). How do we make sense of these 
large, simultaneous, multivariate recordings? Many 
techniques exist (Pereda et al., 2005; Greenblatt et 
al., 2012). Here, we focus on field data and consider 
time series recorded simultaneously from two sensors 
during a task. To characterize these data, we compute 
the coherence, which has many applications in 
neuroscience (Engel et al., 2001).
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Figure 6. A, The Hanning taper (blue) smoothes the sharp edges of the rectangular taper, going from zero, up to 1, and back 
down to zero. Data at the edges of the taper become dramatically reduced (lower trace). B, The power spectrum using the 
Hanning taper possesses wider peaks and reduced side lobes compared with the rectangular taper (Fig. 5A).
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Figure 7. A, Example data visualized from the first three trials for both sensors (red and blue), suggesting rhythmic activity. B, 
The trial-averaged power spectrum (black). Compared with the power spectrum from a single trial (red), the variability of the 
power is greatly reduced. A large peak in power is seen at 8 Hz and a smaller peak at 24 Hz.
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Visualization and trial-averaged power 
spectrum
The data consist of 100 trials, each of 1 s duration, 
recorded simultaneously from two sensors. To start, 
we visualize the data in the first three trials for both 
sensors (Fig. 7A, red and blue). The results suggest 
rhythmic activity. To further characterize the 
rhythmic activity, we compute the trial-averaged 
power spectrum for a single sensor (Fig. 7B, black). 
Because we possess multiple trials, and we assume 
that each trial represents an instantiation of the same 
underlying process, we average the power spectra 
across trials to compute the trial-averaged power 
spectrum. Compared with the power spectrum from 
a single trial (Fig. 7B, red), the variability of the 
power is greatly reduced. By reducing the variability 
in this way, interesting structure in the data becomes 
more apparent. In this case, we observe a large peak 
in power at 8 Hz and a smaller peak at 24 Hz.

Coherence defined
To assess the association between activity recorded at 
the two sensors (which we label x and y), we compute the 
coherence. To do so, we first define the cross-spectrum 
(Fig. 8A). Compared with the expression for power 

(discussed earlier in Power Spectrum: Computation 
and Implementation), we replace Xj* with Yj,k* . That 
is, we replace the Fourier transform of x with the 
Fourier transform of y. Notice that we also include the 
trial index (subscript k), sum the product of Xj,k and 
Yj,k* over all trials, and then divide by the total number 
of trials K . Using polar coordinates, we may write this 
expression in a slightly different way (Fig. 8B). Here, Aj,k 
(Bj,k) is the radius at frequency index j and trial index 
k for the signal xk (yk), and Φj,k is the phase difference 
between the two signals at frequency index j and trial 
index k. At last, we define the coherence κxy,j in Figure 
8C; the symbol < Sxy,j > indicates the magnitude of 
the trial-averaged cross-spectrum. In other words, the 
coherence is the magnitude of the trial-averaged cross-
spectrum between the two signals at frequency index j, 
divided by the magnitude of the trial-averaged power 
spectrum of each signal at frequency index j . We can 
evaluate this expression by replacing the trial-averaged 
spectrum terms with the corresponding expressions in 
polar coordinates (Fig. 8D).

Coherence: intuition
To gain intuition for the behavior of κxy,j, we make the 
simplifying assumption that the amplitude at each 
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Figure 8. Mathematical expressions for the coherence between activity recorded at two sensors (x and y). A, Equation for the 
cross-spectrum. B, Equation for the cross-spectrum in polar coordinates. C, Equation for the coherence. D, Equation for the 
coherence in polar coordinates. E, Simplified expression for the coherence in which the amplitudes in the two signals are as-
sumed identical for all trials.
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Figure 9. The vector in the complex plane with radius 1, defined by the expression exp(i Φj,0), across trials for two scenarios. A, 
In the first scenario, the vector points in the same direction for each trial (first and middle columns). Summing up these vectors 
end to end produces a long vector in the complex plane that terminates far from the origin (last column). B, In the second sce-
nario, the phase difference Φj,k can assume any value between 0 and 2π for each trial. The vectors point in different directions 
from trial to trial, and the sum of these vectors remains near the origin.
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trials; that is, Aj,k = Bj,k = Cj. Then the expression 
for coherence (Fig. 8D) becomes Figure 8E. In this 
case, the coherence simplifies to an expression that 
involves only the phase difference between the two 
signals averaged across trials; the amplitudes in the 
numerator and denominator have canceled out.

