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Exercises Day 1 Back

1. Galois groups

General topological groups (relatively straightforward; skip if you know this story).

Recall that a topological group is a group G with a topology so that the multiplication map
G×G→ G and the inversion map G→ G are both continuous.

Let G be a topological group.

(1) Let H be a subgroup of G.

(a) Show that H is open if and only if it contains a neighborhood of one of its points.

(b) If H is open, show that it is also closed.

(c) If H is closed and of finite index, show that H is also open.

(2) Let C be the connected component of the identity element e of G.

(a) Show that C is a subgroup of G.

(b) A space is totally disconnected if the connected component of every point is that
point. Show that G is totally disconnected if and only if C = {e}.

(3) Now assume that G is compact, and that H ⊆ G is an open subgroup.

(a) Show that H has finite index.

(b) Show that H contains a normal open subgroup.

Profinite groups, Krull topology on Galois groups

(4) Show that any finite-index subgroup of Zp or Z×
p or Ẑ is automatically open.

(5) Prove that Ẑ =
∏

ℓ prime Zℓ as topological groups (or as even rings).

(6) LetH = Z be the subgroup ofGFp generated by the Frobenius automorphism α 7→ αp.

What is the subfield of Fp fixed by H?
1
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(7) Let G =
∏

n≥0 Z/2Z with its product topology.

(a) Show that G is a profinite group.

(b) Construct a Galois extension L of Q so that Gal(L/Q) ≃ G.

In contrast to (4), one can show that the group G has dense index-2 subgroups (which
are therefore not open).

(8) Find a Galois extension Q with Galois group isomorphic to Zp. Can you find a Galois
extension of Q with Galois group Zp×Zp? What about Z/pZ×Z/pZ?

∏
n≥0 Z/pZ?

A 2003 theorem of Nikolov and Segal (generalizing an earlier theorem of Serre for pro-p
groups) says that any finite-index subgroup of a topologically finitely generated profinite
group is automatically open.

Sundries

(9) Tame inertia of a p-adic local field: Fix a p-adic local field K with residue field k.

A finite extension L/K of a p-adic local field K is tamely ramified if it is ramified
and its ramification index e = e(L/K) is prime to p. It is at most tamely ramified if
it is either unramified or tamely ramified.

What does it mean for an infinite extension L/K to be (at most) tamely ramified?

(a) Let M/K be an unramified algebraic extension and L/K any finite extension.
Show that e(LM/M) = e(L/K).

(b) Let Kur be the maximal unramified extension of K, and fix a uniformizer π of K.
Show that a tamely ramified finite extension L of Kur is a Kummer extension:
there exists n > 1 coprime to p such that L = Kur(π1/n).

In particular, such an extension is automatically Galois. What is Gal(L/Kur)?

(c) Deduce that if L/Kur andM/Kur are two finite tamely ramified extensions, then
so is LM/Kur.

(d) Conclude that any extension L/K has a maximal at-most-tamely-ramified
subextension Ltr. (Hint: To show that at-most-tamely-ramified extensions be-
have well in composita, translate up to Kur.)

(e) Let Ktr be the maximal at-most-tamely-ramified extension of K, containing Kur

as a subextension. Show that the tame inertia ItrK := Gal(Ktr/Kur) is procyclic,
isomorphic to

∏
ℓ̸=p Zℓ.

To continue this line of investigation, see (29) and (31).

The kernel of the map IK → ItrK is the wild inertia Iwild
K := Gal(K/Ktr). One can

show that the wild inertia is pro-p, so that it is the (normal, hence unique) p-Sylow
subgroup of IK . In other words, the degree [Ltr : Lur] in every finite Galois L/K is
exactly the prime-to-p part of e(L/K). It follows that GK is a solvable group.

(10) Unramified elements of p-adic local field: Let Qp be a p-adic local field,

and α ∈ Qp an algebraic element. Call α unramified if Qp(α) is an unramified
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extension of Qp. Can you find a simple criterion determining whether α is an unram-
ified element or not? What if α is a tamely ramified element, as in (9)? Open-ended
question; tell us if you come up with something good.

(11) Chebotarev density theorem: The classical theorem of Chebotarev is about the
density of primes whose Frobenius elements fall into particular conjugacy classes in
a Galois group. Specifically, let L/K be a finite Galois extension of number fields,
and C ⊂ Gal(L/K) a conjugacy class. The theorem states that the set of primes of
K that are unramified in L and whose Frobenius elements fall into C is #C

#Gal(L/K)
.

