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To understand neural activity, two broad categories of models exist:
statistical and dynamical. While statistical models possess rigorous meth-
ods for parameter estimation and goodness-of-fit assessment, dynami-
cal models provide mechanistic insight. In general, these two categories
of models are separately applied; understanding the relationships be-
tween these modeling approaches remains an area of active research. In
this letter, we examine this relationship using simulation. To do so, we
first generate spike train data from a well-known dynamical model, the
Izhikevich neuron, with a noisy input current. We then fit these spike
train data with a statistical model (a generalized linear model, GLM, with
multiplicative influences of past spiking). For different levels of noise,
we show how the GLM captures both the deterministic features of the
Izhikevich neuron and the variability driven by the noise. We conclude
that the GLM captures essential features of the simulated spike trains,
but for near-deterministic spike trains, goodness-of-fit analyses reveal
that the model does not fit very well in a statistical sense; the essential
random part of the GLM is not captured.

1 Introduction

As recordings of neural activity become increasingly sophisticated, the re-
sulting data become increasingly complex. Making sense of these data of-
ten requires more sophisticated approaches than visualization and simple
summary statistics. One more advanced approach is the development and
application of a model. Models serve both to characterize observed data
and summarize the collective scientific knowledge of the brain. In neuro-
science, as in many other fields, these models are typically segregated into
two categories: dynamical or mechanistic models, and statistical models.
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Dynamical models arise as an application of mathematical rules motivated
by biophysical laws. These models tend to be deterministic—if not in prac-
tice, at least in spirit—and provide a mechanistic explanation for many dy-
namic brain activities. Statistical models are typically designed to capture
data structure; these models often do not rely on neuronal biophysics.

The generalized linear model (GLM) has been an essential part of mod-
ern statistics since its introduction by Nelder and Wedderburn (1972), and
today these models are ubiquitous in statistical analyses in many differ-
ing fields. This includes biological processes, where in recent years, GLMs
have been used to describe coding properties and history dependence in
neural spiking data (Kass & Ventura, 2001; Pillow et al., 2008; Sarma et al.,
2012; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005). The popularity
of GLMs stems from the many advantageous features of this model class.
The model defines a link function between the predictors and responses
that ensures that the negative log likelihood is convex, allowing for fast
optimal estimation of parameters while still admitting flexible model ca-
pabilities, by utilizing general basis functions (McCullagh & Nelder, 1989).
As with statistical models in general, the GLM quantifies both predictable
and unpredictable structure in data and possesses efficient procedures for
parameter estimation and model diagnostics and powerful tools to assess
goodness of fit. An advantage of including uncertainty as an intrinsic model
component in the design stage is that this random component can, to some
extent, compensate for an incomplete specification of the factors influenc-
ing the observed data.

Dynamical models have been a pillar in data modeling for neuroscien-
tists since Lapicque’s 1907 integrate-and-fire model (Brunel & van Rossum,
2007). Contrary to statistical models, these models typically focus on de-
terministic processes and are often built to explicitly represent mechanistic
features of the data of interest. As such, dynamical models are often bio-
physically meaningful by construction, which may not be the case for a
statistical model. Dynamical models are diverse, ranging from the biophys-
ically realistic model of Hodgkin and Huxley (1952) to the more abstract
model of Izhikevich (2003). The latter implements a simple mathematical
design, while still producing realistic neural behaviors, such as bursting.
Because of these properties, the Izhikevich model is a common choice, for
example, in large-scale simulations of neurons with different behavior
(Izhikevich & Edelman, 2008) and to simulate the impact of current input
to large cortical networks (Ali, Sellers, & Fröhlich, 2013).

Historically, dynamical models have been used to examine determinis-
tic or aggregate features of observed neuronal behavior. While dynamical
models are often interpretable in terms of biophysical features, estimating
parameters from individual spike trains is a complicated task. Most mech-
anistic models possess multiple parameters, which typically remain exper-
imentally unconstrained. For example, the Hodgkin-Huxley (1952) model
possesses at least seven parameters (e.g., capacitance, reversal potentials,
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and maximal conductances for the sodium, potassium, and leak currents)
with wide ranges of possible values. In computational neuroscience, a com-
mon procedure for estimating these parameters is hand-tuning to produce
simulated model dynamics that qualitatively match the desired neuronal
activity (Prinz, Billimoria, & Marder, 2003). Hand-tuning approaches usu-
ally require a great deal of time and expertise (Traub, Wong, Miles, &
Michelson, 1991; Nadim, Olsen, de Schutter, & Calabrese, 1995; Vanier &
Bower, 1999). Moreover, once a set of suitable parameters is found, it is of-
ten unclear whether the solution is unique or whether other model formu-
lations exist that are compatible with the data (Prinz, Bucher, & Marder,
2004). Statistical models are often used to estimate features and describe
associations but may not be directly physically interpretable.

Both modeling paradigms—dynamical and statistical—provide distinct
advantages and disadvantages. Ideally, methods would exist to leverage
the advantages of both approaches while mitigating their weaknesses. For
example, a unified approach would allow researchers to better interpret
statistical model results in terms of mechanistic features while exploiting
the mathematical theory of statistical models. This theory includes tools of
parameter estimation, but also rigorous procedures to validate the model
against data. The aim of this letter is to investigate how simple GLMs per-
form when used to describe the spiking patterns obtained from simulated
Izhikevich neurons with noisy input. The noise is included to resemble re-
alistic physical observations and, more important, introduce and control
variability of the data.

