Computational Neuroscience Summer School Neural Spike Train Analysis

Instructor: Mark Kramer Boston University

An introduction to biophysical models (Part 3) A dynamical model ... FitzHugh-Nagumo

SAMSI Short Course 2015

We proposed the Hodgkin-Huxely model:

$$C \frac{dV}{dt} = I_{\text{input}}(t) - \bar{g}_{\text{K}} n^{4} (V - V_{\text{K}}) - \bar{g}_{\text{Na}} m^{3} h (V - V_{\text{Na}}) - \bar{g}_{\text{L}} (V - V_{\text{L}})$$

$$\frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_{n}(V)}$$

$$\frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_{m}(V)}$$

$$\frac{dh}{dt} = -\frac{h - h_{\infty}(V)}{\tau_{h}(V)},$$
Let's try to simplify ...

SAMSI Short Course 2015

 $\int (so dium inactivation variable)$ Simplification 2: Replace n[t] and h[t] with a single, new variable w[t]. $\int (potassium activation variable)$

Motivation: The n[t] and h[t] dynamics look related ... $n[t] + h[t] \sim 1$

Replace: n[t] with w[t] h[t] with 1-w[t]

Simulate dw/dt using potassium gate dynamics (n).

After these two simplifications:

$$(V, m, h, n) \longrightarrow (V, w)$$
Advantage: 2-dim

The simplified model is <u>not pretty</u> ...

The w dynamics depend on: $\alpha_n(V) = \frac{0.1 - 0.01(V + 65)}{e^{1 - 0.1(V + 65)} - 1}$

 $\beta_n(V) = 0.125e^{(-V-65)/80}$

Instead, consider an even simpler model ...

Goal:

mimic these spiking dynamics ...

allow notions of biology to become more abstract.

FitzHugh-Nagumo model

Consider instead the system:

$$\frac{dv}{dt} = v - \frac{1}{3}v^3 - w + I$$
$$\frac{dw}{dt} = \frac{v - a - bw}{\tau}$$

The FitzHugh-Nagumo model

Two variables: (v, w)

v = membrane potential w = recovery variable (think: slow gating variable)

Parameters:

I = input current a, b, τ

Q: Does this model capture the spiking dynamics?

FitzHugh-Nagumo model

Let's analyze this model.

- To do so, we'll use XPPAUT.

http://www.math.pitt.edu/~bard/xpp/download.html

If you'd like, please download and install this software ... and download the model:

http://math.bu.edu/people/mak/samsi/FHN.ode

FitzHugh-Nagumo model: FHN.ode

#The FitzHugh-Nagumo Model #Define the fixed parameters. a=0.7 b=0.8 tau=12.5 #Define the model equations. $dV/dt = V - V^{3/3} - W + I$ dW/dt = (V + a - b*W)/tau#Define the initial conditions. V(0)=0.1 W(0)=0.0 #Define the adjustable parameters. param I=0 @ Total=500 @ dt=0.005 @ maxstor=500000

done

comment

Set model parameters

Define model dynamics

Set the initial conditions.

Specify one parameter to adjust

Set simulation features.

FitzHugh-Nagumo model

Let's run it in XPPAUT ...

• Locate and open the file *FHN.ode*

00		X XPP Versi	ion 7.0		
ICs BCs	Delay Param Eqns	Data			
Command:					
XPP	-		V vs T 🖌		
Initialconds					
Continue			•		
Nullcline	0.0				
Dir.field/flow	V+0 F				
window/zoom	0.6				
Kinescope	2000				
Graphic stuff	0.4				1
nUmerics	0.0				
File	0,2				1
Parameters	0				
Erase	Ť				
Makewindow	-0,2				
Text,etc					
Sing pts	-0,4				11
Viewaxes	0.0				
Restore	-0,6				1
3d-params	-0.8				
Bndryval					
ar an a tha an a tha	-1 -1 -1				
	0	5	10	15	20
Par/Var?		Par/Var?		Par/Var?	
	90		90		90

FitzHugh-Nagumo model: V vs t

Q: What is the parameter I? Param [box at top]

Q: How do the dynamics behave?

FitzHugh-Nagumo model: V vs w

Let's plot the phase space. Viewaxes - 2D

FitzHugh-Nagumo model: nullclines

FitzHugh-Nagumo model: increase I

Let's increase the parameter I (i.e., deliver more "drive").

FitzHugh-Nagumo model: increase I

FitzHugh-Nagumo model

Remember our reduced Hodgkin-Huxley model dynamics:

Goal: mimic these dynamics

The FHN model qualitatively captures the reduced HH dynamics ...

FitzHugh-Nagumo model: two values of I

We've considered FHN dynamics at two values of I:

 $\mathbf{I} = \mathbf{0}$

Dynamics approach ...

