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Outline 

•  Quick introduction to GLM theory 

•  GLM model for inhomogeneous Poisson spiking 

•  History dependent GLM model of retinal neurons 
in culture 

•  A GLM model of learning in behavioral 
experiments 
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 Simple linear regression 

!  How does the height of a son depend of the height of his father? 

Father’s Height (inches) 

€ 

Si = bFi +ε i



4 

 Simple linear regression 

!  How does the height of a son depend of the height of his father? 

Father’s Height (inches) 

€ 

Si = bFi +ε i

A 
B 

C 

Which is the 
correct 
regression line? 
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 Count data 

!  Linear regression methods are not well suited for count data 

Time (msec) 



0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

6 

 Binary data 

!  Linear regression methods are not well suited for binary data 

Trial 



Generalized Linear Models 
•  Linear regression models of the form: 

    are useful for relating continuous valued observations 
to a set of covariates. 

•  Many types of data cannot be described by a Gaussian 
additive noise model. 

•  Generalized linear models extend a simple class of 
models to many additional data types.  

Count data: Binary data: 



The Natural Exponential Family 

A probability model for the data {y1,…, yn} is in the exponential 
family if you can write its likelihood in the form:  

Some common distributions in the exponential family include: 

•  Normal, Bernoulli, binomial, Poisson, gamma, beta, 
exponential, chi-square, lognormal, … 



Generalized Linear Models 

Set the link function,            , to be a linear function of the 
covariates,  

Differentiate the log likelihood with respect to the 
parameters, set equal to zero, and solve the resulting 
system of equations of the form 

€ 

C(θ) = α0 + α jg j Xi( )
j=1

p

∑

€ 

T(yi)g j (Xi) +
∂D
∂α j

∑
ˆ θ 

= 0



The Natural Exponential Family 

Poisson Data: 

So the link function is: 

€ 

C(θ) = log λk( )



The Natural Exponential Family 

Binomial Data: 

So the link function is: 

€ 

C(θ) = log pk
1− pk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



Link 
Function Distribution Equation 

logit Binomial 

log Poisson 

GLM Models for Spike Data 

€ 

log λk( ) = α0 + α jg j Xk( )
j=1

p

∑
€ 

log pk
1− pk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = α0 + α jg j Xk( )

j=1

p

∑



Fitting GLM 

•  As with ISI models, use maximum 
likelihood to obtain GLM parameters. 

•  In general it is not possible to obtain a 
closed form solution for the ML estimator 
or for its distribution. 

•  So, use your favorite numerical 
optimization technique (such as Newton’s 
method), or my favorite: MATLAB™ 



Stochastic Models 

Linear Regression 

Properties of GLM: 

•   Convex likelihood surface 

•   Estimators asymptotically have minimum MSE   

Generalized 
Linear Models 

(GLM) 

Neural 
Spiking 
Models 



Case 1: Inhomogeneous Poisson Model 

•  Construct an inhomogeneous Poisson spiking model 
for repeated trial data as a function of time 

Time (ms) 
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Case 1: Inhomogeneous Poisson Model 

•  Construct an inhomogeneous Poisson spiking model 
for repeated trial data as a function of time 
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Case 1: Inhomogeneous Poisson Model 

•  For an inhomogeneous Poisson model for repeated trial 
data as a function of time 

–  Polynomial model: 

 or: 

€ 

log λt( ) = α0 + α j t
j

j=1

p

∑

€ 

λt = e
α0 + α j t

j

j=1

p
∑
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Case 1: Inhomogeneous Poisson Model 

•  Inhomogeneous Poisson GLM using 5th order 
polynomial in time 
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ˆ α = −11 126 −462 815 −722 252[ ]
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Case 1: Inhomogeneous Poisson Model 

•  Inhomogeneous Poisson GLM using 50th order 
polynomial in time 
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Goodness-of-fit measures 

Akaike’s Information Criterion: 

For maximum likelihood estimates it measures the trade-off 
between maximizing the likelihood (minimizing 
and the numbers of parameters  the model requires. 

) 

Selecting the (parsimonious) model that minimizes the AIC: 
•  Helps prevent overfitting 
•  Is asymptotically equivalent to complete leave-one-

out cross-validation 
•  Asymptotically minimizes the KL distance between 

the selected model and the true unknown model 
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Case 1: Inhomogeneous Poisson Model 

•  AIC plot of model order 

Model order 

A
IC

 



Case 1: Inhomogeneous Poisson Model 

•  For an inhomogeneous Poisson model for repeated trial 
data as a function of time 

–  Spline model: 

  where            are spline basis functions 

€ 

λt = e
α j c j ( t )

j=1

p
∑

€ 

c j (t)



Case 1: Inhomogeneous Poisson Model 

•  Inhomogeneous Poisson GLM using spline fit in time 
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exp ˆ α ( ) = .5 1 30 27 9 1 .5[ ]



Case 2: An Analysis of the Spiking Activity of Retinal          
             Neurons in Culture (Iygengar and Liu, 1997) 

     Retinal neurons are grown in culture under constant  
     light and environmental conditions. The spontaneous  
     spiking activity of these neurons is recorded. The  
     objective is to develop a statistical model which  
     accurately describes the stochastic structure of this  
     activity. 