Previous work has analyzed the relationship between integrate-and-fire
models and statistical techniques (Brunel & Latham, 2003; Paninski, 2006;
Hertäg, Durstewitz, & Brunel, 2014). In these approaches, integrate-and-
fire dynamical models were augmented by a stochastic component, and a
statistical approach was used to estimate the firing rate. Here we pursue a
different strategy, starting with a well-known class of history-dependent
statistical models and analyzing the models’ capabilities in capturing gen-
eral features of various spike train patterns generated from a dynamical
model. The class of GLMs in this exposition is very flexible, and, contrary
to a dynamical model, there are no model assumptions regarding the spe-
cific mechanisms related to the physical processes that generate the spike
train data, such as refractoriness. Recently, Weber and Pillow (in press)
showed that the GLM framework replicates multiple spiking patterns from
the Izhikevich model, but to the authors’ knowledge, no work has been pre-
sented that analyzes how well the GLM class captures features of different
spike patterns under the varying influence of noise.

In this letter, we show that the performance of the particular class of mul-
tiplicatively separable, history-dependent GLMs varies with the amount
of noise added to the input and with the large-scale firing properties of
the Izhikevich neuron. This class of GLMs is commonly used in spike
train modeling (Pillow et al., 2008; Macke et al., 2011; Ahmadian, Pillow, &
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Paninski, 2011; Latimer, Chichilnisky, Rieke, & Pillow, 2014). We examine
how well the GLMs capture the intrinsic features of the individual neuron
types, such as tonic spiking and bursting, as well as the variability in the
individual spike trains originating from the noisy input. We first present
the simulation model and define how variation is injected through both the
input and the model parameters. Then the GLM design is outlined along
with tools used for model assessment. In a series of numerical analyses,
we demonstrate how GLMs behave for various levels of noise and differ-
ent deterministic model features. We discuss in what ways the noise may
affect interpretation of the GLM and the use of this model class for spike
train modeling by evaluating the goodness of fit of the models in terms of
capturing both predictable and unpredictable structure. Finally, we high-
light some of the shortcomings of simple multiplicatively separable GLMs
and discuss extensions to the standard model that can mitigate some of the
limitations identified in this letter.

2 Methods

2.1 Simulation of Neuron Activity. In this letter, we implement the
Izhikevich neuron to simulate neural spiking activity (Izhikevich, 2003).
The Izhikevich neuron is a relatively simple, dynamical model capable of
reproducing many types of neural spiking behavior. We note that mecha-
nistic models of neuron spiking can often be reduced to two-dimensional
systems having a fast voltage variable and a slower recovery variable. For
the neuron model considered here, we may interpret v as a voltage and u
as a recovery current, a phenomenological variable that represents the sum
of all slow currents that modulate the spike generation mechanism (Izhike-
vich, 2010). The model includes four parameters a, b, c, and d and a further
input current It . Equation 2.1 shows the deterministic dynamical model for
t ≥ 0:

dvt

dt
= 0.04v2

t + 5vt + 140 − ut + It,

dut

dt
= a(bvt − ut ),

if vt ≥ 30 then

{
vt+ = c

ut+ = ut + d
. (2.1)

The dynamics in equation 2.1 generates spikes whenever vt passes a fixed
threshold of 30. Immediately following a spike at time t (where vt ≥ 30),
both variables are reset at time t+; vt is reset to a fixed value given by the
parameter c, and ut is increased by an amount d. The parameters a, b, c, d
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determine the spike behavior; the parameters a and b act as a decay rate and
a sensitivity parameter, respectively, and the parameters c and d determine
how the variables are reset following a spike.

In order to introduce variation in simulations of equation 2.1, we let
It = I0 + σWt , where I0, σ are constants and Wt denotes a standard white
noise process (Øksendahl, 2007). The σ parameter controls the level of noise
in the process and, in turn, the variability of spiking behavior. We may inter-
pret σ as the noise in the input driving the neuron. Another source of vari-
ability comes from the different parameter values used to simulate the spike
trains. In this letter, we model six types of neurons that produce distinct fir-
ing patterns (Izhikevich, 2003) when the input is constant. When σ = 0, the
simulation model 2.1 is deterministic, and the neurons behave completely
regularly, while for σ > 0, the model evolves stochastically. Assuming an Itô
interpretation, model 2.1 was simulated using a Euler-Maruyama scheme
with time step �t = 0.1 ms, initial conditions v0 = −70, u0 = bv0, and vary-
ing parameters a, b, c, d, and I0. We note that the 0.1 ms discretization is less
than that used in Izhikevich (2003) and ensures that at most one spike oc-
curs per discrete time bin. These simulations were then used to obtain spike
trains. Although the Izhikevich neuron lacks the detailed biophysical mech-
anisms of more complex neuron models, this simple model serves as an ex-
cellent test bed for fitting the GLMs to diverse, realistic spike train behaviors
and exemplifying the issues in interpreting the results.

2.2 Model Design. Let N(t) denote the cumulative number of spikes
observed up to time t ∈ R. Define λ(t|Ht, θ ) as the conditional intensity of
N(t), where Ht indicates the spiking history up to time t, and θ the model
parameters. This conditional intensity defines the instantaneous probability
of a spike given past spiking:

λ(t|Ht, θ ) = lim
�t→0

P(spike in (t, t + �t]|Ht, θ )
�t

.

Given a set of observed spike times {s j}n
j=1 in an interval [0, T], the log

likelihood

log L(s1, . . . , sn; θ ) =
∫ T

0
log λ(t|Ht, θ )dN(t) −

∫ T

0
λ(t|Ht, θ )dt, (2.2)

can be approximated as a discrete sum over individual time bins by as-
suming that the number of spikes in each bin is Poisson distributed with a
rate parameter that depends on past spiking for sufficiently small �t (see
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Truccolo et al., 2005). The discrete likelihood approximation is

log L(s1, . . . , sn; θ ) ≈
∑

k

log λ(tk|Htk , θ )�N(tk) −
∑

k

λ(tk|Htk , θ )�t,

(2.3)

where �N(tk) counts the spike activity in (tk, tk + �t]. Since the Poisson and
binomial distribution converge in the limit �t → 0, either could be assumed
in the individual time bins. However, choosing the Poisson distribution
leads to the canonical log-link function (McCullagh & Nelder, 1989).

