EXERCISES: GALOIS REPRESENTATIONS AND MODULAR FORMS 2023 SAGA WINTER SCHOOL, CIRM, LUMINY

ALEXANDRU GHITZA AND ANNA MEDVEDOVSKY WITH EMILIANO TORTI (TA)

Exercises Day 1

Exercises Day 2

Exercises Day 3

Exercises Day 1

Back

1. Galois groups

General topological groups (relatively straightforward; skip if you know this story).

Recall that a *topological group* is a group G with a topology so that the multiplication map $G \times G \to G$ and the inversion map $G \to G$ are both continuous.

Let G be a topological group.

- (1) Let H be a subgroup of G.
 - (a) Show that H is open if and only if it contains a neighborhood of one of its points.
 - (b) If H is open, show that it is also closed.
 - (c) If H is closed and of finite index, show that H is also open.
- (2) Let C be the connected component of the identity element e of G.
 - (a) Show that C is a subgroup of G.
 - (b) A space is *totally disconnected* if the connected component of every point is that point. Show that G is totally disconnected if and only if $C = \{e\}$.
- (3) Now assume that G is compact, and that $H \subseteq G$ is an open subgroup.
 - (a) Show that H has finite index.
 - (b) Show that H contains a normal open subgroup.

Profinite groups, Krull topology on Galois groups

- (4) Show that any finite-index subgroup of \mathbb{Z}_p or \mathbb{Z}_p^{\times} or $\widehat{\mathbb{Z}}$ is automatically open.
- (5) Prove that $\widehat{\mathbb{Z}} = \prod_{\ell \text{ prime}} \mathbb{Z}_{\ell}$ as topological groups (or as even rings).
- (6) Let $H = \mathbb{Z}$ be the subgroup of $G_{\mathbb{F}_p}$ generated by the Frobenius automorphism $\alpha \mapsto \alpha^p$. What is the subfield of $\overline{\mathbb{F}}_p$ fixed by H?

- (7) Let $G = \prod_{n>0} \mathbb{Z}/2\mathbb{Z}$ with its product topology.
 - (a) Show that G is a profinite group.
 - (b) Construct a Galois extension L of \mathbb{Q} so that $\operatorname{Gal}(L/\mathbb{Q}) \simeq G$.

In contrast to (4), one can show that the group G has dense index-2 subgroups (which are therefore not open).

(8) Find a Galois extension \mathbb{Q} with Galois group isomorphic to \mathbb{Z}_p . Can you find a Galois extension of \mathbb{Q} with Galois group $\mathbb{Z}_p \times \mathbb{Z}_p$? What about $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$? $\prod_{n>0} \mathbb{Z}/p\mathbb{Z}$?

A 2003 theorem of Nikolov and Segal (generalizing an earlier theorem of Serre for pro-p groups) says that any finite-index subgroup of a topologically finitely generated profinite group is automatically open.

Sundries

(9) Tame inertia of a *p*-adic local field: Fix a *p*-adic local field K with residue field k.

A finite extension L/K of a *p*-adic local field K is *tamely ramified* if it is ramified and its ramification index e = e(L/K) is prime to *p*. It is *at most tamely ramified* if it is either unramified or tamely ramified.

What does it mean for an infinite extension L/K to be (at most) tamely ramified?

- (a) Let M/K be an unramified algebraic extension and L/K any finite extension. Show that e(LM/M) = e(L/K).
- (b) Let K^{ur} be the maximal unramified extension of K, and fix a uniformizer π of K. Show that a tamely ramified finite extension L of K^{ur} is a Kummer extension: there exists n > 1 coprime to p such that $L = K^{\text{ur}}(\pi^{1/n})$.

In particular, such an extension is automatically Galois. What is $Gal(L/K^{ur})$?

- (c) Deduce that if L/K^{ur} and M/K^{ur} are two finite tamely ramified extensions, then so is LM/K^{ur} .
- (d) Conclude that any extension L/K has a maximal at-most-tamely-ramified subextension L^{tr} . (*Hint:* To show that at-most-tamely-ramified extensions behave well in composita, translate up to K^{ur} .)
- (e) Let K^{tr} be the maximal at-most-tamely-ramified extension of K, containing K^{ur} as a subextension. Show that the *tame inertia* $I_K^{\text{tr}} := \text{Gal}(K^{\text{tr}}/K^{\text{ur}})$ is procyclic, isomorphic to $\prod_{\ell \neq p} \mathbb{Z}_{\ell}$.

