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In this paper we present a simplified model of a three-body problem. Place three parallel lines
in the plane. Place one mass on each of the lines and let their positions evolve according to
Newton’s inverse square law of gravitation. We prove the KAM theory applies to our model and
simulations are presented. We argue that this model provides an ideal, accessible entry point
into the beautiful mathematics involved in the study of the three-body problem.
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1. Introduction

The renowned N -body problem concerns the be-
havior of N point masses whose motion in three-
dimensional space is governed by Newton’s inverse
square law of gravitation. In solving the two-body
problem, Newton explained Kepler’s three empir-
ical laws regarding the motion of a planet around
the sun [Newton, 1687]. Turning his attention to the
three-body problem consisting of the sun, earth and
moon, Newton encountered difficulties to the extent
that he was prompted to remark “. . . his head never
ached but with the study of the moon” [Westfall,
1980].

Henri Poincaré is arguably the first mathe-
matician to unearth chaotic behavior in a dynam-
ical system. He accomplished this within the con-
text of the (circular planar) restricted three-body
problem [Poincaré, 1890]. In this simplified prob-
lem, three masses move in a single plane. The two
larger masses move in circles about their center of
gravity with uniform speed. The third body has
“infinitely small” mass, and it is the motion of

this small body under the gravitational influence of
the two larger bodies that is of interest. Poincaré
offered by way of example the sun, Jupiter, and
a second, smaller planet perturbed by Jupiter
(neglecting the eccentricity of Jupiter and the
inclination of the orbits [Barrow-Green, 1997]).
Motivated by the restricted three-body problem,
Poincaré discovered the existence of transverse ho-
moclinic orbits, yielding chaotic behavior as de-
scribed below.

The model introduced here is a simple one. It
serves to reduce the dimension of the three-body
problem by restricting the motion of each mass
to a line. It also removes the potential for dou-
ble and triple collisions occurring in the collinear
three-body problem [Kaplan, 1999; McGehee, 1971;
Meyer & Wang, 1995] by placing the masses on sep-
arate, parallel lines. We believe this model provides
an ideal, accessible entry point for those interested
in the mathematics of the problem whose study ul-
timately lead to the creation of nonlinear dynamical
systems as a vibrant discipline.
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2. Model Equations

Place three parallel lines in the plane, with the top
and bottom lines each a distance ε/2 from the cen-
ter line. Place one body on each line as indicated in
Fig. 1. Let mi and xi = xi(t) denote the mass and
position, respectively, of body i, i = 1, 2, 3, with xi

measured from a fixed vertical axis. Let the masses
evolve under Newton’s law of gravitation, assum-
ing there is no friction (think of beads on a greased
wire). Newton’s second law yields the equations of
motion

ẍ1 =
m2(x2 − x1)

((x2 − x1)2 + ε2)3/2

+
m3(x3 − x1)

((x3 − x1)2 + ε2/4)3/2

ẍ2 =
m1(x1 − x2)

((x1 − x2)2 + ε2)3/2

+
m3(x3 − x2)

((x3 − x2)2 + ε2/4)3/2

ẍ3 =
m1(x1 − x3)

((x1 − x3)2 + ε2/4)3/2

+
m2(x2 − x3)

((x2 − x3)2 + ε2/4)3/2
.

(1)

We have set the universal gravitational constant G
to be unity in the above equations. This can be ac-
complished, for example, by changing the unit of
mass [Meyer & Hall, 1992]. Also note that, due to
the introduction of the parameter ε, the vector field
in system (1) is smooth.