The approximate log likelihood, equation 2.3, shows that choosing the
form of the intensity λ(tk|Htk , θ ) is a crucial step of the model design. To in-
clude history dependence, we include a trailing history of the m past spike
times, and in order to reduce the dimensionality of the model, we also in-
troduce indicator basis functions that account for the spike windows in pre-
ceding time bins, wider than the observation bins of width �t. In order to
simplify the model formulation, we assume that the influence of the previ-
ous spikes on the intensity is multiplicatively separable, a common model
assumption when working with GLMs. Thus, when modeling the log in-
tensity process, we deal with a sum of components.

Defining the (m × p) matrix B with the (i, j)th entry,

bi j = 1[( j−1)w+1, jw](i) =
{

1 for i ∈ {( j − 1)w + 1, . . . , jw}
0 else

, (2.4)

where the parameter w denotes the number of �t-wide time bins grouped,
the model becomes

log(λ(tk|Htk )) = β0 +
p∑

j=1

β j

m∑
i=1

yk−ibi j. (2.5)

Here yk = ∑n
j=1 1(tk,tk+�t](s j ) = �N(tk), and the parameter vector is θ =

(β0, β1, . . . , βp). With �t = 0.1 ms and w = 10, each β j in equation 2.5 re-
lates to the total spiking activity in 1 ms time bins.

Defining the (exponential) filter F (τ ) = exp
( ∑p

j=1 β j1(( j−1)w, jw](τ )
)
, this

acts as the modulation of λ0 = exp(β0) at lagged time bins tk−τ .
As the randomness of the input vanishes, the yk series becomes in-

creasingly deterministic and tends to produce spiking at only a small
set of interspike intervals. In this case, only a few of the yk−i’s in equa-
tion 2.5 are nonzero at regularly lagged time bins. Since λ(t|Ht, θ )�t ≈
P(spike in (t, t + �t]|Ht, θ ), then λ(tk|Htk ) = exp(β0 + ∑p

j=1 β j
∑m

i=1 yk−ibi j )
→ 0 in intervals with no spike activity. Denoting the estimate of β j by β̂ j,
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this implies some estimates β̂ j must diverge to −∞. In bins of spike activity,
P(spike in (t, t + �t]|Ht, θ ) → 1, when the spiking is deterministic. Hence,
the estimated β̂ j’s in these bins will amplify the model’s probability of spik-
ing in (t, t + �t] in order to match the observations and approximate the
relation λ(t|Ht ) → 1

�t . To summarize, for a given interval (t, t + �t],

lim
�t→0

λ(t|Ht ) =
{

∞ given spike activity

0 given no spike activity
,

implies that lim�t→0 λ(t|Ht ) describes a set of Dirac delta functions centered
at the spike times. We note that an example of this finding will be illustrated
in Figure 4, which displays approximate delta functions at the periodic in-
terval of spiking, when the data generating process is nearly deterministic.

2.3 Penalized GLM Regression. Data with negligible variability can
lead to convergence issues of parameter estimates in equation 2.5. If there
is little or no variation in the data, there is a high chance of including per-
fect predictors in the model that will cause instability in the estimation of
model parameters since the likelihood surface will be close to flat in certain
directions (see Wedderburn, 1976). Using a penalized regression is one way
to handle these convergence issues and keep the parameter estimates finite.

Given a log-likelihood function L(θ ) with parameters θ = (β0, β1, . . . ,

βp), a penalized regression will maximize L(θ ) subject to a constraint

Lκ (θ ) = L(θ ) − κ

p∑
j=0

||β j||q, (2.6)

where || · ||q denotes the q-norm. For q > 0, the penalization in equation 2.6
will shrink the parameters toward 0. The choice of q = 1, corresponding
to an L1 penalization (LASSO regression), will, in addition to shrinkage,
promote sparsity (Hastie, Tibshirani, & Friedman, 2001). The penalization
parameter1 κ determines how strong the shrinkage effect is, and Lκ (θ ) im-
plies that the optimization depends on some fixed κ . Choosing κ is a cru-
cial part of using penalized regression, and therefore the choice should
agree with the aim of the analysis. For the purposes presented in this ex-
position, we settled on two options that both depend on a goodness-of-fit
test of an estimated model (see section 2.5). The first choice was simply to
choose κ such that the KS statistic was minimized; we refer to this choice
as optimal KS, where KS denotes the Kolmogorov-Smirnov test presented in

1
We chose here to denote the penalization by κ , rather than the standard λ, in order

not to confuse the penalization factor in the model-fitting procedure with the intensity
process, denoted λ(·).
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section 2.5. The other choice was to choose the maximum penalization, κ ,
such that the goodness-of-fit p-value was insignificant with respect to a pre-
determined threshold denoting the significance level. In what follows, we
chose a threshold significance level of 0.05. We refer to the second choice
for κ as maximum κ . Obviously the two differ in behavior. The first choice
of κ selects models with a better goodness of fit, whereas the second selects
sparser models due to the choice of L1 penalization in equation 2.6. We use
the second choice (maximum κ) as the default to impose sparsity. However,
to illustrate certain points, we also refer to models chosen by optimal KS in
some parts. In the case that no p-values were above the threshold or if an
optimal value could not be determined, the value of κ was set as the small-
est values tried in the model estimation procedure: κ ≈ 0. This occurred
for 66% of the simulations for nonbursting neurons and 12% of bursting
neurons. We note that κ ≈ 0 still includes a small penalty so that the diver-
gence of β j estimates is avoided, but fewer parameters are set to zero with
the LASSO regression.