We now interpret this simplified expression in two 
scenarios. First, we assume that at some frequency index j, 
the two signals possess a constant phase difference across 
trials. We therefore replace Φj,k with Φj,0 because the 
phase difference is the same for all trials k . Now consider 
the expression: exp(i Φj,0). This defines a point in the 
complex plane with radius 1, which we can think of as 
a vector leaving from the origin at angle Φj,0 to the real 
axis (Fig. 9A, first column). To compute the coherence 
κxy,j requires the summation of these terms across trials 
(Fig. 8E). This defines a sum of vectors in the complex 
plane, each of radius 1. Because the phase difference is 
the same for each trial, this vector points in the same 
direction for each trial (Fig. 9A, middle columns). By 
summing up these vectors end to end, we produce a long 
vector in the complex plane that terminates far from the 
origin (Fig. 9A, last column). The coherence (Fig. 8E) 
is this vector length, divided by K, so we conclude in 
this case that κxy,j = 1, which indicates strong coherence 
between the two signals. The strong coherence results 
from the constant phase relationship between the two 
signals across trials at frequency index j .

As a second scenario, consider another frequency 
index j in which the two signals have a random 
phase difference over trials. In this case, the phase 
difference (Φj,k) can assume any value between 0 and 
2π for each trial. To visualize this, we examine the 
phase differences in the complex plane (Fig. 9B); 
the vectors point in different directions from trial to 
trial. Because the coherence (Fig. 8E) is this vector 
length, divided by K, we conclude in this case that 
κxy,j ≈ 0, which indicates no coherence between the 
two signals. The weak coherence results from the 
random phase relationship over trials between the 
two signals at this frequency index.

To summarize, coherence is a measure of the 
relationship between x and y at the same frequency. 
The coherence ranges between 0 and 1, 0 ≤ κxy,j ≤1, 
in which 0 indicates no coherence between signals 
x and y at frequency index j, and 1 indicates strong 
coherence between signals x and y at frequency 
index j. The coherence is a measure of the phase 
consistency between signals at frequency index j 
across trials. We note that, because the coherence 
requires the Fourier transform, the issues of frequency 
resolution, Nyquist frequency, and tapering (Bokil 

et al., 2010) are identical to those described for the 
power spectrum: The frequency resolution of the 
coherence is 1/T, and the Nyquist frequency is half 
of the sampling frequency, just as before.

Coherence: computation and 
interpretation
There are a variety of alternatives for computing 
coherence. Here we compute the coherence by 
implementing the mathematical expressions in 
MATLAB:

K = size(x,1); %Define the number of trials.

N = size(x,2); %Define the number of indices 
per trial.

dt = t(2)-t(1); %Define the sampling interval.

T = t(end); %Define the duration of data.

Sxx = zeros(K,N); %Create variables to save the 
spectra.

Syy = zeros(K,N);

Sxy = zeros(K,N);

for k=1:K %Compute the spectra for each 
trial.

 Sxx(k,:) = 2*dt^2/T * fft(x(k,:)) .* conj(fft(x(k,:)));

 Syy(k,:) = 2*dt^2/T * fft(y(k,:)) .* conj(fft(y(k,:)));

 Sxy(k,:) = 2*dt^2/T * fft(x(k,:)) .* conj(fft(y(k,:)));

end

Sxx = Sxx(:,1:N/2+1); %Ignore negative frequencies.

Syy = Syy(:,1:N/2+1);

Sxy = Sxy(:,1:N/2+1);

Sxx = mean(Sxx,1); %Average the spectra across 
trials.

Syy = mean(Syy,1);

Sxy = mean(Sxy,1);

cohr = abs(Sxy) ./ (sqrt(Sxx) .* sqrt(Syy));  
                                                      %Compute the coherence.

df = 1/max(T); %Determine the frequency 
resolution.

fNQ = 1/ dt / 2; %Determine the Nyquist 
frequency.

faxis = (0:df:fNQ); %Construct frequency axis.

plot(faxis, real(cohr)); %Plot the results

xlim([0 50]); ylim([0 1]) %Set the axes limits

xlabel('Frequency [Hz]') %Label axes.

ylabel('Coherence [ ]')

© 2013 Kramer



25

© 2013 Kramer

We plot the coherence between x and y in Figure 10. 
We find in this case strong coherence at 24 Hz and 
weak coherence at all other frequencies. Comparing 
the power spectrum (Fig. 7B) with the coherence 
(Fig. 10), we find that the dominant rhythm (8 Hz) 
is not coherent between the two sensors, whereas the 
weaker rhythm (24 Hz) is coherent.

Conclusion

This chapter provides a brief introduction to the 
power spectrum and coherence. As “big data” 
become increasingly common in neuroscience, 
computational tools to assess interesting structures 
within time series, as well as relationships between 
simultaneously recorded time series, will become 
more critical.
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Figure 10. The coherence between x and y is strong at 24 Hz 
and weak at all other frequencies.