In the context of Galois representations, we want to know about the density of Frobe-
nius conjugacy classes at unramified primes in an infinite Galois group— a completely
different use of the word density. Use the classical Chebotarev density theorem to
deduce the following useful statement:
For a number field K and a finite set S of primes of K, the conjugacy classes of
Frobenius elements at primes not in S is dense in GK,S.

(12) Absolute values: An absolute value on a field K is a map | · | : K → R≥0 that’s
nondegenerate (|x| = 0 if and only if x = 0), multiplicative (|xy| = |x||y|), and
subadditive (triangle inequality: |x+ y| ≤ |x|+ |y|).
An absolute value induces a metric topology on K.

(a) Show that the map |x| =

{
0 if x = 0

1 otherwise

}
is an absolute value on any field.

What topology does it induce?

(b) Let K is a p-adic local field and v : K → Z ∪ {∞} its valuation. For any
a ∈ (0, 1) show that |x| = av(x) is an absolute value on K that is ultrametric
(also, nonarchimedian): it satisfies |x+ y| ≤ max{|x|, |y|}.

(c) Let K be a field, and | · |1 and | · |2 absolute values on K. Prove (or look up a
proof) that the following are equivalent.

(i) The absolute values | · |1 and | · |2 induce the same topology on K.

(ii) The sets U1 := {x ∈ K : |x|1 < 1} and U2 := {x ∈ K : |x|2 < 1} coincide.
(iii) There exists a positive real number c so that |x|c1 = |x|2 for all x ∈ K.

If these properties are satisfied, then | · |1 and | · |2 are said to be equivalent.

In fact, you can relax property (ii) above to (a priori) one-sided containment.
See Corollary 2.4 in Keith Conrad’s writeup Equivalence of absolute values.

Ostrowski’s theorem (generalized) says that if K is a number field, then the inequiv-
alent absolute values on K are exactly those induced by the valuations corresponding
to the prime ideals K and the archimedian absolute values induced from embeddings
K ↪→ R and pairs of conjugate embeddings K ↪→ C. See, for example, Conrad’s
writeup Ostrowski for number fields.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/equivabsvalues.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/ostrowskinumbfield.pdf
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Exercises Day 2 Back

2. Galois representations

Recommendation: start with (17), (19), and maybe (18). Move on to (25)–(28). Maybe
visit (33) at the end. Then come back.

Representations over a field

(13) Let F be a field, V an F -vector space of dimension n.
Let G be a group and ρ : G→ GL(V ) be a representation.

(a) Let D be the set of all endomorphisms of the representation (ρ, V ). Then D is
naturally an F -subalgebra of EndF V . Show that if V is irreducible, then D is
a division ring. (This is Schur’s lemma.)

(b) Let R be the F -subspace of EndF V generated by the image of ρ. Show that R
is also an F -subalgebra of EndF V . Show that D is the centralizer Z(R) of R
inside EndF V .

(The centralizer Z(R) of R is the set of elements that commute with R.)

(c) The double centralizer theorem says that if V is irreducible, then R = Z(D) as
well. Prove this, look up a proof, or simply take it on faith.

(d) Assume that V is irreducible. Show that R = EndF V if and only if D = F .
Show that both of these hold when F is algebraically closed.

(14) Base field extension; absolute irreducibility: Continue with the notation of (13).
Let E be an extension of F , and let (ρE, VE) be the representations ρE : G→ GLE(V⊗FE)
obtained by composing ρ with the natural injection GLF (V )→ GLE(V ⊗E). Denote
by RE and DE the R and D corresponding to this representation over E.

(a) Show that dimE RE = dimF R and dimE DE = dimF D.

(b) Show that the following properties are equivalent.

(i) ρE is irreducible for all extensions E of F

(ii) ρE is irreducible for all finite extensions E of F

(iii) ρE is irreducible for E an algebraic closure of F .

(iv) R = EndF V .

If these properties hold, V is said to be absolutely irreducible.

(c) Give an example of a representation of dimension 2 that is irreducible but not
absolutely irreducible. Show that in any such example, D is a commutative field,
namely a quadratic extension of F ; and if E = D, then ρE is not irreducible.

