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Modeling the voltage
Goal: Model this
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In our single-cell models, axonal and somatodendritic gNa use the
same kinetics, and axonal spike initiation is realized by an increased
gNa density in the axons (Mainen et al. 1995). It may be, however,
that—as postulated in the historic model of Dodge and Cooley
(1973)—axonal gNa has a lower threshold than that of somatodendritic
gNa, at least in layer 5 pyramidal neurons (Colbert and Pan 2002), an
effect we did not simulate.

Other sources of kinetic data

A-current and h-current kinetics were based on data in Hugue-
nard and McCormick (1992). The K2 current followed Huguenard
and McCormick (1992) and McCormick and Huguenard (1992),
with some simplifications: only the faster component of inactiva-
tion was used, and the activation variable m was first order.

High-threshold calcium conductance kinetics came from Kay and
Wong (1987). Persistent gNa had rapid activation kinetics, but a
lower activation threshold, than did transient gNa (Kay et al. 1998);
it did not inactivate.

Some electrotonic parameters

Soma/dendritic membrane resistivity was 50,000 !-cm2 for
cortical glutamatergic cells; 25,000 !-cm2 for cortical GABAergic
cells; 26,400 !-cm2 for TCR cells; and 20,000 !-cm2 for nRT
cells. Soma/dendritic internal resistivity was 250 !-cm for cortical
glutamatergic cells; 200 !-cm for cortical GABAergic cells and
nRT cells; and 175 !-cm for TCR cells. Membrane capacitance
density was 0.9 !F/cm2 for all glutamatergic cells and 1.0 !F/cm2

for all GABAergic cells. Axonal membrane and internal resistivi-
ties were smaller than for soma/dendrites: 1,000 !-cm2 and 100
!-cm, respectively.

Reversal potentials

VNa was "50 mV for all cell types. VCa was "125 mV for all
types. VL (the reversal potential for the leak conductance) was #65
mV for FS and LTS interneurons, and for spiny stellates; it was #75
mV for nRT cells; it was #70 mV for cortical pyramids and TCR
neurons. VAR (the reversal potential for the anomalous rectifier, or h
conductance) was #40 mV for all GABAergic cells and spiny
stellates; it was #35 mV for cortical pyramids and TCR cells. VK was
#100 mV for GABAergic neurons and for spiny stellates; it was #95
mV for cortical pyramids and TCR cells.

FIG. A1. RS and FRB firing behaviors in model layer 2/3 pyramidal
neurons, in layer 2/3 putative pyramidal cells in rat auditory cortex in vitro,
and in neurons in rat somatosensory cortex in vivo. Cells were injected
with somatic depolarizing currents (0.4 and 0.75 nA for model, 0.5 nA for
in vitro experiment). Model and in vitro data from Cunningham et al.
(2004). In vivo RS cell was from layer 6, and the in vivo FRB cell from
layer 4.

FIG. A2. FS and LTS firing behaviors in model neurons (0.4 nA
depolarizing current pulses to somata), in neurons in layer 2/3 rat auditory
cortex in vitro (0.5 nA current pulses), and in neurons from rat somato-
sensory cortex in vivo. Model and in vitro data from Cunningham et al.
(2004). In vivo FS cell was from layer 5 and the in vivo LTS cell was from
the layer 4/layer 5 border.

FIG. A3. Firing behavior of model spiny stellate cell in response to
depolarizing current pulses, illustrating regular spiking (RS) behavior.
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We proposed the Hodgkin-Huxely model:

V

t

Let’s try to simplify ...

1-page summary of the HH model:

The Hodgkin-Huxley model of a neuron consists of a system of four coupled first-order differential equations.
The four dependent variables are (V , n, m, h); these are, in order, the membrane potential, a gating variable
for the potassium channel, and two gating variables for the sodium channel. Set V = 0 outside the cell
(though Hodgkin and Huxley adopted a different voltage convention) and the differential equations take the
form:

C
dV

dt
= Iinput(t)− ḡKn

4(V − VK)− ḡNam
3h(V − VNa)− ḡL(V − VL) (1)

dn

dt
= −n− n∞(V )

τn(V )
(2)

dm

dt
= −m−m∞(V )

τm(V )
(3)

dh

dt
= −h− h∞(V )

τh(V )
, (4)

where the externally applied current Iinput(t) is a prescribed function. Typical values of the parameters are:

Nernst potentials: VK = −77mV , VNa = +60mV , VL = −54.4mV

maximum conductances: ḡK = 36µmho , ḡNa = 120µmho , ḡL = 0.3µmho ,

and C = 1 nF (based on a neuron with 0.1mm2 area). The nonlinear functions µ∞(V ), τµ(V ) — where
µ = n,m, h — are plotted in Figure 1, and are based on experimental measurements. Often, the differential
equations (2)–(4) for the gating variables are written instead in the form:

dµ

dt
= αµ(V )

�
1− µ

�
− βµ(V )µ whereµ = n,m, h .

The V -dependent functions are related by:

µ∞(V ) =
αµ(V )

αµ(V ) + βµ(V )
, τµ(V ) =

1

αµ(V ) + βµ(V )
for µ = n,m, h .

A typical choice of the αµ(V ) and βµ(V ) functions, again based on fitting data, is:

αn(V ) =
0.1− 0.01(V + 65)

e1−0.1(V+65) − 1
αm(V ) =

2.5− 0.1(V + 65)

e2.5−0.1(V+65) − 1
αh(V ) = 0.07e(−V−65)/20

βn(V ) = 0.125e(−V−65)/80 βm(V ) = 4e(−V−65)/18 βh(V ) =
1

e3−0.1(V+65) + 1

where αµ and βµ are measured in ms−1, and V in mV. Note that one must always be careful to use αµ(V )
and βµ(V ) functions that are consistent with the voltage convention.
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Figure 1: Plots of the functions µ∞(V ) and τµ, where µ = n,m, h.
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4 coupled ODEs

“spikes”
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Simplify Hodgkin-Huxley

Simplification 1:  Treat the variable m[t] as an instantaneous variable.