Discrete Time Spike Train Data 

dN1 dN2 dN3 dN4 dN5 dN6 dN7 

0 0 1 0 0 0 1 

dNk is the spike indicator function in interval k 

      is the intensity of spiking at time k, which in the limit is given by 



GLM History Model 

How do we pick a model order? 

The ISI distribution models we constructed 
assume that  

Now, let the conditional intensity be a function 
of past spiking activity using GLM 
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GLM Coefficients 
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AIC Results 

GLM Order 

A
IC

 



KS Plots 
Graphical measure of goodness-of-fit, based on time rescaling, 
comparing an empirical and model cumulative distribution 
function.  If the model is correct, then the rescaled ISIs are 
independent, identically distributed random variables whose KS 
plot should produce a 45° line [Ogata, 1988].  



Uniform Quantiles 
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Kolmogorov-Smirnov Plots 



Uniform Quantiles 
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KS Plots for Different Order GLMs 



ISI Lag Order (rescaled to Gaussian) 
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Correlation Function for Rescaled ISIs 



Uniform Quantiles 
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GLM Model Classes 



AIC and KS Statistics 

Poisson Binomial 

1 14 50 1 14 50 

6589 5931 5892 8496 7792 7746 

0.2525 0.0657 0.0462 0.2525 0.0822 0.0533 

Order 

AIC 

KS 

Exp Gamma Inv. 
Gauss. 

0.2525 0.2171 0.1063 KS Statistic 

Parametric ISI Models: 



ISI Histogram 
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Inferences and Conclusions 

Iyengar and Liu showed that a generalized inverse Gaussian model 
described these data well. 

The fit of history-dependent GLM model improves appreciably on 
the fits of the exponential, gamma and inverse Gaussian models, 
most notably in terms of KS plots.  

Our analysis shows that the GLM model describes the essential 
stochastic features in the data. There is a significant history 
dependence in the retinal neural spiking data extending back 14 
msec.  

There is another effect going back approximately 100 msec.  

The shorter time-scale phenomena may reflect intrinsic dynamics of 
the individual neuron whereas the longer time-scale effects may 
also include network dynamics. 



Remarks 

1.  Only 14 parameters are used to fit ~ 30,000 data points! 

2.  This type of strong history dependent effect is something we 
have seen in neurons from a number of different brain regions, 
animal models and experimental protocols. It was all simply 
described by GLM fitting.  

Truccolo W, Eden UT, Fellow M, Donoghue JD, Brown EN. A point 
process framework for relating neural spiking activity to spiking 
history, neural ensemble and covariate effects. Journal of 
Neurophysiology, 2005, 93:1074-1089. 

Kass RE, Ventura V, Brown EN. Statistical issues in the analysis of 
neuronal data. Journal of Neurophysiology, 2005, 94: 8-25. 



Summary 

•  GLM provides a computationally tractable generalization of 
the Gaussian linear model to non-Gaussian regression 
models.  

•  Estimation is carried out using maximum likelihood. This 
analysis has all the properties of maximum likelihood.  

•  AIC, deviance and parameter standard errors provide 
measures of goodness-of-fit and an inference framework 
analogous to regression. 

•  Can be applied to other exponential family models. 

•  Non-canonical link functions can also be used. 

•  GLM is a standard tool in Matlab, Minitab, R, S, SAS, Splus, 
and SPSS. 



•  Monkeys were trained 
to saccade to one of four 
targets, based on 
displayed images. 

•  Single cell recording in 
 monkey 
 hippocampus. 

GLM Peristimulus Time Histogram 
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Peristimulus Time Histogram 

Spiking Data 



Model 

Parameter vector: 

Basis functions: 
–  Indicator Functions: 

–  Splines: 



Indicator Function Basis 



Spline Function Basis 
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Adding History 
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Adding History 



GLM Neural Models 

•  By selecting an appropriate set of basis functions we can capture 
arbitrary functional relations. 

•  Analysis of relative contributions of components to spiking 
Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. (2004) J. Neurophys 93:1074-1089  



Conclusions 

•  We can construct and fit (using maximum 
likelihood) simple generalized linear models that 
capture the statistical properties of the spike train 
time series. 

•  We used the sample partial correlation function, 
the distribution of estimators and AIC to suggest 
the order of the model. 

•  AIC and the KS statistic are measures of 
goodness-of-fit between the model and the data. 