(15) Strong irreducibility: Let G be a compact topological group and (ρ, V ) a repre-
sentation of G. We say that V is strongly irreducible if the restriction of ρ to any
open subgroup of G is still irreducible. Give an example of a strongly but not ab-
solutely irreducible representation, and of an absolutely but not strongly irreducible
representation.
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Artin representations

(16) Artin representations have finite image: For any fieldK, show that a continuous
representation ρ : GK → GLn(C) has finite image as follows.

(a) First prove the following

Lemma.
There is a neighborhood U of 1 in GLn(C) that contains no nontrivial subgroups.

Here’s how: consider exp :Mn(C)→ GLn(C) defined by the power series

expA =
∑
n≥0

An

n!
.

This is a diffeomorphism from an open neighborhood W of 0 in Mn(C) to an
open neighborhood of 1 in GLn(C).

(i) Show that if A,B ∈Mn(C) commute, then exp(A+B) = exp(A) exp(B).
(Don’t get stuck on this one — just assume it and move on if necessary.)

(ii) Now take Br(0) (a ball of radius r around 0) contained in W , and let
U := exp

(
Br/2(0)

)
. Suppose U contains a subgroup of GLn(C) with a

nontrivial element g = exp(A) for some A in Br/2(0). Find n so that
gn ̸∈ U to get a contradiction.

(b) Use the lemma to finish the proof!

(17) A one-dimensional Artin representation: Let L = Q(
√
d) be a quadratic ex-

tension of Q. Define the Artin representation

χ : GQ → Gal(L/Q) ≃ {±1} ⊂ GL1(C).
Suppose p is a prime unramified in L (assume that p ∤ 2d to be safe).
What is χ(Frobp)?

(18) One-dimensional Artin representations of GQ and Dirichlet characters:
More generally, let χ : GQ → C× be a character (continuous, of course!). Show
that there is a Dirichlet character ψ so that χ(Frobp) = ψ(p) for all but finitely many
primes p.

(19) A two-dimensional Artin representation: Let L/Q be a degree-6 extension,
the splitting field of an irreducible monic cubic polynomial f(x) in Z[X], so that
Gal(L/Q) ≃ S3.

Let σ : S3 → GL2(C) be the irreducible two-dimensional representation. (This is the
standard representation of S3, which you can realize as follows. Let S3 act on C3 by
permuting the coordinates, and take the subrepresentation on the plane x+y+z = 0.)

We thus obtain the Artin representation

ρ : GQ → Gal(L/Q) ≃ S3
σ→ GL2(C).

Determine trρ(Frobp) for p unramified in L; it will depend on some property of f(x)
relative to p.
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To fix ideas, you may assume that f(x) = x3 − x2 + 1 if you like. (In this case
you may eventually want to explore the connection between ρ and the modular form
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/1/b/a/.)

(20) Following from (19), what can you say more generally about the case of irreducible f
of degree n? Keith Conrad’s writeup Factoring after Dedekind may be helpful. Or
see Tim and Vladimir Dokchitser’s Identifying Frobenius elements in Galois groups
from 2010.

Brauer-Nesbitt theorem

(21) Give an example of two nonisomorphic representations of a group over a characteristic-
zero field that have the same trace function.

(22) Give an example of two nonisomorphic semisimple representations of a group over a
field of characteristic p with the same trace function.

(23) The full Brauer-Nesbitt theorem says that if ρ1, ρ2 : G→ GLn(F ) are two semisimple
representations of a group G over any field F , then ρ1 ≃ ρ2 if and only if we have

charpoly
(
ρ1(g)

)
= charpoly

(
ρ2(g)

)
in F [X]

for every g ∈ G.
If charF = 0, deduce that it suffices to know trρ1(g) = trρ2(g) in F for every g ∈ G.
Can you ever use this trace version if charF = p?

Invariant lattice in a representation of a compact group over a p-adic local field

(24) Let F be a finite extension of Qp, O its ring of integers, and V a finite-dimensional
vector space over F . A lattice Λ in V is a finite O-submodule that generates V as a
vector space.

(a) Show that if Λ is a lattice, then there is a basis of V such that Λ is the set of
vectors that have coefficients in O in that basis.

(b) Show that if Λ and Λ′ are lattices, so is Λ + Λ′.

(c) Let (ρ, V ) be a continuous representation of a compact topological group G.
Show that there is a lattice in V stable by ρ(G).

Cyclotomic characters

(25) What is the p-adic cyclotomic character on GK for K = R? Explain.

(26) (a) How big is the extension F7(ζ19)/F7?
Describe the image of its Galois group in (Z/19Z)×.