2.4 Approximate Covariance Matrix. The observed Fisher information
matrix F̂ was used to estimate the covariance matrix for the penalized GLM.
The observed Fisher information for an unrestricted GLM model is given
as

F̂ = X ′ŴX,

where X is the so-called design matrix of the GLM that contains the pre-
dictors of the model and Ŵ is a model-specific diagonal matrix that is com-
puted as part of the estimation procedure (McCullagh & Nelder, 1989). For
the models considered here, X = HB, where B is the matrix of indicator ba-
sis vectors described in section 2.2 and H is the matrix of m lagged obser-
vations, such that the kth row of H is H(k) = (yk−1, . . . , yk−m). For a Poisson
GLM, the diagonal matrix Ŵ consists of the predicted intensities λ̂(tk|Htk ).
The inverse of the observed Fisher information, F̂−1, was then used as an
estimate of the covariance matrix of β̂. Due to the penalization in equation
2.6, parameters were restricted from converging toward ±∞, but because
of this convergence issue, the unrestricted model would not admit a sen-
sible covariance estimates. The estimate F̂−1 does not account for a penal-
ization of the likelihood, and therefore the matrix Ĉov(β̂ ) = F̂−1 should be
interpreted as only a rough approximation for the penalized model. Recent
work addresses the bias in the covariance estimator due to inclusion of a
penalization term in the model formulation (van de Geer, Bühlmann, Ritov,
& Dezeure, 2014; Taylor & Tibshirani, 2015); however, standard software
packages for LASSO estimation (e.g., glmnet, used here; Friedman, Hastie,
& Tibshirani, 2010) have not yet implemented a correction for this bias. In
this (letter), we focus on the sign of the covariance estimate and not the
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specific value. Thus, although biased, F̂−1 can still reveal trends in the pa-

rameters. Defining 	 =
√

diag(̂F−1), then

Ĉor(β̂ ) = 	−1F̂−1	−1 (2.7)

is an estimate of the correlation matrix for β̂. In section 3, we present corre-
lation matrix estimates based on equation 2.7.

2.5 Goodness of Fit. In order to evaluate a statistical model, one must
take into account both its structural and the random components. Intu-
itively one can think of this as measuring the model’s ability to capture both
the structure of the observed data (structural component) and generalizabil-
ity by compensating for features that are not accounted for in the structural
component through the statistical distribution (random component). Thus,
with deterministic input, it is possible that a statistical model can describe
the observed features to near perfection. However, such a model will rarely
predict the features of some other data with only slight variations to the
first. This lack of generalizability, caused by an inadequate fit of the ran-
dom component in deterministic settings, will lead to poor statistical model
diagnostics.

To assess the models’ goodness of fit, the time rescaling theorem (Brown,
Barbieri, Ventura, Kass, & Frank, 2002) was applied to the observed spike
times {s j}n

j=1, using the estimated intensity process λ̂, in order to obtain
rescaled spike times {z j}n

j=1. The empirical distribution of the z j’s was then
compared to the theoretical Exp(1) distribution using the Kolmogorov-
Smirnov (KS) test statistic (Kass, Eden, & Brown, 2014). This statistic is given
by

Dn = sup |F̂n(x) − F0(x)|, (2.8)

where F̂n(x) and F0(x) denote the empirical and theoretical cumulative dis-
tribution functions (CDFs) respectively. Plotting F̂n(x) against F0(x) with ap-
proximate 95% confidence bounds ± 1.36√

n , as suggested by Kass et al. (2014),
provides a visual assessment of the KS test. (For a detailed discussion of
these goodness-of-fit procedures, we refer readers to Brown et al., 2002, and
Kass et al., 2014.)

In addition to the KS statistic, equation 2.8, the relative deviance was
used to evaluate the model fit. While the statistic Dn measures how the em-
pirical model deviates from a theoretical model, the relative deviance can
reveal the amount of structure present in the data. The relative deviance
measures how an estimated model captures data features. The smallest
model deviance for a given data set occurs with the saturated model, where
the number of parameters equals the number of data points. Due to the
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Table 1: Model Parameters a, b, c, d Used to Simulate the Six Types of Neurons
and the Mean Input I0.

Neuron Type a b c d I0

Tonic spiking 0.02 0.20 −65 6 14
Phasic spiking 0.02 0.25 −65 6 1
Tonic bursting 0.02 0.20 −50 2 10
Phasic bursting 0.02 0.25 −55 0.05 1
Mixed mode 0.02 0.20 −55 4 10
Spike frequency adaptation 0.01 0.20 −65 8 20

Source: Parameter values and neuron type from Izhikevich (2004).

equal number of parameters and data points, there are no data left to es-
timate data variability. Therefore, the saturated model will completely de-
scribe the observed data set but will not generalize well to another data set.
As such, we could say that the saturated model is the “most structural” we
can define for a specific data set because it is purely descriptive. The other
extreme is the null model, which is the one-parameter model including an
intercept, β0, only. For the null model, only a single parameter is estimated,
in this case defining a homogeneous Poisson process with no influence of
past spiking. It is thus an example of the “most stochastic” model we can
define, in the sense that it maximizes the entropy of the spike counting pro-
cess. The relative deviance measures where an estimated model lies in the
spectrum between these two extremes, with a relative deviance of zero cor-
responding to a fit equal to the saturated model and a relative deviance of
one corresponding to a fit equal to the null model.

It is important to note that for a traditional deviance analysis, the good-
ness of fit of multiple models is compared by assessing their deviance on the
same data set. Here, we examine for one particular class of GLMs the rela-
tive deviance across different data sets with different levels of input current
noise. As such, a lower relative deviance of a different noise level should not
be interpreted as an improved fit, but as one whose description of the data
structure is closer to that of a saturated model.