To continue this line of investigation, see (29) and (31).

The kernel of the map $I_K \to I_K^{\text{tr}}$ is the *wild inertia* $I_K^{\text{wild}} := \text{Gal}(\overline{K}/K^{\text{tr}})$. One can show that the wild inertia is pro-p, so that it is the (normal, hence unique) p-Sylow subgroup of I_K . In other words, the degree $[L^{\text{tr}} : L^{\text{ur}}]$ in every finite Galois L/K is exactly the prime-to-p part of e(L/K). It follows that G_K is a solvable group.

(10) Unramified elements of *p*-adic local field: Let \mathbb{Q}_p be a *p*-adic local field, and $\alpha \in \overline{\mathbb{Q}}_p$ an algebraic element. Call α unramified if $\mathbb{Q}_p(\alpha)$ is an unramified extension of \mathbb{Q}_p . Can you find a simple criterion determining whether α is an unramified element or not? What if α is a tamely ramified element, as in (9)? Open-ended question; tell us if you come up with something good.

(11) Chebotarev density theorem: The classical theorem of Chebotarev is about the density of primes whose Frobenius elements fall into particular conjugacy classes in a Galois group. Specifically, let L/K be a finite Galois extension of number fields, and $C \subset \text{Gal}(L/K)$ a conjugacy class. The theorem states that the set of primes of K that are unramified in L and whose Frobenius elements fall into C is $\frac{\#C}{\#\text{Gal}(L/K)}$.

In the context of Galois representations, we want to know about the density of Frobenius conjugacy classes at unramified primes in an infinite Galois group — a completely different use of the word density. Use the classical Chebotarev density theorem to deduce the following useful statement:

For a number field K and a finite set S of primes of K, the conjugacy classes of Frobenius elements at primes not in S is dense in $G_{K,S}$.

(12) Absolute values: An absolute value on a field K is a map $|\cdot| : K \to \mathbb{R}_{\geq 0}$ that's nondegenerate (|x| = 0 if and only if x = 0), multiplicative (|xy| = |x||y|), and subadditive (triangle inequality: $|x + y| \leq |x| + |y|$).

An absolute value induces a metric topology on K.

- (a) Show that the map $|x| = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{otherwise} \end{cases}$ is an absolute value on any field. What topology does it induce?
- (b) Let K is a p-adic local field and $v : K \to \mathbb{Z} \cup \{\infty\}$ its valuation. For any $a \in (0, 1)$ show that $|x| = a^{v(x)}$ is an absolute value on K that is *ultrametric* (also, *nonarchimedian*): it satisfies $|x + y| \leq \max\{|x|, |y|\}$.
- (c) Let K be a field, and $|\cdot|_1$ and $|\cdot|_2$ absolute values on K. Prove (or look up a proof) that the following are equivalent.
 - (i) The absolute values $|\cdot|_1$ and $|\cdot|_2$ induce the same topology on K.
 - (ii) The sets $U_1 := \{x \in K : |x|_1 < 1\}$ and $U_2 := \{x \in K : |x|_2 < 1\}$ coincide.
 - (iii) There exists a positive real number c so that $|x|_1^c = |x|_2$ for all $x \in K$.

If these properties are satisfied, then $|\cdot|_1$ and $|\cdot|_2$ are said to be *equivalent*. In fact, you can relax property (ii) above to (a priori) one-sided containment. See Corollary 2.4 in Keith Conrad's writeup Equivalence of absolute values.

Ostrowski's theorem (generalized) says that if K is a number field, then the inequivalent absolute values on K are exactly those induced by the valuations corresponding to the prime ideals K and the archimedian absolute values induced from embeddings $K \hookrightarrow \mathbb{R}$ and pairs of conjugate embeddings $K \hookrightarrow \mathbb{C}$. See, for example, Conrad's writeup Ostrowski for number fields. Exercises Day 2

Back

2. Galois representations

Recommendation: start with (17), (19), and maybe (18). Move on to (25)-(28). Maybe visit (33) at the end. Then come back.