(b) Describe the p-adic cyclotomic character on GK for K = Fℓ. (Here ℓ ̸= p.)

(27) Describe the p-adic cyclotomic character on GK for K a finite extension of Qℓ?
(Here again ℓ ̸= p.)

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/1/b/a/
https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf
https://arxiv.org/abs/1009.5388
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(28) Describe the p-adic cyclotomic character on GK for K a number field.

(29) More tame inertia: Let K be a p-adic local field and k its residue field; let ItrK be
the tame inertia of K as in (9). Show that the action of Gk ≃ Gal(Kur/K) induced
by the exact sequence

1→ ItrK → Gal(Ktr/K)→ Gk → 1

is by the ℓ-adic cyclotomic character Gk → Z×
ℓ on the the ℓ-component of ItrK .

This is sometimes captured in the notation ItrK =
∏

ℓ̸=p Zℓ(1).

(30) (Don’t get stuck on this one — come back to it if you need to!)
Consider the group homomorphism χ : Z→ Z×

p defined by χ(1) = α in Z×
p .

(a) For which α does χ extend to a continuous character Zp → Z×
p ?

(b) For which α does χ extend to a continuous character Zℓ → Z×
p for ℓ ̸= p?

(c) For which α does χ extend to a continuous character Ẑ→ Z×
p ?

(31) LetK be a p-adic local field. Show that an unramified n-dimensional representation of
GK is determined by a single matrix in GLn(Qp) with invertible integral eigenvalues.

What can you say about a tamely ramified representation of GK?

3. Tate modules of elliptic curves

(32) Isogenies as rational maps

Let K be a field of characteristic ̸= 2, 3. You may assume that all the elliptic curves
we consider have a simplified Weierstrass equation of the form

y2 = x3 + Ax+B.

Consider an isogeny α : E1 → E2. In homogeneous coordinates it is of the form
α([X : Y : Z]) = [αX : αY : αZ ] with αX , αY , αZ . . . . On the affine piece E1 \ {O} we
have

α(x, y) = (r1(x, y), r2(x, y)), with r1, r2 ∈ K(x, y).

(a) Show that

(3.0.1) r1(x, y) =
p1(x) + p2(x)y

p3(x) + p4(x)y
, with pi ∈ K[x].

(b) Refining this, show that

r1(x, y) =
q1(x) + q2(x)y

q3(x)
, with qi ∈ K[x].

(Hint: Multiply numerator and denominator of Eq. (3.0.1) by p3(x)− p4(x)y.)
(c) Use the multiplication by −1 on E1 and the fact that α is a group homomorphism

to deduce that r1(x, y) = r1(x,−y) and therefore that q2 = 0.
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(d) Proceed with r2(x, y) in a similar manner and conclude that α is given by the
standard form

α(x, y) =

(
u(x)

v(x)
,
s(x)

t(x)
y

)
with u, v, s, t ∈ K[x] such that u, v are relatively prime, and s, t are relatively
prime.

(e) With the notation above, let f1 ∈ K[x] be such that E1 is given by y2 = f1(x).
Show that v3 | t2 and t2 | v3f1. Conclude that v and t have the same roots in K.

(f) (This one’s a bit nasty. Feel free to skip, or have a look at Corollary 5.23 of
Andrew Sutherland’s 2015 notes on elliptic curves, the section on isogenies.)

Show that the kernel of α consists of the point at infinity O together with the
set

kerα = {O = [0: 1 : 0]} ∪ {[x0 : y0 : 1] ∈ E(K) : v(x0) = 0}.
Conclude that kerα is finite.

(g) Take it for granted that, given the standard form of α described above, the
degree of α equals max{deg(u), deg(v)}, and that α is separable if the derivative
(u/v)′ is nonzero.

Let p > 2 be prime. Find the standard form of the Frobenius isogeny F : E → E,
F (x, y) = (xp, yp) and use it to: determine the degree of F , show that F is
inseparable, and show that 1− F is separable.

Tate modules of elliptic curves over arbitrary fields

(33) Let E1 and E2 be two elliptic curves over a field K, and let α : E1 → E2 be an
isogeny (nonzero by definition) defined over an extension L of K.

Fix a prime p; feel free to assume that p ̸= charK.

(a) Show that α induces aGL-equivariant embedding of Tate modules Tp(E1) ↪→ Tp(E2).

(b) Show by example that this embedding need not be surjective.

(c) Show that in any case α induces an isomorphism of GL-representations

Tp(α) : Vp(E1) −→∼ Vp(E2).