3 Results

Spike trains for six types of Izhikevich neurons were simulated with the
parameters displayed in Table 1. We note that the six types of neurons con-
sidered here mimic spiking behavior observed in in vivo and in vitro neural
recordings (Izhikevich, 2004).

For each type of neuron, 10 spike trains were simulated for 29 values of
σ evenly distributed in the interval (0, 20]. Hence, the simulations ranged
from almost deterministic (σ = 0.1) to almost completely random spiking
(σ = 20). As σ is increased, the intrinsic features of the individual neuron
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Figure 1: Simulated spike trains for various neuron types and values of σ . Each
type displays nearly regular behavior as σ approaches 0 and almost completely
random patterns as σ approaches 20. Distortion of the individual neuron-type
behavior varies from rapid (phasic spiking and mixed mode) to gradual (tonic
spiking and spike frequency adaption). Burst periods remain present at high
levels of noise, and the spike frequency adaption neuron retains features of its
spike pattern for σ as high as 15.

types become progressively noise driven and indistinguishable. When
σ >> 0, the spiking activity is based more on the randomness of the input
than the model parameters. Each simulation consisted of 2 · 105 observa-
tions at times tk, k = 1, . . . , 2 · 105, with time step �t = 0.1 ms, correspond-
ing to 20 seconds of observations for each simulation. The spike trains
were derived from the simulated voltage trajectories by determining when
vtk ≥ 30. Figure 1 presents the simulated spike trains for each type of neu-
ron for varying σ values. An L1 penalized regression for a Poisson GLM of
the form 2.5 was fitted for each simulated spike train, where the value of κ

in equation 2.6 was based on either optimal KS or maximum κ (see section
2.3), depending on the analysis.

The history dependence of the GLM was set to 100 ms, corresponding
to m = 1000 time steps for a discretization step of �t = 0.1 ms. With the
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indicator width set to 1 ms (w = 10), the model, equation 2.5, had a maxi-
mum of 100 + 1 parameters. Some of the parameters are shrunk to zero by
the penalized regression procedure, and as such, the resulting filters con-
sisted of fewer than 101 nonzero parameters.

The numerical analysis was carried out with the statistical programming
environment R (R Core Team, 2016) using the package glmnet to perform
penalized regression for GLMs.

3.1 Tonic Spiking and Bursting with Intermediate Noise. We first
present a more detailed analysis of the tonic spiking and tonic bursting neu-
rons for a single value of σ to illustrate the model fitting and the goodness-
of-fit analyses. These neuron types were chosen specifically to investigate
how the GLM handles the regular behavior of a tonic spiking neuron,
which possesses a unimodal interspike interval (ISI) distribution, versus
the switching behavior of a bursting neuron, which produces a bi-modal
ISI distribution. The value of σ = 5 was chosen such that the neurons dis-
play both a predictable structure of interest as well as variability, as evident
from Figures 1a and 1c. The analyses for the two types of neurons are pre-
sented in Figures 2 and 3 for the tonic spiking and tonic bursting neurons,
respectively. These figures display an interval of simulated spiking activ-
ity for the neuron, with the estimated intensity function λ̂(t|Ht ) below, the
corresponding histogram of ISIs, the histogram of rescaled spike times, the
estimated filter, a KS plot of F̂n(x) versus F0(x) with approximate 95% con-
fidence bounds, and a plot of the residual process N(t) − ∫ t

0 λ̂(t|Ht )dt. Pe-
nalization was set by maximum κ with a KS statistic significance threshold
above 0.05 for both analyses.

The estimated intensity for the tonic spiking neuron (see Figure 2b) dis-
plays peaks that coincide with the spikes of the potential (see Figure 2a).
There is a rise in the intensity prior to spiking and an instantaneous drop im-
mediately following an observed spike, which implies that the model cap-
tures the predictable structure well. The ISI histogram for the tonic spiking
neuron (see Figure 2d) is unimodal with a mean of 26.6 ms, and the width
of the histogram implies some variability between spike times, which is ex-
pected for the choice of σ = 5. The estimated filter (see Figure 2e) displays
a refractory period up to 20 ms and shows peaks around multiples of 26.6
ms, indicating that the model captures the regularity of spiking; this result
agrees well with the type of neuron considered. The multiple peaks in the
filter suggest that at this level of σ , the current probability of spiking is well
predicted by the most recent spike as well as the previous two spikes. The
rescaled spike time histogram (see Figure 2f), overlaid with an Exp(1) dis-
tribution (red line), shows that the model agrees well with the theoretical
distribution, which is further supported by the KS plot (see Figure 2g). Fur-
thermore, the KS statistic, Dspiking

n = 0.046, yields a p-value of 0.088, in ac-
cordance with the choice of κ such that the p-value is > 0.05. For reference,
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Figure 2: At a moderate level of noise, the GLM captures features of the tonic
spiking neuron. (a) The simulated voltage activity and (b) the corresponding
estimated intensity process. (c) The residual plot does not show any trending
behavior. The ISI histogram (d) possesses a broad peak, and the peaks in the
estimated filter (e) are consistent with the approximate interval between spikes.
The rescaled spike time histogram (f) is well approximated by an Exp(1) prob-
ability density function (red curve) and the KS plot (g) indicates a decent fit.

using optimal KS instead to set κ , the KS statistic was 0.022 with a p-value
of 0.88. Inspection of the residuals (first quarter of the total residual pro-
cess is shown in Figure 2c) does not give rise to concerns regarding time-
dependent trends.