3. Simplifying Assumptions

Solutions to system (1) lie in R6. We will reduce the
dimension to two via the following standard simpli-
fications. First note that

3
∑

i=1

miẍi = 0 . (2)

Integrating Eq. (2) twice with respect to time yields

3
∑

i=1

mixi = c1t + c2 (3)

for some constants c1 and c2. Letting M = m1 +
m2 + m3 and noting (1/M)

∑3

i=1 mixi is the (x-
coordinate of the) center of mass, the motion of the
center of mass is linear, i.e. it has zero acceleration
for all time. If we introduce coordinates which mea-
sure the position of each body relative to the center

Fig. 1. The trilinear three-body model.

of mass, the equations of motion do not change. We
thus fix the center of mass at the origin by assuming

3
∑

i=1

mixi = 0 . (4)

Our model is a restricted problem — we assume
the center body has negligible mass. This means
the center body does not influence the motion of
the two larger bodies, though its motion is deter-
mined by that of masses m1 and m2. We thus set
m3 = 0 in system (1). Equation (4) then implies
m1x1 + m2x2 = 0. Simplifying further, we assume
m1 = m2 = m, yielding x2 = −x1 and ẋ2 = −ẋ1.
The positions and velocities of the two large bodies
are then symmetric about the origin for all time.
Substituting into system (1), we reduce to the four-
dimensional system

ẍ1 = − 2mx1

(4x2
1 + ε2)3/2

ẍ3 =
m(x1 − x3)

((x1 − x3)2 + ε2/4)3/2

− m(x1 + x3)

((x1 + x3)2 + ε2/4)3/2
.

(5)

Letting yi = ẋi, i = 1, 3, we have the four first-order
equations

ẋ1 = y1

ẏ1 = − 2mx1

(4x2
1 + ε2)3/2

ẋ3 = y3

ẏ3 =
m(x1−x3)

((x1−x3)2+ε2/4)3/2
− m(x1+x3)

((x1+x3)2+ε2/4)3/2
.

(6)
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4. Further Reductions

As a consequence of our assumption regarding the
mass of the center body, the first two equations in
system (6) depend on neither x3 nor y3. Moreover,
the subsystem

ẋ1 = y1

ẏ1 = − 2mx1

(4x2
1 + ε2)3/2

(7)

is integrable. The function

H(x1, y1) =
1

2
y2
1 −

1

2
m

1

(4x2
1 + ε2)1/2

satisfies (dH/dt)(x1(t), y1(t)) = 0 for solu-
tions (x1(t), y1(t)) of system (7). Thus level sets
H(x1, y1) = C of H correspond to solution curves
of (7) and, given x1, y1 is subsequently determined
(see Fig. 2). This reduces our problem to a three-
dimensional system with variables x1, x3 and y3.

We choose initial conditions for the large mass
so that its motion is periodic. That is, we assume
x1(t + τ) = x1(t), where τ = τ(x1(0), y1(0)) is a
function of the initial conditions for the large mass.
In particular, any solution to (7) with initial con-
dition (x1(0), 0) is periodic. (If provided with suffi-
cient initial velocity, the large mass tends to ∞.) In
spirit we are following Poincaré’s lead in assuming
periodic motion for the large masses.

Note that (x1, y1) = (0, 0) is an equilibrium
solution for (7). Hence, if we set the large mass at

rest at the origin, the latter two equations in (6)
become

ẋ3 = y3

ẏ3 = − 2mx3

(x2
3 + ε2/4)3/2

.
(8)

The (x3, y3)-phase plane for (8) is similar to
that sketched in Fig. 2. In particular, system (8)
yields a periodic solution for any initial condition
with y3(0) = 0. If we start the large mass within a
neighborhood of the origin (x1, y1) = (0, 0), we can
treat system (6) as a small perturbation of system
(8). Our model can then be viewed as a periodically
forced nonlinear oscillator: to understand solutions
to system (6), we seek to understand solutions to
the nonautonomous system

ẋ3 = y3

ẏ3 =
m(x1(t) − x3)

((x1(t) − x3)2 + ε2/4)3/2

− m(x1(t) + x3)

((x1(t) + x3)2 + ε2/4)3/2
,

(9)

where x1(t) is a (periodic) solution of (7).