(d) Show that the resulting map Hom(E1, E2)→ Hom
(
Tp(E1), Tp(E2)

)
is an injec-

tive homomorphism of abelian groups.

More precisely, for every extension L of K, isogenies defined over L induce GL-
equivariant maps on Tate modules: HomL(E1, E2)→ HomGL

(
Tp(E1), Tp(E2)

)
.

(In fact, these maps stay injective when Hom(E1, E2) is replaced by Hom(E1, E2)⊗Zp;
see Silverman, Theorem III.7.4.)

(e) Finally, if E1 = E2 = E and L is an extension of K, then we get a ring homo-
morphism EndL(E) ↪→ EndGL

(
Vp(E)

)
.

(34) Now let E be an elliptic curve defined over K.
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(a) Suppose that Vp(E) is absolutely irreducible as a GL-representation for some
extension L of K. Show that any isogeny from E to E defined over L is actually
defined over K.

(b) If Vp(E) is absolutely irreducible as aGK-representation, show that EndK(E) = Z.
(c) If Vp(E) is strongly absolutely irreducible as a GK-representation (that is, Vp(E)

stays absolutely irreducible when restricted to GL for any finite extension L of
K), show that EndK̄(E) = Z.

(d) Show that the converse (that is, EndK(E) = Z means Vp(E) is absolutely irre-
ducible as a GK-representation) is false in general.

However, it’s true for number fields, by a theorem of Serre. In particular,
ifK = Q, then Vp(E) is an absolutely irreducibleGQ-representation, as EndQ(E) = Z.

More on this topic next time!

Exercises Day 3 Back

4. Tate modules of elliptic curves, continued

(35) Weil pairing, complex version

(For the purposes of this question only, you may assume that every elliptic curve is
defined over the complex numbers and use the complex uniformization E(C) ≃ C/Λ
for some lattice Λ ⊂ C. Note however that all the definitions and statements from
this question hold for elliptic curves over arbitrary fields—obviously, different proofs
may be needed then.)

Let Λ = Zω1⊕Zω2 be a lattice in C with ω1/ω2 ∈ H and let E = C/Λ be the complex
elliptic curve it defines. Let N ≥ 1.

(a) Fix P,Q ∈ E[N ]. Show that there exists γ ∈M2(Z/NZ) such that(
P
Q

)
= γ

(
ω1

N
+ Λ

ω2

N
+ Λ

)
.

(b) Set

eN(P,Q) = e(2πidet γ)/N .

Show that eN is independent of the various apparent choices, including the choice
of basis {ω1, ω2} of Λ with ω1/ω2 ∈ H.

(c) Show that eN is a bilinear, alternating, non-degenerate pairing (part of the work
is figuring out what these words should mean in this setting, keeping in mind
that E[N ] is additive and µN is multiplicative):

eN : E[N ]× E[N ] −→ µN .

such that for any integers N and M we have

eN(MP,Q) = eMN(P,Q) for all P ∈ E[MN ], Q ∈ E[N ].
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(d) Let ψ : E1 → E2 be an isogeny. Show that

eN(ψ(P ), Q) = eN(P, ψ
∨(Q)) for all P ∈ E1[N ], Q ∈ E2[N ].

(e) Show that there is an ℓ-adic Weil pairing

e : Tℓ(E)× Tℓ(E) −→ Tℓ(µ) := lim←−
n

µℓn

that is bilinear, alternating, and nondegenerate.

(f) Let ψ : E1 → E2 be an isogeny and let ψℓ : Tℓ(E1)→ Tℓ(E2) denote the induced
map on Tate modules. Then

e(ψℓ(v), w) = e(v, ψ∨
ℓ (w)) for all v ∈ Tℓ(E1), w ∈ Tℓ(E2).

(g) Let ψ ∈ End(E) and let ℓ be prime. Let ψℓ ∈ EndZℓ
(Tℓ(E)) be the induced map

on the Tate module. Show that

det(ψℓ) = deg(ψ), Tr(ψℓ) = 1 + deg(ψ)− deg(1− ψ).

(Hint : Choose basis vectors v1, v2 for Tℓ(E) and use the properties of the Weil
pairing to show that e(v1, v2)

deg(ψ) = e(v1, v2)
det(ψℓ). For the statement about

the trace, show that the relevant claim relating trace and determinants holds for
any 2× 2 matrix.)