... a fixed point. subthreshold "rest" state

Q: What happens in between?

I = 0.5

Dynamics approach ...

We can compute a bifurcation diagram in XPPAUT – a multi-step process.

1. Set I = 0.

2. Run the dynamics many times to approach the fixed point.

-Initialconds - Go

Then: *— Initialconds - Last* Repeat!

Use the last values of (v,w) and continue simulation.

3. Run AUTO

-*File* - *Auto*

This screen should appear:

4. Follow the fixed points.

Looks for terminal print out ...

```
Used 7 constants and 111 symbols

XPPAUT 7.0 Copyright (C) 2002-now Bard Ermentrout

TrueColor visual: no colormap needed

BR PT TY LAB PAR(1) = 12-NORM U(1) U(2)
```

вк	PT	I Y	LAB	PAR(1) -	LZ-NURM	0(1)	0(2)
1	1	EP	1	0.000000E+00	1.352139E+00	-1.199408E+00	-6.242600E-01
1	7	HB	2	3.313016E-01	1.023602E+00	-9.674632E-01	-3.343290E-01
1	16	HB	3	1.418717E+00	2.297925E+00	9.674697E-01	2.084337E+00
1	18	EP	4	2.137627E+00	2.973547E+00	1.399077E+00	2.623846E+00

AUTO detects two "HB" = Hopf bifurcations

At these HBs, a limit cycle appears / disappears ...

We can tract the limit cycles that emerge ...

5. Grab a HB.

6. Follow the periodic orbit.

IN AUTO: Run - Periodic orbit

Note: must grab HB first!

FitzHugh-Nagumo model

In this way, we develop a deep understanding of FHN dynamics ...

"As I increases, the transition from rest to spiking occurs at a (subcritical) Hopf bifurcation."

It's not "too difficult" to examine model dynamics in XPPAUT.

One last thing ...

In the past two days, we've considered two approaches to "understand" neuronal spiking data:

Statistical: firing rate, ISI, GLM, ...

Advantage: direct link to data. Disadvantage: no biophysics.

Mathematical: I&F, Hodgkin-Huxley, FHN.

Advantage: incorporates biophysics / dynamics. Disadvantage: indirect links to data.

Q: Which approach is best?

- **Q**: Can we combine neuronal data and "expert knowledge" as captured in a biophysical/dynamics model to understand the brain?
- A: Data assimilation. <u>Example</u> [Meng, Kramer, Eden, 2011]

Given data (spike times):

And given a model: (Hodgkin-Huxley)

$$C \frac{dV}{dt} = I_{\text{input}}(t) - \overline{g}_{\text{K}} n^4 (V - V_{\text{K}}) - \overline{g}_{\text{Na}} m^3 h(V - V_{\text{Na}}) - \overline{g}_{\text{L}}(V - V_{\text{L}})$$
$$\frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_n(V)}$$
$$\frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_m(V)}$$
$$\frac{dh}{dt} = -\frac{h - h_{\infty}(V)}{\tau_h(V)},$$

Q: Can we estimate the (hidden) model states (V,n,m,h) and parameters?

A: Maybe ... consider a <u>particle filter</u>.

Each particle represents possible values for hidden quantities.

As time evolves, keep those particles most consistent with the data.

Example particle evolution.

Distribution of two parameter values $(g_{K,} g_{Na})$ for each particle:

Before observing any data a non-informative prior

Particle: (g_K, g_{Na})

True value

Observe data ...

Only a subset of (g_{K}, g_{Na}) survive.

 (g_{K}, g_{Na}) consistent with observed spike times

 (g_{K}, g_{Na}) inconsistent with observed spike times

Continue to observe data ...

A manifold of parameter pairs consistent with observed data ...

Many pairs of (g_{K}, g_{Na}) that produce spike times consistent with the

In simulation,

-often works well.

In practice,

- -many challenges exist.
- -A big one: models are inadequate ...

Summary

Many approaches to analyze spike train data ...

- -Statistical
- -Mathematical (biophysical / dynamical)

Today: an introduction to some mathematical modeling approaches,

- –I&F, LIF
- -Hodgkin-Huxley
- -FitzHugh-Nagumo

References (a subset)

Koch, Biophysics of Computation
Izhikevich, Dynamical Systems in Neuroscience
Ermentrout and Terman, Mathematical Foundations of Neuroscience
Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems (XPPAUT)

Thanks

<u>Workshop Organizers:</u> Hongtu Zhu, Thomas Witelski

Organizing Committee:

Ciprian Crainiceanu, Carina Curto, Bard Ermentrout, Timothy Johnson, Robert Kass, Thomas Nichols, Liam Paninski, Daniel Rowe, Victor Solo, Anuj Srivastava, Bin Yu

Collaborators:

U. Eden, J. Burke, L. Meng, M. Whittington, S. Middleton