3

Na� ‘fast transient’ sodium current

• includes three activating gates, one inactivating gate (cartoon picture):

• gNa = ḡNa p

• p = where m = activating gating variable

h = inactivating gating variable

• differential equations for m(t) and h(t) are decay-type:

steady state values for Na time constants for Na.

!100 mV 0mV +40 mV

0

0.5
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comments:

• m is activating because m∞ → 0 at small V

m∞ → 1 at large V

• h is inactivating because h∞ → 1 at small V

h∞ → 0 at large V

• again, much of the details is just data fitting

m∞(V ) =
αm(V )

αm(V ) + βm(V )
, τm(V ) =

1

αm(V ) + βm(V )

αm(V ) = 2.5−0.1(V+65)
e2.5−0.1(V +65)−1

, βm(V ) = 4e(−V−65)/18

h∞(V ) =
αh(V )

αh(V ) + βh(V )
, τh(V ) =

1

αh(V ) + βh(V )

αh(V ) = 0.07e(−V−65)/20 , βh(V ) = 1
e3−0.1(V +65)+1
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§III(d) The HH model

The equivalent circuit:

Analysis:

• define V = membrane potential

• (junction) Iinput =

• (capacitor)

• channels IK =

INa =

IL =

combine:

C
dV

dt
= Iinput(t)− ḡKn

4(V − VK)− ḡNam
3h(V − VNa)− ḡL(V − VL)

dn

dt
= −n− n∞(V )

τn(V )
dm

dt
= −m−m∞(V )

τm(V )
dh

dt
= −h− h∞(V )

τh(V )

looks intimidating, but each piece now makes sense...
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Replace m(t) with its steady state value.

The m-gates 
swing open and 
closed ... 

(sodium activation variable)

Fast!

... quickly

... instantaneously.

m(t)

§III(d) The HH model

The equivalent circuit:

Analysis:

• define V = membrane potential

• (junction) Iinput =

• (capacitor)

• channels IK =

INa =

IL =

combine:

C
dV

dt
= Iinput(t)− ḡKn

4(V − VK)− ḡNam
3h(V − VNa)− ḡL(V − VL)

dn

dt
= −n− n∞(V )

τn(V )
dm

dt
= −m−m∞(V )

τm(V )
dh

dt
= −h− h∞(V )

τh(V )

looks intimidating, but each piece now makes sense...
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Simplify Hodgkin-Huxley

Simplification 2:  Replace n[t] and h[t] with a single, new variable w[t].

Motivation:

Replace: Simulate dw/dt using
potassium gate dynamics (n).

n[t] with w[t]

w[t]

h[t] with 1-w[t]

1- w[t]

The n[t] and h[t] dynamics look related ...
(potassium activation variable)

(sodium inactivation variable)

n[t] + h[t] ~ 1



Simplify Hodgkin-Huxley

After these two simplifications:

(V, m, h, n) Advantage:  2-dim

Simulate reduced model (I big enough):

“spikes”

Plot phase space:

Q: What is this?

(V, w)



Simplify Hodgkin-Huxley
The simplified model is not pretty ...

Instead, consider an even simpler model ...

The w dynamics depend on:

1-page summary of the HH model:

The Hodgkin-Huxley model of a neuron consists of a system of four coupled first-order differential equations.
The four dependent variables are (V , n, m, h); these are, in order, the membrane potential, a gating variable
for the potassium channel, and two gating variables for the sodium channel. Set V = 0 outside the cell
(though Hodgkin and Huxley adopted a different voltage convention) and the differential equations take the
form:

C
dV

dt
= Iinput(t)− ḡKn

4(V − VK)− ḡNam
3h(V − VNa)− ḡL(V − VL) (1)

dn

dt
= −n− n∞(V )

τn(V )
(2)

dm

dt
= −m−m∞(V )

τm(V )
(3)

dh

dt
= −h− h∞(V )

τh(V )
, (4)

where the externally applied current Iinput(t) is a prescribed function. Typical values of the parameters are:

Nernst potentials: VK = −77mV , VNa = +60mV , VL = −54.4mV

maximum conductances: ḡK = 36µmho , ḡNa = 120µmho , ḡL = 0.3µmho ,

and C = 1 nF (based on a neuron with 0.1mm2 area). The nonlinear functions µ∞(V ), τµ(V ) — where
µ = n,m, h — are plotted in Figure 1, and are based on experimental measurements. Often, the differential
equations (2)–(4) for the gating variables are written instead in the form:

dµ

dt
= αµ(V )

�
1− µ

�
− βµ(V )µ whereµ = n,m, h .

The V -dependent functions are related by:

µ∞(V ) =
αµ(V )

αµ(V ) + βµ(V )
, τµ(V ) =

1

αµ(V ) + βµ(V )
for µ = n,m, h .

A typical choice of the αµ(V ) and βµ(V ) functions, again based on fitting data, is:

αn(V ) =
0.1− 0.01(V + 65)

e1−0.1(V+65) − 1
αm(V ) =

2.5− 0.1(V + 65)

e2.5−0.1(V+65) − 1
αh(V ) = 0.07e(−V−65)/20

βn(V ) = 0.125e(−V−65)/80 βm(V ) = 4e(−V−65)/18 βh(V ) =
1

e3−0.1(V+65) + 1

where αµ and βµ are measured in ms−1, and V in mV. Note that one must always be careful to use αµ(V )
and βµ(V ) functions that are consistent with the voltage convention.
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Figure 1: Plots of the functions µ∞(V ) and τµ, where µ = n,m, h.
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Goal:
mimic these spiking
dynamics ...
allow notions of biology
to become more abstract.