(36) Bad reduction examples

(a) Show that E/Q5 given by y2 = x3 − x2 + 35 has split multiplicative reduction.

(b) Show that E/Q7 given by y2 = x3−x2+35 has nonsplit multiplicative reduction.
Find an extension K of Q7 over which E acquires split multiplicative reduction.

(c) Show that E/Q5 given by y2 = x3 + 5 has additive reduction. Find an exten-
sion K of Q5 over which E acquires good or split multiplicative reduction.

[One possibility is to follow the proof of the Semistable Reduction Theorem
(Silverman, Proposition VII.5.4).]

Isomorphic Tate modules vs. isogenous curves

(37) Over finite fields: Let E1 and E2 be two elliptic curves over a finite field K = Fp.
Show that the following are equivalent.

(a) Vℓ(E1) ≃ Vℓ(E2) as GK-representations for one prime ℓ ̸= p

(b) Vℓ(E1) ≃ Vℓ(E2) as GK-representations for all primes ℓ ̸= p

(c) #E1(K) = #E2(K)

Does the same argument work over K = Fp2?
A theorem of Tate (see “Endomorphisms of abelian varieties over finite fields,” In-
vent. Math. 1966) says that the equivalence holds over any finite field, and that these
properties are equivalent to E1 and E2 being isogenous.

(38) Over number fields: Let E1 and E2 be two elliptic curves over a number field K.
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(a) Show that the following are equivalent.

(i) Vℓ(E1) ≃ Vℓ(E2) as GK-representations for one prime ℓ.

(ii) Vℓ(E1) ≃ Vℓ(E2) as GK-representations for all primes ℓ.

(iii) For almost all finite places v of K for which E1 and E2 have good re-

duction at v, we have #Ẽ1,v(kv) = #Ẽ2,v(kv). Here Ei,v is Ei over the

completion Kv, and Ẽi,v is Ei over the residue field kv.

(b) Show that these properties hold if E1 and E2 are isogenous over K.

A theorem of Faltings tells us that these properties hold if and only if E1 and E2

are isogenous.

(39) Over p-adic local fields: Show that there exist two elliptic curves E1 and E2

over Qp whose Galois representations Vℓ(E1) and Vℓ(E2) are isomorphic but that are
not isogenous over Qp. Proceed as follows.

(a) Let E1 and E2 be two curves over Qp both with good reduction. Show that

if #Ẽ1(Fp) = #Ẽ2(Fp), then Vℓ(E1) ≃ Vℓ(E2) as representations of GQp for all
primes ℓ.

(b) Deduce that there are only a finite number of isomorphism classes of Galois
representations of GQp of the form Vℓ(E) when E runs over all elliptic curves
over Qp with good reduction.

(c) Show that the set of Qp-isomorphism classes of elliptic curves having good re-
duction is uncountable.

(d) Show that the isogeny class (over a fixed base field) of an elliptic curve has at
most countably many isomorphism classes of elliptic curves.

(e) Conclude.

Surprisingly, if one assumes that E1, E2 over Qp do not have good reduction but do
have isomorphic Galois representations, then they are in fact isogenous. This is a
theorem of Serre and Tate.

(40) Tate modules for ECs with multiplicative reduction over p-adic local fields:
Tate’s p-adic uniformization (stated below in full; see Silverman II) tells us that, given
an elliptic curve E over a p-adic local fieldK with split multiplicative reduction, there
is a unique nonzero q in the maximal ideal of K so that there is an isomorphism

E(K) ≃ (K)×/qZ

commuting with the action of GK .

Now let E be such an elliptic curve over such a K, and fix a prime ℓ.

(a) Compute E[ℓ] and E[ℓn].

(b) Compute Tℓ(E) with its GK-action.

(c) Assume ℓ ̸= p.
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(i) Show that Tℓ(E) is at most tamely ramified.

(ii) Consider the representation ρ̄ : GK → GL2(Fℓ) carried byE[ℓ] = Tℓ(E)⊗Fℓ.
Under what conditions is ρ̄ unramified?

(iii) What is the connection with Ribet’s level-lowering theorem discussed by
Samir and Samuele?

(d) Assume K = Qp. What can you say about Tp(E)? Must it be wildly ramified?
Is it possible that E[p] = Tp(E)⊗ Fp is tamely ramified?

(e) Start over, and now suppose that E is isomorphic to Eq defined below only
over L, where L/K is the unique unramified extension of K, and not over K.
Anything you can say?