5. The Poincaré Map

To obtain our final reduction, we turn to the
Poincaré map, introduced in [Poincaré, 1881].
Recalling that x1(t) is periodic with period τ , we
create a planar map by setting the large mass in
motion and computing the position and velocity of

Fig. 2. The (x1, y1)-phase plane. The periodic solutions are moving clockwise.
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Fig. 3. A Poincaré map P : R2 → R
2.

the small mass each time the large mass returns
to its initial state. This yields the Poincaré map
Pτ : R2 → R2, (x3(0), y3(0)) 7→ (x3(τ), y3(τ)).
The nth iterate of Pτ is then P n

τ (x3(0), y3(0)) =
(x3(nτ), y3(nτ)). A fixed point for Pτ , for example,
corresponds to a periodic solution for system (9).
We note that Pτ is a diffeomorphism [Perko, 1991].

We let P : R2 → R2 denote a Poincaré map
corresponding to system (8). In this case x1(t) = 0
for all t, so we can sample solutions to (8) at integer
multiples of T for any T > 0. Several P -orbits for
such a Poincaré map are shown in Fig. 3.

The Poincaré map P preserves area for any
T > 0. This follows from the fact the vector field
corresponding to system (8) has zero divergence.
Liouville’s Theorem then implies the two-
dimensional flow corresponding to (8) preserves
area. As P is the time-T map for this flow, P must
preserve area. We will make use of this observation
in Sec. 6.

Let T > 0 and let s be the period of a periodic
solution Γ for system (8). If s and T are commen-
surate, every point on Γ is periodic with the same
period under the Poincaré map P . If s and T are in-
commensurate, every point of Γ has a P -orbit which
is dense in Γ [Arnol’d & Avez, 1988]. This behavior
is evident in Fig. 3.

Corresponding to each periodic solution of (8)
is a rotation number [Robinson, 1994], which pro-

Fig. 4. The rotation number for P as a function of distance
from the origin.

vides a measure of the average counterclockwise
“rotation” per iterate of P . The rotation number is
rational on curves Γ for which s and T are commen-
surate, and irrational otherwise. Figure 4 presents
a plot of the rotation number for the Poincaré map
for system (8) as a function of the distance r from
(x3, y3) = (0, 0). The rotation numbers are nega-
tive because periodic motion in the (x3, y3)-phase
plane is clockwise. The function is monotonic as the
period of a periodic solution to (8) increases with
r. For this plot, ε = m = T = 1.

Returning to system (9), we will see that the
Poincaré map Pτ is an area-preserving perturbation
of P . This will allow us to invoke the KAM/Twist
Theorem as the key tool in our analysis.

6. The Twist Theorem

The celebrated KAM Theorem originated in the
work of Kolmogorov [1957] and was proved by
Arnol’d [1963] for Poincaré maps of analytic Hamil-
tonian systems having an arbitrary number of de-
grees of freedom. An independent proof for planar,
area-preserving maps, assuming only sufficient dif-
ferentiability, was provided by Moser [1962] (also
see [Siegel & Moser, 1971]). This latter result is
known as Moser’s Twist Theorem, and it is this
version of the KAM Theorem we refer to here.

The Twist Theorem concerns the existence of
invariant simple closed curves for an area-preserving
perturbation of an area-preserving mapping of the
plane. Recall the P -invariant curves shown in Fig. 3,
each with a corresponding rotation number. Any
two such curves Γ1 and Γ2 bound an annular region.
Since the rotation number is a monotonic function
of the distance from (x3, y3) = (0, 0), points rotate
a decreasing amount per iterate of P when moving
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from the inner boundary Γ1 to Γ2. This provides
the “twist” action referred to above.

The Twist Theorem states that if the rotation
number on a P -invariant curve is sufficiently ir-
rational and the perturbation is sufficiently small,
there exists an invariant simple closed curve for the
perturbed map on which all orbits are dense. If
the perturbed map is the Poincaré map of a three-
dimensional flow, these invariant curves give rise
to invariant tori in 3-space. Perturbed solutions ei-
ther lie on one of these tori, or are trapped between
pairs of such tori, and hence are stable in the sense
that they are confined to a bounded region in phase
space.

In the following statement of the Twist Theo-
rem [Hale & Koçak, 1991], mapping (10) is an area-
preserving perturbation of an area-preserving twist
map (r, θ) 7→ (r, θ + γ(r)) defined on the annulus
a ≤ r ≤ b. The rotation number for the unper-
turbed map on a circle of radius r = r0 is γ(r0),
and the assumption γ ′(r) 6= 0 ensures this is a twist
map. The function g is 2π-periodic in θ.

