Computational Neuroscience Summer School Neural Spike Train Analysis

Instructor: Mark Kramer Boston University

An introduction to biophysical models (Part 1)

SAMSI Short Course 2015

Outline

We'll develop different types of biophysical models of action potentials or "spikes".

–We'll begin with motivational data.

–We'll then consider some biophysics to construct:

- The integrate and fire model [Part 1].
- The Hodgkin-Huxley model [Part 2].
- The FitzHugh-Nagumo model [Part 3].
- -"Hands on": implement in <u>MATLAB</u> or <u>XPPAUT</u>. http://math.bu.edu/people/mak/samsi/ http://www.math.pitt.edu/~bard/xpp/download.html

-We'll introduce concept of data assimilation ...

Motivation

- Get the biophysics right: Integrate and fire model (I&F) Hodgkin-Huxley model (HH)
- Get the dynamics right: FitzHugh-Nagumo model (FHN)

Challenge: Rigorously link data and models ...

Consider an experiment:

Our collaborator . . .

And records . . .

From a single neuron record:

Build a model of spiking activity - increasing levels of realism

- Dynamical Biophysical

Today

Q: "Analysis" of these spike train?

A: Analyze possible mechanisms that generate spikes.

We need to choose f ... biophysics.

<u>Fact</u>: The neuronal membrane is an impermeable lipid bilayer.

Positive charges want to reach this negative potential, but can't ...

Negative charges inside the cell attracted to positive charges outside the cell

<u>Fact</u>: The inside has a negative voltage relative to the outside (-70 mV). Excess negative charge inside the cell ...

The cell membrane acts like a simple circuit element ...

Equivalent circuit: replace the neuronal membrane with a capacitor

Q: Why is this useful? For a capacitor, relate three quantities:

We'll use this to build our mathematical model ...

SAMSI Short Course 2015

Let's inject current to one side of the capacitor:

Rearrange for a simple model ...

General model: dV/dt = f(V, current inputs, time, ...)

Equivalent circuit with capacitor: I = C dV/dt

$$dV/dt = I/C$$

Our first model ... motivated by biophysics.

Q: Does this model reproduce the data?

Q: Does this model produce "spiking"?

Model 1: Integrate and fire

To make our model spike ... a hack.

add threshold & reset

Idea: when the voltage becomes large enough (threshold), then reset it to a lower value.

Model 1: Integrate and fire

The complete I&F model:

dV/dt = I/C (motivated by capacitor) if $V > V_{th}$, then $V = V_{reset}$ (threshold & reset)

$$V = voltage across membrane$$
$$I = injected current$$
$$C = capacitance$$
$$V_{th} = voltage threshold$$
$$V_{reset} = voltage reset$$

Model 1: Integrate and fire

Each time threshold reached, we say the model "spikes" ...

Our initial cell model was boring ... ions cannot pass through.

update the model to include **channels** or "pores" in the membrane

To start, consider an <u>always-open</u> channel ...

Q: How do we build a model? **A:** Consider an <u>equivalent circuit</u>.

Combine elements to form a simple circuit ...

SAMSI Short Course 2015

Consider an equivalent circuit: capacitor, resistor, battery

Let's analyze the behavior of this model ...

Consider the case: I = 0, "equilibrium". The equivalent circuit ...

Now, inject current: I > 0 The equivalent circuit ...

Behavior of the RC-circuit: Consider I = constant $dV_{in}/dt = -(V_{in} - V_*) / T$ $V_* = V_{rest} + R I = constant$ $V_{in} \rightarrow V_*$ T = R C = constant

In words: Voltage across the membrane approaches the <u>target voltage</u>. <u>Example</u> (RC-circuit):

Q: Does the RC-circuit "spike"?

Model 2: Leaky integrate and fire

To make our model spike ... a hack.

add threhsold & reset

Idea: when the voltage becomes large enough (threshold), then reset it to a lower value.

Example (I&F):

Model 2: Leaky integrate and fire

The complete leaky I&F model:

$$\frac{dV_{in}}{dt} = -(V_{in} - V_{*}) / T$$

if V > V_{th}, then V = V_{reset}

(motivated by RC-circuit) (threshold & reset)

where
$$V_* = V_{rest} + R I$$
 "target voltage"
 $T = R C$ "time constant"

An extension of the I&F model - the cell membrane has a hole.

Extensions of I&F models

Quadratic I&F: $dV/dt = I + V^2$, if $V > V_{th}$, then $V = V_{reset}$

http://www.izhikevich.org/publications/spikes.htm

Examples in MATLAB

... of Model 1 (I&F) and Model 2 (leaky I&F)

If you'd like, please start MATLAB and download the file:

http://math.bu.edu/people/mak/samsi/Modeling_Session_1.m

Website with all example code:

http://math.bu.edu/people/mak/samsi/