FitzHugh-Nagumo model

Consider instead the system:

v = membrane potential

w = recovery variable (think: slow gating variable)

I = input current

Two variables:  (v, w)

Parameters: 
a, b, 

dv

dt
= v − 1

3
v3 − w + I (1)

dw

dt
=

v − a− bw

τ
(2)

1

Q: Does this model capture the spiking dynamics?

dv

dt
= v − 1

3
v3 − w + I (1)

dw

dt
=

v − a− bw

τ
(2)

1

The FitzHugh-
Nagumo model



FitzHugh-Nagumo model

Let’s analyze this model.
– To do so, we’ll use XPPAUT.

If you’d like, please download and install this software ...

and download the model:

http://www.math.pitt.edu/~bard/xpp/download.html

http://math.bu.edu/people/mak/samsi/FHN.ode

http://www.math.pitt.edu/~bard/xpp/download.html
http://www.math.pitt.edu/~bard/xpp/download.html


FitzHugh-Nagumo model:  FHN.ode

Set model parameters

Define model dynamics

Set the initial conditions.

Specify one parameter to adjust

Set simulation features.

# comment



FitzHugh-Nagumo model
Let’s run it in XPPAUT ...
• Locate and open the file FHN.ode



FitzHugh-Nagumo model: V vs t

Keystrokes:
– Initialconds - Go

Improve visualization:
Xi vs t

Q: What is the parameter I ? Param [box at top]

Q: How do the dynamics behave?



FitzHugh-Nagumo model: V vs w
Let’s plot the phase space. Viewaxes - 2D

start

end Q: How do the dynamics behave?



FitzHugh-Nagumo model: nullclines
Let’s plot the nullclines. dv

dt
= v − 1

3
v3 − w + I (1)

dw

dt
=

v − a− bw

τ
(2)

1

0 = 

0 = Keystrokes:
–  Nullclines - New

w-nullcline

end

v-nullcline

start

Trajectory 
ends ...

fixed point

: v-nullcline

: w-nullcline

trajectory
at nullcline
intersection



FitzHugh-Nagumo model: increase I
Let’s increase the parameter I (i.e., deliver more “drive”).

click

set

Q: How do 
the dynamics 
behave?

press press

Plot: Xi vs t

Viewaxes - 2D
Adjust axes:



FitzHugh-Nagumo model: increase I
Plot the phase space. Viewaxes - 2D

start

Q: What is this?
end?

NOTE: If you see nullclines for I=0 case, Nullcline - Manual

then



FitzHugh-Nagumo model

Remember our reduced Hodgkin-Huxley model dynamics:

The FHN model qualitatively captures the reduced HH dynamics ...

Goal: mimic these dynamics ....

Reduced HH FHN



FitzHugh-Nagumo model: nullclines
Let’s plot the nullclines for I=0.5 – Nullclines - New

w-nullcline

v-nullcline

Q:  Are there any fixed points? Q:  Where does the trajectory go?

trajectory



FitzHugh-Nagumo model: two values of I

We’ve considered FHN dynamics at two values of I:

I = 0
Dynamics approach ...

I = 0.5

... a limit cycle.

Q:  What happens in between? 

... a fixed point.

Dynamics approach ...

subthreshold 
“rest” state

“spikes”



Bifurcation diagram

We can compute a bifurcation diagram in XPPAUT
– a multi-step process.

1. Set I = 0.
click

set

press

2. Run the dynamics many times to approach the fixed point.

– Initialconds - Go
Then: – Initialconds - Last Use the last values of (v,w) and 

continue simulation.Repeat!



Bifurcation diagram
3. Run AUTO

– File - Auto This screen should appear:



Bifurcation diagram
4. Follow the fixed points.
IN AUTO:  Run - Steady state

stable
fixed points

stable
fixed points

unstable
fixed points

Q: What happens at transitions?

(variable)

(parameter)I=0

V~ -1.2



Bifurcation diagram

Looks for terminal print out ...

AUTO detects two “HB” = Hopf bifurcations

We can tract the limit cycles that emerge ... 

= I

At these HBs, a limit cycle appears / disappears ...



Bifurcation diagram

5.  Grab a HB.

press

grab



Bifurcation diagram
6. Follow the periodic orbit.
IN AUTO:  Run - Periodic orbit Note: must grab HB first!

max

min

When fixed point is unstable, a stable limit cycle appears ...

limit cycle born,
it’s unstable

limit cycle 
amplitude increases,
and becomes stable



FitzHugh-Nagumo model

In this way, we develop a deep understanding of FHN dynamics ...

It’s not “too difficult” to examine model dynamics in XPPAUT.

“As I increases, the transition from rest to spiking occurs at a 
(subcritical) Hopf bifurcation.”

“rest”

“spiking”

“rest”
?



One last thing ...

In the past two days, we’ve considered two approaches to 
“understand” neuronal spiking data:

In our single-cell models, axonal and somatodendritic gNa use the
same kinetics, and axonal spike initiation is realized by an increased
gNa density in the axons (Mainen et al. 1995). It may be, however,
that—as postulated in the historic model of Dodge and Cooley
(1973)—axonal gNa has a lower threshold than that of somatodendritic
gNa, at least in layer 5 pyramidal neurons (Colbert and Pan 2002), an
effect we did not simulate.

Other sources of kinetic data

A-current and h-current kinetics were based on data in Hugue-
nard and McCormick (1992). The K2 current followed Huguenard
and McCormick (1992) and McCormick and Huguenard (1992),
with some simplifications: only the faster component of inactiva-
tion was used, and the activation variable m was first order.