Finally, the Twist Theorem is stated for map-
pings of an annulus due to the introduction of
action-angle coordinates for systems such as (6).
In these “nonlinear polar coordinates” the simple
closed curves in Fig. 3 are circles [Guckenheimer &
Holmes, 1983].

Twist Theorem. Consider in polar coordinates

the following area-preserving perturbation of a twist

map
(

r

θ

)

7→
(

r

θ + γ(r)

)

+ δg(δ, r, θ) (10)

defined in an annulus a ≤ r ≤ b such that dγ/dr 6=
0, the function g is C5, and |δ| is sufficiently small.

Then, given any number ω between γ(a) and γ(b)
incommensurable with 2π, and satisfying

∣

∣

∣

∣

ω

2π
− p

q

∣

∣

∣

∣

≥ c|q|−5/2

for all integers p and q, there exists a differentiable

closed curve Γ, which is invariant under the map

(10 ). The orbits on Γ are given by rotation through

the angle ω.

Such numbers ω are called Diophantine (or
“sufficiently irrational”). Note that the Twist The-
orem implies the existence of infinitely many invari-
ant curves for the perturbed map. In fact, Moser’s
proof shows that the Lebesgue measure of the set of

invariant curves is positive and approaches the mea-
sure of the annulus as δ → 0. References [Arnol’d
& Avez, 1988; Arrowsmith & Place, 1990; Barrow-
Green, 1997; Guckenheimer & Holmes, 1983; Hale
& Koçak, 1991; Hénon, 1983; Katok & Hasselblatt,
1995; Meyer & Hall, 1992; Siegel & Moser, 1971]
provide introductions to the KAM theory at vari-
ous levels.

7. Homoclinic Orbits and

Island Chains

Recall the Poincaré map P : R2 → R2 for sys-
tem (8). The origin (0, 0) is an elliptic fixed point
and sits in a neighborhood containing a continuous
family of P -invariant simple closed curves. On these
curves the rotation number is a negative, increasing
function of distance from the origin. Points nearer
(0, 0) thus rotate a greater clockwise angle per iter-
ate of P (see Fig. 5, after [Guckenheimer & Holmes,
1983]).

There is a natural T -value at which to sample
solutions to system (8). Linearizing system (7) at
the equilibrium point (x1, y1) = (0, 0) yields the
system of equations

[

ẋ1

ẏ1

]

=

[

0 1

−2m/ε3 0

] [

x1

y1

]

,

corresponding to simple harmonic motion with fre-
quency α =

√

2m/ε3. As (x1(0), y1(0)) → (0, 0),
the period of the large mass oscillation approaches
2π/α. We set T = 2π/α and use this T -value in all
that follows.

Chaos arises in our model as follows. Let Γ1, Γ2

be P -invariant curves having sufficiently irrational
rotation numbers ω1 < ω2 < 0. Let Γ3 denote a
curve between Γ1 and Γ2 having rational rotation
number m/n ∈ (ω1, ω2). Note that every point on
Γ3 is fixed by P n and rotates through the angle 2πm
every n iterations. Moreover, points on Γ1 and Γ2

rotate through angles respectively greater than and
less than 2πm in magnitude every n iterates of P .

Consider the Poincaré map Pτ : R2 → R2

introduced in Sec. 5. If the perturbation is small
enough (i.e. if the large mass is set in motion in a
sufficiently small neighborhood of (x1, y1) = (0, 0))
and the map Pτ preserves area, then by the Twist
Theorem there exist Pτ -invariant closed curves Γ′

1,
Γ′

2 with rotation numbers ω1 and ω2, respectively.
Points on Γ′

1 will still rotate through an angle
greater than 2πm in magnitude (assuming the per-
turbation is small enough), while those on Γ′

2 rotate
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Fig. 5. Rotation under the Poincaré map P .

through an angle less than 2πm in magnitude, every
n iterations of Pτ . Thus, given a ray R extending
from (x3, y3) = (0, 0), there exists a point on R
which rotates precisely 2πm after n iterations, re-
turning to R. The collection of such points as R
varies is a closed curve which we denote as βτ .