For the tonic bursting model in Figure 3, the estimated intensity (see Fig-
ure 3b) shows that bursting is well captured; we note that increases in the
estimated intensity occur just before the times of action potential bursts (see
Figure 3a). The rise of the intensity before a burst varies slightly between in-
dividual bursts, and the drop after a period of bursting is not as sharp as for
the case for tonic spiking. These observations suggest that it is more com-
plicated to capture the beginnings and ends of bursts than single spikes. We
note that the filter (see Figure 3e) does not possess a second peak between
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Figure 3: At a moderate level of noise, the GLM captures features of the tonic
bursting neuron. Example of the (a) simulated voltage activity and (b) the corre-
sponding estimated intensity process. The residual process (c) does not display
trends, and the bimodal ISI histogram (d) is approximated by the filter (e). The
rescaled spike time histogram (f) is well approximated by an Exp(1) probability
density function (red curve), while the KS plot (g) shows slight overestimation
of short ISIs and underestimation of longer ISIs.

40 ms and 50 ms, as seen in the ISI histogram (see Figure 3d). Instead, there
is an inflection in the inhibitory trough of the filter starting around 40 ms.
When convolved with the past bursting activity this inflection leads to a
rapid rise in intensity approximately 40 ms after the final spike in the pre-
vious burst. The KS plot in Figure 3g and the residual process in Figure 3c
provide further evidence that the GLM captures the structure in the burst-
ing data well.

The rescaled ISI histogram in Figure 3d agrees with the Exp(1) distri-
bution, and the KS statistic is Dburst

n = 0.041, which is less than the value
for the tonic spiking neuron: Dspiking

n = 0.046. However, the correspond-
ing p-value is significantly lower at 0.008, because for the tonic bursting
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Figure 4: Estimated filters F using maximum κ penalization with threshold
0.05, as functions of lagged time (in ms) and σ . Blue colors indicate refractory pe-
riods (F < 1), and red colors indicate excitatory effects (F > 1). White indicates
F ≈ 1. Peaks are clear for tonic spiking and spike frequency adaption neurons
in panels a and f, as well as for bursting neurons in panels c and d. Refractory
periods are present for all types and vary with σ . Note that the F ’s converge
toward collections of delta functions as σ approaches 0.

neuron, the number of observed spikes is Nbursting(T ) = 1668 compared to
Nspiking(T ) = 757 for the tonic spiking neuron. The larger number of spikes
results in a much lower p-value for tonic bursting, since the KS test is sen-
sitive to the number of observed spikes. Using optimal KS to set κ for the
tonic bursting did not improve the model fit; the KS statistic was 0.040 with
a p-value of 0.009.

3.2 Spike History Filters. We now turn to a more general analysis of the
models, across a wider range of firing properties and noise levels, σ . Figure
4 presents the estimated GLM filters for combinations of simulated neuron
types and σ values. The penalization parameter κ was set by maximum κ

with a threshold of 0.05 (see section 2.3). Filters for regularly spiking neu-
rons, such as the tonic spiking neuron, Figure 4a, and the spike frequency
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adaption neuron, Figure 4f, display peaks in the filters for low to intermedi-
ate values of σ . For σ → 0 the filters approach collections of delta functions,
with mass concentrated around multiples of the deterministic (ISI) period.
For example, for the deterministic tonic spiking neuron, the ISI is ≈ 27 ms;
hence, the peaks in the filter F appear near 27, 54, and 81 ms in agreement
with the regular ISIs of the tonic spiking neuron. For the bursting neurons,
Figures 4c and 4d, there is a narrow peak at approximately 2 ms to 5 ms,
except for very small σ . Decreases in the filter follow the peaks at short
times, indicating that refractory periods are captured by the model for all
combinations of type and σ . However, the refractory period varies as σ in-
creases: either increasing (for tonic spiking) or decreasing (phasic spiking),
or remaining approximately unchanged (for tonic bursting). This indicates
a minimal absolute refractory period for bursting neurons that is indepen-
dent of the input noise. Common to all filters is a flattening of F as σ in-
creases, most visibly for regularly spiking neurons (tonic spiking and spike
frequency adaption).

This implies that by increasing the injected noise σ , the spiking ap-
proaches a homogeneous Poisson process, and it becomes progressively dif-
ficult to extract mechanistic structure, such as the interval of regular spiking
(see Figure 4a) or interbursting activity.

3.3 Goodness of Fit. KS tests were performed for combinations of neu-
ron type and σ to assess each model’s goodness of fit. Figure 5 presents an
overview of these results. The plot displays the −log(Dn), where Dn is the
KS statistic (see equation 2.8) and the relative deviance, respectively. The
statistics, Dn, were log-transformed to emphasize trends as σ varies. Fur-
thermore, in order to present implications of changing σ , the penalization
parameter κ was set by optimal KS, such that different σ ’s could lead to
different penalizations. Had we instead chosen penalization by maximum
κ , the KS statistics would not reveal an optimal range of σ .

The −log(Dn) for all simulated neuron types in Figure 5 increases quickly
as σ increases from 0 to 2, suggesting that for low values of σ , the GLM has
difficulty in capturing the near-deterministic spiking distribution but does
well at capturing this distribution once some variability is present. The cor-
responding p-values are above 0.05 for σ > 1 for all neuron types, except
phasic bursting and tonic bursting. For phasic bursting, the p-values ex-
ceed 0.05 for σ ∈ [5, 6], whereas for tonic bursting, the p-values never ex-
ceed 0.05. Except for mixed mode and spike frequency adaption, all types
display optimal values in a range of σ ’s, where the mentioned types seem to
settle at a plateau for σ ≥ 4. The optimal range, both the width and location,
of σ depends on the type of neuron.