High-threshold calcium conductance kinetics came from Kay and
Wong (1987). Persistent gNa had rapid activation kinetics, but a
lower activation threshold, than did transient gNa (Kay et al. 1998);
it did not inactivate.

Some electrotonic parameters

Soma/dendritic membrane resistivity was 50,000 !-cm2 for
cortical glutamatergic cells; 25,000 !-cm2 for cortical GABAergic
cells; 26,400 !-cm2 for TCR cells; and 20,000 !-cm2 for nRT
cells. Soma/dendritic internal resistivity was 250 !-cm for cortical
glutamatergic cells; 200 !-cm for cortical GABAergic cells and
nRT cells; and 175 !-cm for TCR cells. Membrane capacitance
density was 0.9 !F/cm2 for all glutamatergic cells and 1.0 !F/cm2

for all GABAergic cells. Axonal membrane and internal resistivi-
ties were smaller than for soma/dendrites: 1,000 !-cm2 and 100
!-cm, respectively.

Reversal potentials

VNa was "50 mV for all cell types. VCa was "125 mV for all
types. VL (the reversal potential for the leak conductance) was #65
mV for FS and LTS interneurons, and for spiny stellates; it was #75
mV for nRT cells; it was #70 mV for cortical pyramids and TCR
neurons. VAR (the reversal potential for the anomalous rectifier, or h
conductance) was #40 mV for all GABAergic cells and spiny
stellates; it was #35 mV for cortical pyramids and TCR cells. VK was
#100 mV for GABAergic neurons and for spiny stellates; it was #95
mV for cortical pyramids and TCR cells.

FIG. A1. RS and FRB firing behaviors in model layer 2/3 pyramidal
neurons, in layer 2/3 putative pyramidal cells in rat auditory cortex in vitro,
and in neurons in rat somatosensory cortex in vivo. Cells were injected
with somatic depolarizing currents (0.4 and 0.75 nA for model, 0.5 nA for
in vitro experiment). Model and in vitro data from Cunningham et al.
(2004). In vivo RS cell was from layer 6, and the in vivo FRB cell from
layer 4.

FIG. A2. FS and LTS firing behaviors in model neurons (0.4 nA
depolarizing current pulses to somata), in neurons in layer 2/3 rat auditory
cortex in vitro (0.5 nA current pulses), and in neurons from rat somato-
sensory cortex in vivo. Model and in vitro data from Cunningham et al.
(2004). In vivo FS cell was from layer 5 and the in vivo LTS cell was from
the layer 4/layer 5 border.

FIG. A3. Firing behavior of model spiny stellate cell in response to
depolarizing current pulses, illustrating regular spiking (RS) behavior.

2215THALAMOCORTICAL MODEL
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Statistical: firing rate, ISI, GLM, ...

Mathematical: I&F, Hodgkin-Huxley, FHN.

Advantage: direct link to data.
Disadvantage: no biophysics.

Advantage: incorporates biophysics / dynamics.
Disadvantage: indirect links to data.

Q: Which approach is best?
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3. Results

In this section we apply the estimation procedure to three
types of biophysical models. In each case, we first simulate
the model with a fixed set of parameter values and noise
level to generate the spike time data. Then, given only the
times of spike occurrence and assuming limited knowledge of
some model variables or parameters, we attempt to estimate
these variables and parameters. We evaluate the quality of
the estimation algorithm in two ways. First, we compare the
resulting parameter estimates to those used to simulate the
‘experimental’ data. Second, we compare the voltage traces
that result from the model estimates to the (hidden) true voltage
trace generated by the original simulation.

We begin by illustrating the application of the point
process particle filter to the problem of estimating a single
parameter in a simplified neuronal model. Specifically,
we estimate the unknown resting current in the FitzHugh–
Nagumo model. We simulate the model with parameter values:
a = 0.1, b = 0.01, c = 0.02 and noise level σ = 0.005.
The conditional intensity function for the estimation procedure
uses the following parameters: "t = 0.1 ms, η = 0.003 29,
ν = 30, p = q = 0.9, Vth = 0.8, ρ = 0.96. A thousand
particles were used in the sequential Monte Carlo algorithm.
Figure 1 shows the result of the estimation procedure. The
FitzHugh–Nagumo dynamics were simulated according to (3)
and (4) with a constant resting current I = 0.05. A realization
of the model voltage dynamics is plotted in figure 1(A), where
the black asterisks denote the spike times. Our goal is to infer
the (unknown) resting current I given only the simulated spike
data, when all the other model parameters are known. We
initialize the estimation algorithm with the prior distribution
I ∼ U(0, 0.3) and recursively generate the Monte Carlo
approximation of the posterior distribution of I, p (I |"N1:t ).
Then the expected current with respect to this posterior is used
to estimate the true current value I = 0.05. Here, the state
model is constructed so that the unknown value of the resting
current is assumed to be constant. The estimation result is
shown in figure 1(B). The expected resting current Î converges
to the true resting current I quickly, and the 95% confidence
bounds indicate increasing certainty about the estimate as time
progresses. At the end of estimation procedure, Î approaches
0.049 and the confidence bounds approach (0.0459,