Assuming Pτ is area-preserving, βτ and P n
τ (βτ )

enclose the same area and therefore must inter-
sect. By the construction of βτ , each intersection
point is a fixed point of P n

τ . Generically these in-
tersections are transverse, in which case these fixed
points are alternately of elliptic and saddle types
(see Fig. 6).

Let W s(p) and W u(p) denote the stable and
unstable manifolds, respectively, of a saddle fixed
point p for a diffeomorphism F : R2 → R2.
Poincaré termed a point q in the intersection of
W s(p) and W u(p) a homoclinic point — it is “dou-
bly asymptotic” [Poincaré, 1899] in that F n(q) →
p and F−n(q) → p as n → ∞. A homoclinic
orbit provides the stretching and folding behav-
ior indicative of a chaotic dynamical system. Ho-
moclininc points also arise in intersections of sta-
ble and unstable manifolds in saddle “loops” as
in Fig. 7.

A transverse intersection of W s(p) and W u(p)
leads to homoclinic tangles and chaotic dynam-
ics, as in the following Smale–Birkhoff Theorem
([Perko, 1991]; also see [Smale, 1965; Guckenheimer
& Holmes, 1983; Robinson, 1994]).

Fig. 6. The curve βτ and its image under P n

τ .

Theorem. Let F : R2 → R2 be a diffeomor-

phism with a saddle fixed point p for which the sta-

ble and unstable manifolds intersect transversally.

Then there is an n > 0 such that F n has an invari-

ant cantor set containing

(i) a countable set of periodic orbits of F n of

arbitrarily long periods

(ii) an uncountable set of bounded nonperiodic

orbits, and

(iii) a dense orbit.

Returning to our model, note that the sta-
ble and unstable manifolds of each of the fixed
points for P n

τ lie within the annular region bounded
by Γ′

1 and Γ′

2. As Pτ preserves area, these mani-
folds will intersect [Guckenheimer & Holmes, 1983],
and generically these intersections are transverse
[Arrowsmith & Place, 1990]. We thus expect to see
chaotic behavior within the region bounded by Γ′

1

and Γ′

2.
The dynamics of the map Pτ are strikingly com-

plex. As there are infinitely many sufficiently irra-
tional rotation numbers on the P -invariant curves
in Fig. 3, there are infinitely many annular regions
containing homoclinic tangles for Pτ . Moreover, this
complexity is repeated in a neighborhood of each of
the elliptic fixed points for P n

τ (for appropriate n)
in Fig. 6, leading to a sequence of “island chains”
on ever smaller scales ([Arrowsmith & Place, 1990],
and Figs. 13–16, 18 and 19).
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Fig. 7. Transverse crossing of stable and unstable manifolds.

Fig. 8.

The fact Pτ is area-preserving is crucial in the
above analysis. Before presenting the model simu-
lations, we prove this fact.

Proposition. The map Pτ : R2 → R2 is area-

preserving for all τ > 0.

Proof. Convert system (9) to the autonomous
system

dx3

ds
= y3

dy3

ds
=

m(x1(t) − x3)

((x1(t) − x3)2 + ε2/4)3/2

− m(x1(t) + x3)

((x1(t) + x3)2 + ε2/4)3/2

dt

ds
= 1 .

(11)

Let τ > 0 and ∆t > 0 be given. Let B de-
note a region in the plane, let C be the solid with
base B and height ∆t, and let C ′ be the time-τ
image of C under the flow corresponding to sys-
tem (11) (see Fig. 8). By Liouville’s Theorem this
flow preserves volume in (x3, y3, t)-space. Hence,
Vol(C′) = Vol(C) = Area(B) · ∆t.