Theorem (Tate p-adic uniformization).
Let K be a finite extension of Qp, with absolute value | · |.

(a) If q ∈ K× satisfies |q| < 1, then the equation

Eq : y
2 + xy = x3 + a4(q)x+ a6(q),

where a4(q) = −5s3(q) and a6(q) = − 1
12

(
5s3(q)+7s5(q)

)
for sk(q) =

∑∞
n=1

nkqn

1−qn ,

defines an elliptic curve over K with discriminant ∆(Eq) = q
∏

n≥1(1 − qn)24

and j-invariant j(Eq) =
1
q
+ 744 + 196884q + · · · .

(b) There is an isomorphism (K)×/qZ → Eq(K) that commutes with the action
of GK. In particular, this gives an isomorphism L×/qZ → Eq(L) for any alge-
braic extension L of K.

(c) If E is an elliptic curve over K with |j(E)| > 1, then there is a unique q ∈ K×

with |q| < 1 such that E ≃ Eq over K. Moreover, q ∈ K×.

(d) In the previous part, E ≃ Eq over K if and only if E has split multiplicative
reduction.

5. Modular forms and Galois representations

(41) Eisenstein series: For an integer k > 2, consider

Gk(z) =
∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)k
.

(a) Show that the series converges absolutely for all z ∈ H.

(b) Conclude that Gk : H→ C is holomorphic.

(c) Show that if k is odd then Gk is identically zero.

(d) The behavior of Gk at i∞ is governed by the summands with m = 0, that is

Gk(i∞) =
∑

n∈Z\{0}

1

nk
= 2ζ(k).
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(e) Show that

Gk(z + 1) = Gk(z) and Gk(−1/z) = zkGk(z)

for all z ∈ H and conclude thatGk is a modular form of weight k on Γ0(1) = SL2(Z).
(f) Take for granted the crazy-looking infinite product expansion

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
.

Show that

(5.0.1) π cot(πz) =
1

z
+

∞∑
n=1

(
1

z + n
+

1

z − n

)
=

∑
n∈Z

1

z + n
.

(Hint: take logarithmic derivative.)

(g) Using the definition of the cotangent function, show that

(5.0.2) π cot(πz) = πi− 2πi
∞∑
n=0

qn,

where, as usual, q = e2πiz.

(h) Combining Eqs. (5.0.1) and (5.0.2), show that for any k ≥ 2 we have∑
n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∞∑
n=1

nk−1qn,

where q = e2πiz with z ∈ H.

(i) Show that for any k > 2 even

Gk(z) = 2ζ(k) +
2(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n) q
n,

where σk−1(n) =
∑

d|n d
k−1.

(j) What is the ℓ-adic Galois representation of GQ attached to Gk?

(42) (a) The Hecke operator Tn (n ∈ N) on Sk(1,1) is given on Fourier expansions by

Tnf =
∞∑
m=1

∑
d|gcd(m,n)

dk−1amn/d2q
m.

Let f ∈ Sk(1,1), f(z) =
∑∞

n=1 anq
n, be an eigenvector for all Hecke operators

Tn (n ∈ N) with eigenvalues λn. Show that a1 ̸= 0 and an = λna1 for all n ≥ 1.

(The same statement holds for newforms f ∈ Sk(N, ε).)
(b) Let V ⊂ Mk(Γ1(N)) be a subspace that is stable under the action of Tp for

all p ∤ N . Let T denote the Z-subalgebra of End(V ) generated by the Hecke
operators Tp with p ∤ N . Let TC = T⊗ C. Show that

TC × V → C
given by ⟨T, f⟩ = a1(T (f)) is a perfect pairing.
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Show that the two resulting isomorphisms TC → V ∨ and V → T∨
C are TC-

equivariant.

(c) Show that T has finite Z-rank.
(d) Let f ∈ Mk(Γ1(N)) be an eigenvector for all Hecke operators Tp with p ∤ N ,

with eigenvalues ap, and let

Kf = Q
(
{ap : p ∤ N}

)
.

Show that Kf is a number field.

(43) Modular forms for Γ1(N): Given an integer N ≥ 1, consider the subgroup

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
.

Let Mk(Γ1(N)) denote the vector space of holomorphic functions f : H→ C that are
holomorphic at the cusps and satisfy

f |k[α] = f for all α ∈ Γ1(N),

where the slash operator is defined by

f |k[α](z) = det(α)k/2(cz + d)−kf(α · z), α · z =
(
a b
c d

)
· z = az + b

cz + d
.