0.0526).
In addition to estimating the resting current I, we also

approximate the time-varying unobserved state variables (in
this case the voltage and recovery variable). In figure 1(C), we
show the early tracking performance of the initial distribution
of estimates. With only a limited number of spikes having
occurred in the first 30 ms, the estimator behaves poorly
and the confidence intervals are wide, indicating substantial
uncertainty about the estimate. However, after spiking
information over 200 ms is incorporated into the particle filter,
the estimates converged to a very narrow range of parameter
values (figure 1(B)). We then restarted the sequential Monte
Carlo algorithm, fixing the parameter values to the converged
estimates at the end of the estimation process, and tracking
only the state variables. We show the tracking result in
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Figure 1. Estimating the resting current in the FitzHugh–Nagumo
model from spike observations. (A) Simulated data from the
FitzHugh–Nagumo model with a fixed resting current. Here we plot
the continuous voltage trace (dashed blue curve) and indicate the
spike times by black asterisks. (B) Given only the spike times in
(A) we estimate the resting current (solid blue line). The two
dot-dashed red lines indicate the 95% confidence interval of the
estimation. All particles converge quickly and the confidence
interval approaches a very narrow bound around the true resting
current (dashed blue line) after only six spikes. (C) The initial
estimates of voltages (solid red curve) and their 95% confidence
interval (dot-dashed red curves) show deviation from the true
voltages (blue circles) and large uncertainty during the first 30 ms.
(D) The converged parameter estimates produce voltage traces with
a mean (solid red curve) and 95% confidence interval (dot-dashed
red curves) that approximates the true voltage trajectory (blue
circles) well.

figure 1(D). The mean of the converged estimates matches
the true voltage with high accuracy and the narrow confidence
intervals indicate high confidence in these estimates. Thus, as
long as our model describes the action potentials correctly, we
can recover the full voltage information with high confidence
by using only the times of the spikes. In the same way, the
recovery variable (w) is also tracked accurately (not shown).

We expect that increasing noise levels in the model
dynamics will disrupt the parameter estimates. To explore
this in the FitzHugh–Nagumo model, we illustrate in
figure 2 the effect of increasing the noise level (σ is the
standard deviation of the noise term, εt in (3), for one time
step) on the parameter estimates. When σ = 0.001, we
have nearly perfectly regular spiking, while when σ = 0.03,
spiking becomes highly irregular. As σ increases, the size
of the confidence bounds about the parameter value tends to
increase, but the bounds still tend to contain the true value
(figure 2). These results demonstrate, for the FitzHugh–
Nagumo model, the robustness of the estimation algorithm
to increased noise.

In the second example, we consider the problem of
inferring multiple parameters simultaneously in a more
advanced and physiologically realistic neuronal model.

5

SAMSI Short Course 2015

Data assimilation

Q: Can we combine neuronal data and “expert knowledge” - as 
captured in a biophysical/dynamics model - to understand the brain?
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A:  Data assimilation.

Given data (spike times):

Example [Meng, Kramer, Eden, 2011]

tk



Data assimilation

And given a model:

Q: Can we estimate the (hidden) model states (V,n,m,h) and parameters?

A: Maybe ... consider a particle filter.

Each particle represents possible values for hidden quantities.

As time evolves, keep those particles most consistent with the data.

1-page summary of the HH model:

The Hodgkin-Huxley model of a neuron consists of a system of four coupled first-order differential equations.
The four dependent variables are (V , n, m, h); these are, in order, the membrane potential, a gating variable
for the potassium channel, and two gating variables for the sodium channel. Set V = 0 outside the cell
(though Hodgkin and Huxley adopted a different voltage convention) and the differential equations take the
form:

C
dV

dt
= Iinput(t)− ḡKn

4(V − VK)− ḡNam
3h(V − VNa)− ḡL(V − VL) (1)

dn

dt
= −n− n∞(V )

τn(V )
(2)

dm

dt
= −m−m∞(V )

τm(V )
(3)

dh

dt
= −h− h∞(V )

τh(V )
, (4)

where the externally applied current Iinput(t) is a prescribed function. Typical values of the parameters are:

Nernst potentials: VK = −77mV , VNa = +60mV , VL = −54.4mV

maximum conductances: ḡK = 36µmho , ḡNa = 120µmho , ḡL = 0.3µmho ,

and C = 1 nF (based on a neuron with 0.1mm2 area). The nonlinear functions µ∞(V ), τµ(V ) — where
µ = n,m, h — are plotted in Figure 1, and are based on experimental measurements. Often, the differential
equations (2)–(4) for the gating variables are written instead in the form:

dµ

dt
= αµ(V )

�
1− µ

�
− βµ(V )µ whereµ = n,m, h .

The V -dependent functions are related by:

µ∞(V ) =
αµ(V )

αµ(V ) + βµ(V )
, τµ(V ) =

1

αµ(V ) + βµ(V )
for µ = n,m, h .

A typical choice of the αµ(V ) and βµ(V ) functions, again based on fitting data, is:

αn(V ) =
0.1− 0.01(V + 65)

e1−0.1(V+65) − 1
αm(V ) =

2.5− 0.1(V + 65)

e2.5−0.1(V+65) − 1
αh(V ) = 0.07e(−V−65)/20

βn(V ) = 0.125e(−V−65)/80 βm(V ) = 4e(−V−65)/18 βh(V ) =
1

e3−0.1(V+65) + 1

where αµ and βµ are measured in ms−1, and V in mV. Note that one must always be careful to use αµ(V )
and βµ(V ) functions that are consistent with the voltage convention.

!100 mV 0mV +40 mV

0
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n
!
(V)

m
!
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h
!
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0
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Figure 1: Plots of the functions µ∞(V ) and τµ, where µ = n,m, h.
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Figure 2. Robustness of estimation to noise level. (A) Given
simulated spike trains of the same length from the
FitzHugh–Nagumo model with different levels of noise σ , we
estimate the input current I whose true value is 0.05 (indicated by
the dashed black line). The red stars represent the estimates of I and
red bars are their corresponding 95% confidence intervals. The true
current values lie within the confidence bounds of every estimate.