For the relative deviances, we chose to use maximum κ . The increasing
trend in the relative deviance suggests that for low values of σ , there is more
predictable structure captured by the model, whereas for higher noise lev-
els, the estimated model approaches a homogeneous Poisson model, which
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Figure 5: Two methods to assess goodness of fit for varying σ . (Top) For the log-
transformed KS statistics Dn, larger values correspond to smaller KS statistics.
(Bottom) Relative deviance of the estimated model. A value of zero indicates a
fit equal to the saturated model, and a value of one indicates a fit equal to the
null model.

includes only a baseline firing parameter. This general trend is consistent
with our intuition for the model behavior; as the randomness of the input
overshadows features of the Izhikevich model dynamics, the spike trains
become better described by a homogeneous Poisson process.

We conclude from these two assessments that an optimal range for σ ex-
ists in which the GLM captures both the variability and predictable struc-
ture of the spike trains simulated using the noisy Izhikevich neurons. For
very low values of σ , there is little variability to be captured by the GLM,
while for very high values of σ , there is little predictable structure be-
yond the baseline firing rate. However, a general optimal range of σ cannot
be explicitly defined as it depends on the type of neuron. Thus, multiple
goodness-of-fit measures should be used when analyzing data to assess the
degree to which the model fits the variability (e.g., KS test) and the pre-
dictable structure in the model (e.g., relative deviance).

3.4 Model Structure for Extreme σ Values. The results in Figure 4 dis-
play the estimated filter parameters as σ → 0. We note that the maximum
estimated filter values are capped at a value of 3 in Figure 4, so the full ex-
tent of the peak values is not directly visualized. The peaks, increasing in
height and decreasing in width, resemble delta functions as the noise level
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Figure 6: Estimated correlation matrices of the tonic spiking neuron with σ =
0.1, 1, 5, 10, 15, 20. Notice how the correlation structure vanishes as σ increases.
The case σ = 5 (top, right) displays three noticeable bumps, corresponding to
the three peaks of the filter in Figure 2. There are clear positive correlation
among lags close to each other and negative correlation among lags farther
apart.

approaches zero. In the other extreme of large σ , most of the visible struc-
ture in the filter vanishes, except for a refractory period. Except in the case
of bursting neurons, the filters flatten (i.e., approach 1) for large σ , implying
that less neuron-specific structure is captured by the models. This finding
is consistent with the results in Figure 5, where the relative deviances ap-
proach 1 (the null model) with low values of the corresponding KS statis-
tics, indicating that the simulated spike trains are well approximated by a
GLM with an intercept (baseline) term only, which corresponds to a homo-
geneous Poisson process.

The estimated correlation matrices (see section 2.4) for the tonic spik-
ing neuron in Figure 6 reveal that for low σ values, there is a positive
correlation (red) between parameters that are close to each other in the
temporal dimension along the diagonal, but at the three peaks, the posi-
tive correlation extends further in time. There is negative correlation (blue)
among variables that are far apart in the temporal dimension, but most
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interesting, the clusters of variables associated with each peak exhibit neg-
ative correlation.

The negative correlation between peak variables suggests that past spik-
ing at these lags is highly correlated and that as predictors, they are largely
redundant. We note that the neuron spike probability can be affected by
the first, second, or third last-recorded spike, but it is the total accumulated
effect of the past 100 ms that determines the current spike probability. As
such, the filter should be evaluated as a whole rather than at individual
points in time.

As σ > 5, the correlation structure starts to disappear, and for higher val-
ues of σ , the correlation structure in the model is greatly reduced. Once
more, this is in line with the findings in Figure 5 as models for very noisy
data capture mostly baseline activity.

For the tonic bursting neuron, the correlation matrices (not shown)
showed little or no structure beyond a few milliseconds off-diagonal. Based
on Figure 4, this lack of correlation structure is not surprising. For higher
values of σ , the filter captured only the increased probability of a spike with
short delay, but as the remaining part of the filter approaches 1, the (irreg-
ular) interburst periods were not captured. Thus, any relatively strong de-
pendence beyond the intraburst interval is not expected as σ increases. As
in the case of the tonic spiking filters, the entire filter should be interpreted
for tonic bursting. Thus, it is not only the time of the last spike that deter-
mines the current probability but the 100 ms history of spikes, which, in the
case of bursting, can include multiple spikes in a burst or multiple burst
periods, that affects the probability of spiking.

4 Discussion

In this letter, we have examined how well a commonly used class of GLMs
performs when used to capture both predictable structure and variability
of spike trains derived from simulated, noisy Izhikevich neurons. A useful
model is one that allows for clear, simple interpretations, which depends
critically on the form of the model. When referring to GLMs in this letter,
we implicitly mean the specific class of multiplicatively separable history-
dependent GLMs. These GLMs were designed to capture the influence of
past spiking on the current firing intensity using a simple set of indicator
basis functions and assuming that the influences of previous spikes are mul-
tiplicatively separable. This indicator basis is well suited to display the ap-
proximation of delta functions, when the noise level converges to 0 and
the spike trains become increasingly deterministic. However, using indica-
tor basis functions increases the number of parameters compared to other
choices such as splines’ bases and can lead to the problem of perfect sep-
aration. Therefore, it was necessary to use a penalized regression to fit the
models with indicator basis functions for low noise levels where only a few
parameters suffice to describe the structure. For this reason, we opted for
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an L1 penalization, corresponding to LASSO regression, which shrinks re-
dundant parameters to 0 by promoting sparsity. The implementation of the
LASSO regression we used here utilized cyclical coordinate descent (Fried-
man et al., 2010), when optimizing the likelihood, whereas the standard
GLM routine in R uses Fisher scoring to find maxima. Even when the pe-
nalization parameter was set to zero (i.e., unconstrained regression), these
two methods can yield rather different results when the likelihood surface
is nearly flat. However, even in such cases, the overall model predictions
and diagnostics were indistinguishable.