(a) Show that Γ1(N) is a normal subgroup of Γ0(N).

(b) Show that f |k[α] ∈Mk(Γ1(N)) for all f ∈Mk(Γ1(N)) and all α ∈ Γ0(N).

(c) Fix d ∈ (Z/NZ)×. Show that f 7→ ⟨d⟩f := f |k[α] for any α =

(
a b
c δ

)
∈ Γ0(N)

with δ ≡ d (mod N), gives a well-defined map

⟨d⟩ : Mk

(
Γ1(N)

)
→Mk

(
Γ1(N)

)
.

(d) Show that

Mk

(
Γ1(N)

)
=

⊕
ε

Mk(N, ε),

where the sum ranges over all Dirichlet characters ε modulo N .

(Hint: for any ε, show that

πε =
1

φ(N)

∑
d∈(Z/NZ)×

ε−1(d)⟨d⟩

defines a projection operator πε : Mk(Γ1(N))→Mk(N, ε).)

(44) Induction of a character: Let G be a group, and H ⊂ G a subgroup of index 2.
Let F be a field with charF ̸= 2. Let χ : H → F× be a character. Choose c ∈ G−H.

(a) Define cχ : H → F× by cχ(h) = χ(c−1hc) for h ∈ H. Prove that cχ is a character
of H. Prove that cχ is independent of the choice of c.
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(Alternative formulation: For any c ∈ G, set c · χ := cχ as above and show that
this defines an action (right or left?) of G on the set of characters H → F×.
Show that the action factors through G/H.)

Let η : G→ {±1} ⊆ F× be the quadratic character with kernel H.

(b) Show that the following defines a representation ρ : G→ GL2(F ):

g 7→


(
χ(g) 0
0 cχ(g)

)
if g ∈ H

(
0 χ(gc)

cχ(gc−1) 0

)
if g ̸∈ H.

This is the induced representation ρ = IndGH χ.

(c) Show that ρ = IndGH χ satisfies ρ⊗ η ≃ ρ.

(d) If χ ̸= cχ, show that χ does not extend to G and that IndGH χ is an irreducible
representation of G.

(e) On the other hand, if χ = cχ, show that χ extends to all of G, in exactly two
ways. Show that IndGH χ is reducible, a sum of two characters. Which ones?

(f) Show that the complex representation in (19) is of the form IndGH χ for some
G,H, χ. Explain everything.

(45) Continuing the notation for G,F from (44), now suppose that ρ : G → GL2(F ) is
irreducible and satisfies ρ ⊗ η ≃ ρ for some nontrivial character η : G → F×. Show
that ρ is induced from a character of ker η ⊂ G as follows.

(a) Show that η is quadratic.

Set H = ker η. Show that ρ(H) is abelian as follows.

(b) Show that there is a matrix M ∈ GL2(F ) so that Mρ(g)M−1 = ρ(g)η(g) for all
g ∈ G. Up to passing to a quadratic extension of F , you may assume that M is
upper-triangular (why?). Show that M has distinct eigenvalues by considering
g ∈ H and g ̸∈ H.

(c) Conclude that ρ(H) is abelian.

(d) Prove that ρ is induced from a character of H.

(46) A modular eigenform f of weight k ≥ 2 is called CM if there is a Dirichlet character χ
so that ap(ℓ)χ(ℓ) = ap(ℓ) for all but finitely many primes ℓ.

(a) Suppose f has rational coefficients. Let p be a prime not dividing the level
of f . Show that the associated p-adic Galois representation ρf,ℓ is induced from
a character of a quadratic extension K of Q.

(b) Find a CM modular form in weight 2 and level 27. What is the character χ?
What is the field K?
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(47) Let f =
∑
anq

n be an eigenform of some weight k and some level N . Fix a prime p
of the Hecke eigenvalue field K lying over a rational prime p, and reduce f modulo p
to obtain a modular form over a finite extension F or Fp.

(a) Prove that there exists a positive density of primes ℓ such that aℓ(f) ≡ 0 (mod p).
(Hint: Chebotarev density for the mod-p Galois representation attached to f .)

(b) If p ̸= 2, prove that there is also a positive density of primes ℓ such that
aℓ(f) ̸≡ 0 (mod p).

(c) Find a counterexample for p = 2 to (47b).

How much of this can be extended to forms that are not necessarily eigenforms?

(48) Connect the mod-23 representation associated to ∆ to something on these exercises.
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