Specifically, we estimate the sodium and potassium
conductance in the standard Hodgkin–Huxley equations. We
begin by simulating the Hodgkin–Huxley model for a fixed
value of input current (parameter I = 10 µA cm−2) and record
the resulting spike times. Then, given only these spike times,
we estimate two conductances gK (true value 36 mS cm−2) and
gNa (true value 120 mS cm−2) with all other parameters fixed.
The conditional intensity function for the estimation procedure
uses the following parameters: "t = 0.05 ms, η = 1.622,
ν = 0.1, p = q = 0.9, Vth = 80 mV. The sequential Monte
Carlo algorithm used 10 000 particles.

Figures 3(A)–(C) show the temporal evolution of the
distribution of parameter estimates from the point process
particle filter. Initially, the particles are uniformly distributed
in the region gK ∈ (0, 100) mS cm−2, gNa ∈ (0, 300) mS
cm−2 (figure 3(A)). The distribution of estimates evolves in
time, and by the second observed spike, the distribution of
parameter estimates has narrowed to cover a much smaller
region of the parameter space (figure 3(B)). After 590 ms
and approximately 40 spikes, the distribution of the parameter
estimates has not converged to a single point, but has stabilized
to a narrow line segment in the parameter space that includes
the true parameter values (figure 3(C)). These results suggest
that multiple combinations of conductance values for gK and
gNa can produce dynamics that are consistent with the observed
spiking activity. To illustrate this, we simulate the Hodgkin–
Huxley model for three different sets of parameter values that
are contained in the linear subspace to which the estimates
converged. The spike times produced by these different
parameter sets are nearly identical and consistent with those
produced by the true parameter values (figure 3(D)). It is not
surprising that multiple sets of parameter values can produce
similar neuronal dynamics [11, 15, 25, 30, 31, 36]. In this case,
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Figure 3. Estimating conductance parameters in a Hodgkin–Huxley
model. (A)–(C) Sequential parameter estimates for gK and gNa. The
red asterisk denotes the true values of gK and gNa. The blue dots
denote the parameter values for all of the particles. (A) The initial
particle estimates are uniformly distributed in the two-dimensional
parameter space. (B) Distribution of particles after the second
observed spike. The parameter values of the particles begin to
concentrate in a region that contains the true values of gK and gNa.
(C) Distribution of particles after 40 spikes. The parameter estimates
have converged to a narrow linear subspace of parameter values that
are consistent with the spike data. The three asterisks indicate
parameter values used in (D). (D) Three voltage traces (blue, red
and yellow) corresponding to the three parameter choices (blue, red
and yellow, respectively) indicated in (C). Although the parameter
values differ, the three voltage traces and resulting spike times
(plotted as colored symbols along the horizontal axis) are nearly
indistinguishable. (E) By collecting data from a second experiment
with an altered resting current, we obtain a new set of estimates that
intersect with the first set around a single point, allowing us to
compute a single accurate estimate of the true parameters.

the linear relationship between the parameters is consistent
with our biophysical understanding of the neuron; the increase
of outward current due to higher potassium conductance is
approximately balanced by the increase of inward current
with larger sodium conductance. The particle filter identifies
the full space of parameter values that could have produced
the observed data. Intuitively, this result suggests that the
likelihood surface contains a flat ridge to which the estimates
congregate.

In this case, the true model parameters are not identifiable,
because the recorded data cannot distinguish between certain
parameter values. However, consider an experiment with the
goal of determining a neuron’s true conductance values by
injecting a fixed current and measuring the spike activity.
Although we would not be able to uniquely identify the
true conductance values from these data, this estimation
framework suggests experimental manipulations that could
help more accurately identify these true values. For example,
figure 3(E) illustrates how the distribution of parameter
estimates would change if we increased the resting current
to I = 30 µA cm−2. To determine these estimates we generate

6

Distribution of two parameter values (gK, gNa) for each particle:

Data assimilation
Example particle evolution.

... a non-informative prior

Observe data ...

Only a subset of (gK, gNa) survive.

True value
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Figure 2. Robustness of estimation to noise level. (A) Given
simulated spike trains of the same length from the
FitzHugh–Nagumo model with different levels of noise σ , we
estimate the input current I whose true value is 0.05 (indicated by
the dashed black line). The red stars represent the estimates of I and
red bars are their corresponding 95% confidence intervals. The true
current values lie within the confidence bounds of every estimate.

Specifically, we estimate the sodium and potassium
conductance in the standard Hodgkin–Huxley equations. We
begin by simulating the Hodgkin–Huxley model for a fixed
value of input current (parameter I = 10 µA cm−2) and record
the resulting spike times. Then, given only these spike times,
we estimate two conductances gK (true value 36 mS cm−2) and
gNa (true value 120 mS cm−2) with all other parameters fixed.
The conditional intensity function for the estimation procedure
uses the following parameters: "t = 0.05 ms, η = 1.622,
ν = 0.1, p = q = 0.9, Vth = 80 mV. The sequential Monte
Carlo algorithm used 10 000 particles.