For 0 ≤ u ≤ ∆t, let A(u) denote the area of the
intersection of C ′ with the t = u + τ plane. By the
Fundamental Theorem of Calculus,

Area(Pτ (B)) = A(0)

= lim
∆t→0

∫ ∆t

0

A(u)du

∆t

= lim
∆t→0

Vol(C′)

∆t

= Area(B) . �
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8. Model Dynamics

We present model simulations in the following se-
quence of plots. Each figure contains several Pτ -
orbits in the (x3, y3)-plane. Recalling that τ , the

period of the large mass oscillation, depends on the

initial condition (x1(0), 0), we treat A = x1(0) as

the parameter and investigate model behavior as A

is varied. For A � 1, Pτ is a small perturbation of

Fig. 9. A = 0.2.

Fig. 10. A larger neighborhood of the origin, A = 0.2.
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the Poincaré map P and the Twist Theorem pro-
vides insight into the behavior of m3 and the per-
sistence of invariant curves.

Each of Figs. 9–16, 18 and 19 was generated
using the software dstool [Back et al., 1992] with

ε = m = 1. In Figs. 11–13, 15 and 16, Pτ was iter-
ated the same number of times using the same set
of initial conditions evenly spaced along the neg-
ative x3-axis. We present one-half of the (x3, y3)-
plane due to the symmetry of our system. We also

Fig. 11. A = 0.01.

Fig. 12. A = 0.02.
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Fig. 13. A = 0.05.

Fig. 14. Away from the origin, A = 0.05.
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exclude a neighborhood of the origin as it is difficult
to see any island structure in this region, even for
relatively large A-values (see Figs. 9 and 10).

For a small perturbation (A = 0.01), most
of the Pτ -orbits lie on invariant curves (Fig. 11).

There is only one island clearly evident at this scale
(near (x3, y3) = (−3, 0)). This supports the fact
that the measure of the set of Pτ -invariant curves
approaches the measure of the set of P -invariant
curves as A → 0.

Fig. 15. A = 0.1.

Fig. 16. A = 0.2.



August 26, 2003 9:32 00789

2152 G. Lodge et al.

Fig. 17. Small mass trajectory for A = 0.2, (x3(0), y3(0)) = (−3.7, 0).

As A is increased to 0.02, a second island ap-
pears closer to the origin (Fig. 12). Moving along
the x3-axis, a few of the invariant curves are pinch-
ing together, indicative of saddle periodic points.

Increasing A to 0.05 yields many fewer invari-
ant curves and the first clear appearance of island
chains and saddle periodic points (Fig. 13). In the
center of the larger island to the right is a periodic
point of period two. Figure 14 presents the increased
complexity of Pτ -orbits away from a neighborhood
of the origin.

In Figs. 15 and 16, the invariant curves
continue to break up and the chaotic behavior
resulting from homoclinic tangles becomes more
prevalent. The self-similarity of the island chain
structure can also be discerned. Figure 17 is the
projection onto (x3, y3)-space of the solution to
system (9) with A = 0.2 and initial condition
(x3(0), y3(0)) = (−3.7, 0).

This sequence of plots clearly illustrates model
behavior predicted by the theoretical analysis of our
system of equations.

9. Comments

As the parameter A is increased, the Pτ -phase
plane changes dramatically. In particular, the origin
passes from an elliptic fixed point to a saddle fixed
point (Figs. 18 and 19). The two curves of initial
conditions corresponding to W s(0) yield Pτ -orbits
which converge to (0, 0), a surprising result when
interpreted in terms of the motion of the small mass.
Figure 20 presents the projection of the solution to
(9) and the corresponding Pτ -orbit for A = 0.4 with
initial condition (x3(0), y3(0)) = (0.001, 0).

To ascertain the stability type of the fixed
point at (x3, y3) = (0, 0), the eigenvalues of
the matrix DPτ (0, 0) must be determined. For
Poincaré maps, this corresponds to finding the
Floquet multipliers [Hartman, 1982; Perko, 1991;
Guckenheimer & Holmes, 1983] which, in theory,
are computed as follows. Let γ(s) denote the pe-
riodic solution to system (11) having initial condi-
tion (x3(0), y3(0), t(0)) = (0, 0, 0). Recall γ(s) is
a periodic solution of period τ as we are taking t
mod τ .