As expected, the estimated filters resembled delta functions for low val-
ues of σ (see Figure 4). In general, the GLMs captured both predictable
structure and variability from the input data. For near-deterministic spike
trains, the variation is negligible, and as such, the interpretation and quality
of the fit become highly sensitive to the choice of basis functions. Other com-
monly used basis functions, such as splines, which impose the smoothness
of the influence of past spikes, are likely to lead to poorly fit models and
incorrect interpretations when the spiking process is exactly or nearly de-
terministic. Although we focus here on simulations, we expect to encounter
similar issues when applying the GLM (see equation 2.5) to analyze regular
spike train activity recorded from a real neuron.

In contrast to low-noise regimes, spike trains simulated with a strong,
noisy input signal produced spike patterns consistent with a homogeneous
Poisson process (see Figure 1). In the corresponding filters for these highly
stochastic spike trains, any structure besides a refractory period following
an observed spike vanished. For tonic spiking, there was no positive mod-
ulation in very noisy regimes, whereas for tonic bursting, the intraburst in-
terval at short delay was captured, while the interburst interval at longer
delays was missing. This loss of structure was also evident from the rela-
tive deviance in Figure 5, which approached 1 as σ increased.

Our analyses suggest that multiple goodness-of-fit diagnostics are nec-
essary to determine the extent to which statistical models capture the pre-
dictable structure and variability of neural spiking. For very low-noise
regimes, measures that relate primarily to variability, such as the KS statis-
tic, may indicate lack of fit, even for models that capture the predictable
structure of the data well. When the random component is ill fitting, the
model does not generalize well to data of similar, but slightly mismatch-
ing, structure, thus resulting in poor values of the KS measure. In general,
goodness-of-fit measures should account for how well a model captures
both the variability (e.g., KS test) and predictable structure (e.g., relative
deviance) in the data.

Analyzing tonic spiking and tonic bursting neurons, we found that the
GLM captures both types quite well, although the KS statistic remained sig-
nificant for tonic bursting. This was despite the fact that the KS statistics for
both types were of equal magnitude and driven by the higher number of
observed spikes for the tonic bursting neuron compared to the tonic spik-
ing neuron. However, by interpreting the estimated filters, we found that
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both exhibited a clear structure inherent to the neuron type with features
that are intuitively understandable.

There are a number of ways we might extend the models discussed
here to better capture structure and variability in the data or to allow for
more interpretable parameter estimates. A straightforward model restric-
tion would be to replace the multiplicatively separable effects of multiple
previous spikes in the GLM with a renewal model structure,

log(λ(t|Ht )) = β0 + g(s∗, t), (4.1)

where g(s∗, t) is a function of the previous observed spike time,

s∗ = max
j

{s j|s j < t},

and time t. With this formulation, estimating a filter F for equation 4.1 of a
tonic spiking neuron would not produce three peaks as in Figures 2 and 4,
only a single peak around the mean ISI at 26.6 ms, since it would take into
account only the time since the previous spike. Besides only a single peak
for tonic spiking, the estimated filter for equation 4.1 is expected to display
similar behavior with regard to convergence and dependence, like the filters
for tonic spiking examined in this letter. We found that a history-dependent
filter for tonic bursting does not repeat itself for filters accounting for only
100 ms of past spiking history. However, an estimated filter for equation 4.1
would not integrate the past history, as was the case in Figure 3e. This might
lead to a more intuitive filter that would display peaks at both bursting and
interbursting ISIs.

It was clear from the analysis of tonic bursting that the estimated fil-
ter should be interpreted as a whole and not at individual time points.
For the tonic bursting neuron, the ISI histogram was bimodal due to the
two timescales involved. This was well captured by the model, as evident
from the estimated intensity (see Figure 3b); however, the separation of the
timescales was not clear from the filter (see Figure 3e). A possible way to ex-
tend the model to explicitly account for this separation is to include a latent
state that determines when the neuron is bursting. This could be formulated
as

log(λ(t|Xt, Ht )) = β0 + 1{Xt=1}[log(μ(t|Ht ))] + 1{Xt=0}[log(γ (t|Ht ))],

(4.2)

where

Xt =
{

1 neuron is bursting at time t

0 else
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and μ(·|·), γ (·|·) are individual intensities describing intraburst and inter-
burst times, respectively. A model such as equation 4.2 could potentially
capture both intrabursting and interbursting better than the models consid-
ered here due to the explicit modeling of the dual timescales present. Esti-
mation of the state Xt could also possibly link parameters of such a model to
the parameters of the Izhikevich model that controls bursting behavior. The
goal in this presentation was to examine a commonly used class of GLMs
and analyze their performance in relation to simulated Izhikevich neurons.
As such, we leave an analysis of the described model extensions to future
work.

In conclusion, the results of this letter suggest that for the commonly
used GLM for spike train data with multiplicatively separable history de-
pendence, there is a range of input noise values for the Izhikevich neurons
in which the GLM optimally captures both predictable structure and vari-
ability. This range depends on which properties are intrinsic to the spike
train: intraburst intervals are captured even at high noise levels, while reg-
ular spiking and interburst spiking intervals are not captured at high noise
levels. At low noise levels, the basis functions implemented here are delta
functions, which can predict data structure but do not generalize well to
data from slightly altered generative models. Thus, the choice of basis func-
tions becomes crucial to the credibility of the model for spike trains with
little or no variation. However, although an optimal range is evident from
the results in this letter, extensions to the model formulation 2.5, such as
equations 4.1 and 4.2, could possibly lead to improved model descriptions
of specific neuron properties such as bursting and thus extend the optimal
range. Expanding the optimal working range of the GLMs would be of in-
terest, for instance, in order to classify neurons according to both type and
noise level.
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