Figures 3(A)–(C) show the temporal evolution of the
distribution of parameter estimates from the point process
particle filter. Initially, the particles are uniformly distributed
in the region gK ∈ (0, 100) mS cm−2, gNa ∈ (0, 300) mS
cm−2 (figure 3(A)). The distribution of estimates evolves in
time, and by the second observed spike, the distribution of
parameter estimates has narrowed to cover a much smaller
region of the parameter space (figure 3(B)). After 590 ms
and approximately 40 spikes, the distribution of the parameter
estimates has not converged to a single point, but has stabilized
to a narrow line segment in the parameter space that includes
the true parameter values (figure 3(C)). These results suggest
that multiple combinations of conductance values for gK and
gNa can produce dynamics that are consistent with the observed
spiking activity. To illustrate this, we simulate the Hodgkin–
Huxley model for three different sets of parameter values that
are contained in the linear subspace to which the estimates
converged. The spike times produced by these different
parameter sets are nearly identical and consistent with those
produced by the true parameter values (figure 3(D)). It is not
surprising that multiple sets of parameter values can produce
similar neuronal dynamics [11, 15, 25, 30, 31, 36]. In this case,
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Figure 3. Estimating conductance parameters in a Hodgkin–Huxley
model. (A)–(C) Sequential parameter estimates for gK and gNa. The
red asterisk denotes the true values of gK and gNa. The blue dots
denote the parameter values for all of the particles. (A) The initial
particle estimates are uniformly distributed in the two-dimensional
parameter space. (B) Distribution of particles after the second
observed spike. The parameter values of the particles begin to
concentrate in a region that contains the true values of gK and gNa.
(C) Distribution of particles after 40 spikes. The parameter estimates
have converged to a narrow linear subspace of parameter values that
are consistent with the spike data. The three asterisks indicate
parameter values used in (D). (D) Three voltage traces (blue, red
and yellow) corresponding to the three parameter choices (blue, red
and yellow, respectively) indicated in (C). Although the parameter
values differ, the three voltage traces and resulting spike times
(plotted as colored symbols along the horizontal axis) are nearly
indistinguishable. (E) By collecting data from a second experiment
with an altered resting current, we obtain a new set of estimates that
intersect with the first set around a single point, allowing us to
compute a single accurate estimate of the true parameters.

the linear relationship between the parameters is consistent
with our biophysical understanding of the neuron; the increase
of outward current due to higher potassium conductance is
approximately balanced by the increase of inward current
with larger sodium conductance. The particle filter identifies
the full space of parameter values that could have produced
the observed data. Intuitively, this result suggests that the
likelihood surface contains a flat ridge to which the estimates
congregate.

In this case, the true model parameters are not identifiable,
because the recorded data cannot distinguish between certain
parameter values. However, consider an experiment with the
goal of determining a neuron’s true conductance values by
injecting a fixed current and measuring the spike activity.
Although we would not be able to uniquely identify the
true conductance values from these data, this estimation
framework suggests experimental manipulations that could
help more accurately identify these true values. For example,
figure 3(E) illustrates how the distribution of parameter
estimates would change if we increased the resting current
to I = 30 µA cm−2. To determine these estimates we generate
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(gK, gNa) inconsistent with observed 
spike times
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Figure 2. Robustness of estimation to noise level. (A) Given
simulated spike trains of the same length from the
FitzHugh–Nagumo model with different levels of noise σ , we
estimate the input current I whose true value is 0.05 (indicated by
the dashed black line). The red stars represent the estimates of I and
red bars are their corresponding 95% confidence intervals. The true
current values lie within the confidence bounds of every estimate.

Specifically, we estimate the sodium and potassium
conductance in the standard Hodgkin–Huxley equations. We
begin by simulating the Hodgkin–Huxley model for a fixed
value of input current (parameter I = 10 µA cm−2) and record
the resulting spike times. Then, given only these spike times,
we estimate two conductances gK (true value 36 mS cm−2) and
gNa (true value 120 mS cm−2) with all other parameters fixed.
The conditional intensity function for the estimation procedure
uses the following parameters: "t = 0.05 ms, η = 1.622,
ν = 0.1, p = q = 0.9, Vth = 80 mV. The sequential Monte
Carlo algorithm used 10 000 particles.

Figures 3(A)–(C) show the temporal evolution of the
distribution of parameter estimates from the point process
particle filter. Initially, the particles are uniformly distributed
in the region gK ∈ (0, 100) mS cm−2, gNa ∈ (0, 300) mS
cm−2 (figure 3(A)). The distribution of estimates evolves in
time, and by the second observed spike, the distribution of
parameter estimates has narrowed to cover a much smaller
region of the parameter space (figure 3(B)). After 590 ms
and approximately 40 spikes, the distribution of the parameter
estimates has not converged to a single point, but has stabilized
to a narrow line segment in the parameter space that includes
the true parameter values (figure 3(C)). These results suggest
that multiple combinations of conductance values for gK and
gNa can produce dynamics that are consistent with the observed
spiking activity. To illustrate this, we simulate the Hodgkin–
Huxley model for three different sets of parameter values that
are contained in the linear subspace to which the estimates
converged. The spike times produced by these different
parameter sets are nearly identical and consistent with those
produced by the true parameter values (figure 3(D)). It is not
surprising that multiple sets of parameter values can produce
similar neuronal dynamics [11, 15, 25, 30, 31, 36]. In this case,
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Figure 3. Estimating conductance parameters in a Hodgkin–Huxley
model. (A)–(C) Sequential parameter estimates for gK and gNa. The
red asterisk denotes the true values of gK and gNa. The blue dots
denote the parameter values for all of the particles. (A) The initial
particle estimates are uniformly distributed in the two-dimensional
parameter space. (B) Distribution of particles after the second
observed spike. The parameter values of the particles begin to
concentrate in a region that contains the true values of gK and gNa.
(C) Distribution of particles after 40 spikes. The parameter estimates
have converged to a narrow linear subspace of parameter values that
are consistent with the spike data. The three asterisks indicate
parameter values used in (D). (D) Three voltage traces (blue, red
and yellow) corresponding to the three parameter choices (blue, red
and yellow, respectively) indicated in (C). Although the parameter
values differ, the three voltage traces and resulting spike times
(plotted as colored symbols along the horizontal axis) are nearly
indistinguishable. (E) By collecting data from a second experiment
with an altered resting current, we obtain a new set of estimates that
intersect with the first set around a single point, allowing us to
compute a single accurate estimate of the true parameters.

the linear relationship between the parameters is consistent
with our biophysical understanding of the neuron; the increase
of outward current due to higher potassium conductance is
approximately balanced by the increase of inward current
with larger sodium conductance. The particle filter identifies
the full space of parameter values that could have produced
the observed data. Intuitively, this result suggests that the
likelihood surface contains a flat ridge to which the estimates
congregate.