Let V be the vector field corresponding to sys-
tem (11) and let x = (x3, y3, t). To compute the
Floquet multipliers, one solves

Ẋ = (DxV)(γ(s))X , X(0) = I3 , (12)

where X is a 3×3 time-dependent matrix. The Flo-
quet multipliers are the eigenvalues of the matrix
X(τ). Corresponding to the direction along γ(s)
is the eigenvalue 1; the remaining two eigenval-
ues may determine the nature of the fixed point
(x3, y3) = (0, 0) (complex conjugate eigenvalues
need not imply the fixed point is elliptic [Hale &
Koçak, 1991]).

In practice, it is difficult to compute Floquet
multipliers. In our setting, we must solve (12) with

DxV(γ(s)) =











0 1 0

8mx1(s)
2 − mε2

2(x1(s)2 + ε2/4)5/2
0 0

0 0 0











,

(13)

with which we had no success. Note, however, that if
we take the crude approximation x1(s)≡x1(0)=A,
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Fig. 18. A = 0.4.

Fig. 19. Pτ -phase plane near the origin for A = 0.4.

the matrix (13) becomes

M =





0 1 0

k 0 0

0 0 0



 , where k =
8mA2 − mε2

2(A2 + ε2/4)5/2
.

In this case the solution to (12) is X(s) = eMs,
and the Floquet multipliers are ζi = eλiτ , where

λ1 =
√

k, λ2 = −
√

k and λ3 = 0. If A is small rela-
tive to ε, k < 0, and ζ1 and ζ2 are a pair of complex
conjugate multipliers as expected. If k > 0, how-
ever, ζ1 > 1 and ζ2 < 1, implying (x3, y3) = (0, 0)
is a saddle. With ε = 1, the constant k changes
sign at A = 1/2

√
2 ≈ 0.353. Via simulations with

ε = m = 1, we determined the origin changes from
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Fig. 20. Small mass trajectory and Pτ -orbit for A = 0.4, (x3(0), y3(0)) = (0.001, 0).

Fig. 21. An oscillatory solution?

elliptic to saddle type at A = 0.308, a coarse ap-
proximation to 1/2

√
2.

We were also intrigued by the behavior illus-
trated in Fig. 21, in which the small mass appears to
travel ever-greater distances, always returning to a
neighborhood of the origin before setting off again.
Let d(t) denote the distance of m3 from the ori-
gin. An oscillatory solution is a solution for which
lim supt→+∞

d(t) = +∞ and lim inf t→+∞ d(t) <

+∞. The existence of oscillatory solutions in the
planar restricted three-body problem is proved us-
ing symbolic dynamics [Llibre & Simo, 1980]. We
are attempting to use symbolic dynamics techniques
to gain greater insight into the behavior of our
model.

Finally, what happens as ε→0? Does an under-
standing of our model as ε→0 yield any insight into
the dynamics of the collinear three-body problem?



August 26, 2003 9:32 00789

A Trilinear Three-Body Problem 2155

Acknowledgments

We thank G. R. Hall for the simple proof of the
proposition in Sec. 7. We also thank Steve Strogatz
for his helpful insights.

References

Arnol’d, V. I. [1963] “Proof of A. N. Kolmogorov’s theo-
rem on the preservation of quasiperiodic motions un-
der small perturbations of the Hamiltonian,” Russ.

Math. Surv. 18, 9–36.
Arnol’d, V. I. & Avez, A. [1988] Ergodic Problems

of Classical Mechanics (Addison-Wesley, Redwood
City).

Arrowsmith, D. K. & Place, C. M. [1990] An Introduction

to Dynamical Systems (Cambridge University Press,
Cambridge).

Back, A., Guckenheimer, J., Myers, M., Wicklin, F. &
Worfolk, P. [1992] “dstool : Computer assisted explo-
ration of dynamical systems,” Notices Amer. Math.

Soc. 39, 303–309.
Barrow-Green, J. [1997] Poincaré and the Three
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Hale, J. & Koçak, H. [1991] Dynamics and Bifurcations

(Springer-Verlag, NY).
Hartman, P. [1982] Ordinary Differential Equations, 2nd

edition (Birkhäuser, Boston).
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