In this case, the true model parameters are not identifiable,
because the recorded data cannot distinguish between certain
parameter values. However, consider an experiment with the
goal of determining a neuron’s true conductance values by
injecting a fixed current and measuring the spike activity.
Although we would not be able to uniquely identify the
true conductance values from these data, this estimation
framework suggests experimental manipulations that could
help more accurately identify these true values. For example,
figure 3(E) illustrates how the distribution of parameter
estimates would change if we increased the resting current
to I = 30 µA cm−2. To determine these estimates we generate
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[Meng, Kramer, Eden, 2011]

Data assimilation
Continue to observe data ...

A manifold of parameter 
pairs consistent with 
observed data ...

Many pairs of (gK, gNa) that produce spike times consistent with the 
observed data ...
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Figure 2. Robustness of estimation to noise level. (A) Given
simulated spike trains of the same length from the
FitzHugh–Nagumo model with different levels of noise σ , we
estimate the input current I whose true value is 0.05 (indicated by
the dashed black line). The red stars represent the estimates of I and
red bars are their corresponding 95% confidence intervals. The true
current values lie within the confidence bounds of every estimate.

Specifically, we estimate the sodium and potassium
conductance in the standard Hodgkin–Huxley equations. We
begin by simulating the Hodgkin–Huxley model for a fixed
value of input current (parameter I = 10 µA cm−2) and record
the resulting spike times. Then, given only these spike times,
we estimate two conductances gK (true value 36 mS cm−2) and
gNa (true value 120 mS cm−2) with all other parameters fixed.
The conditional intensity function for the estimation procedure
uses the following parameters: "t = 0.05 ms, η = 1.622,
ν = 0.1, p = q = 0.9, Vth = 80 mV. The sequential Monte
Carlo algorithm used 10 000 particles.

Figures 3(A)–(C) show the temporal evolution of the
distribution of parameter estimates from the point process
particle filter. Initially, the particles are uniformly distributed
in the region gK ∈ (0, 100) mS cm−2, gNa ∈ (0, 300) mS
cm−2 (figure 3(A)). The distribution of estimates evolves in
time, and by the second observed spike, the distribution of
parameter estimates has narrowed to cover a much smaller
region of the parameter space (figure 3(B)). After 590 ms
and approximately 40 spikes, the distribution of the parameter
estimates has not converged to a single point, but has stabilized
to a narrow line segment in the parameter space that includes
the true parameter values (figure 3(C)). These results suggest
that multiple combinations of conductance values for gK and
gNa can produce dynamics that are consistent with the observed
spiking activity. To illustrate this, we simulate the Hodgkin–
Huxley model for three different sets of parameter values that
are contained in the linear subspace to which the estimates
converged. The spike times produced by these different
parameter sets are nearly identical and consistent with those
produced by the true parameter values (figure 3(D)). It is not
surprising that multiple sets of parameter values can produce
similar neuronal dynamics [11, 15, 25, 30, 31, 36]. In this case,
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Figure 3. Estimating conductance parameters in a Hodgkin–Huxley
model. (A)–(C) Sequential parameter estimates for gK and gNa. The
red asterisk denotes the true values of gK and gNa. The blue dots
denote the parameter values for all of the particles. (A) The initial
particle estimates are uniformly distributed in the two-dimensional
parameter space. (B) Distribution of particles after the second
observed spike. The parameter values of the particles begin to
concentrate in a region that contains the true values of gK and gNa.
(C) Distribution of particles after 40 spikes. The parameter estimates
have converged to a narrow linear subspace of parameter values that
are consistent with the spike data. The three asterisks indicate
parameter values used in (D). (D) Three voltage traces (blue, red
and yellow) corresponding to the three parameter choices (blue, red
and yellow, respectively) indicated in (C). Although the parameter
values differ, the three voltage traces and resulting spike times
(plotted as colored symbols along the horizontal axis) are nearly
indistinguishable. (E) By collecting data from a second experiment
with an altered resting current, we obtain a new set of estimates that
intersect with the first set around a single point, allowing us to
compute a single accurate estimate of the true parameters.

the linear relationship between the parameters is consistent
with our biophysical understanding of the neuron; the increase
of outward current due to higher potassium conductance is
approximately balanced by the increase of inward current
with larger sodium conductance. The particle filter identifies
the full space of parameter values that could have produced
the observed data. Intuitively, this result suggests that the
likelihood surface contains a flat ridge to which the estimates
congregate.

In this case, the true model parameters are not identifiable,
because the recorded data cannot distinguish between certain
parameter values. However, consider an experiment with the
goal of determining a neuron’s true conductance values by
injecting a fixed current and measuring the spike activity.
Although we would not be able to uniquely identify the
true conductance values from these data, this estimation
framework suggests experimental manipulations that could
help more accurately identify these true values. For example,
figure 3(E) illustrates how the distribution of parameter
estimates would change if we increased the resting current
to I = 30 µA cm−2. To determine these estimates we generate

6

True value

spikes



Data assimilation
In simulation,

– often works well.

In practice,
– many challenges exist.
– A big one:  models are inadequate ...

... we’re fitting the wrong model to the data.

184 8 Model Inadequacy
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Figure 8.1 (plate 14)
(Caption on facing page)

[Schiff 2012]

Q: How do we address these and related challenges?

geometry,
currents,
synapses,
...



Summary

Many approaches to analyze spike train data ...
– Statistical
– Mathematical (biophysical / dynamical)

Today:  an introduction to some mathematical modeling approaches,
– I&F, LIF
– Hodgkin-Huxley
– FitzHugh-Nagumo
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