Representations over a field

- (13) Let F be a field, V an F-vector space of dimension n. Let G be a group and $\rho: G \to GL(V)$ be a representation.
 - (a) Let D be the set of all endomorphisms of the representation (ρ, V) . Then D is naturally an F-subalgebra of $\operatorname{End}_F V$. Show that if V is irreducible, then D is a division ring. (This is Schur's lemma.)
 - (b) Let R be the F-subspace of $\operatorname{End}_F V$ generated by the image of ρ . Show that R is also an F-subalgebra of $\operatorname{End}_F V$. Show that D is the centralizer Z(R) of R inside $\operatorname{End}_F V$.

(The centralizer Z(R) of R is the set of elements that commute with R.)

- (c) The double centralizer theorem says that if V is irreducible, then R = Z(D) as well. Prove this, look up a proof, or simply take it on faith.
- (d) Assume that V is irreducible. Show that $R = \operatorname{End}_F V$ if and only if D = F. Show that both of these hold when F is algebraically closed.
- (14) **Base field extension; absolute irreducibility:** Continue with the notation of (13). Let *E* be an extension of *F*, and let (ρ_E, V_E) be the representations $\rho_E : G \to \operatorname{GL}_E(V \otimes_F E)$ obtained by composing ρ with the natural injection $\operatorname{GL}_F(V) \to \operatorname{GL}_E(V \otimes E)$. Denote by R_E and D_E the *R* and *D* corresponding to this representation over *E*.
 - (a) Show that $\dim_E R_E = \dim_F R$ and $\dim_E D_E = \dim_F D$.
 - (b) Show that the following properties are equivalent.
 - (i) ρ_E is irreducible for all extensions E of F
 - (ii) ρ_E is irreducible for all finite extensions E of F
 - (iii) ρ_E is irreducible for E an algebraic closure of F.
 - (iv) $R = \operatorname{End}_F V$.

If these properties hold, V is said to be *absolutely irreducible*.

- (c) Give an example of a representation of dimension 2 that is irreducible but not absolutely irreducible. Show that in any such example, D is a commutative field, namely a quadratic extension of F; and if E = D, then ρ_E is not irreducible.
- (15) **Strong irreducibility:** Let G be a compact topological group and (ρ, V) a representation of G. We say that V is *strongly irreducible* if the restriction of ρ to any open subgroup of G is still irreducible. Give an example of a strongly but not absolutely irreducible representation, and of an absolutely but not strongly irreducible representation.

Artin representations

- (16) Artin representations have finite image: For any field K, show that a continuous representation $\rho: G_K \to \operatorname{GL}_n(\mathbb{C})$ has finite image as follows.
 - (a) First prove the following

Lemma.

There is a neighborhood U of 1 in $GL_n(\mathbb{C})$ that contains no nontrivial subgroups.

Here's how: consider exp : $M_n(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$ defined by the power series

$$\exp A = \sum_{n>0} \frac{A^n}{n!}.$$

This is a diffeomorphism from an open neighborhood W of 0 in $M_n(\mathbb{C})$ to an open neighborhood of 1 in $GL_n(\mathbb{C})$.

- (i) Show that if $A, B \in M_n(\mathbb{C})$ commute, then $\exp(A + B) = \exp(A) \exp(B)$. (Don't get stuck on this one — just assume it and move on if necessary.)
- (ii) Now take $B_r(0)$ (a ball of radius r around 0) contained in W, and let $U := \exp(B_{r/2}(0))$. Suppose U contains a subgroup of $\operatorname{GL}_n(\mathbb{C})$ with a nontrivial element $g = \exp(A)$ for some A in $B_{r/2}(0)$. Find n so that $g^n \notin U$ to get a contradiction.
- (b) Use the lemma to finish the proof!
- (17) A one-dimensional Artin representation: Let $L = \mathbb{Q}(\sqrt{d})$ be a quadratic extension of \mathbb{Q} . Define the Artin representation

$$\chi: G_{\mathbb{Q}} \to \operatorname{Gal}(L/\mathbb{Q}) \simeq \{\pm 1\} \subset \operatorname{GL}_1(\mathbb{C}).$$

Suppose p is a prime unramified in L (assume that $p \nmid 2d$ to be safe). What is $\chi(\operatorname{Frob}_p)$?

- (18) One-dimensional Artin representations of $G_{\mathbb{Q}}$ and Dirichlet characters: More generally, let $\chi : G_{\mathbb{Q}} \to \mathbb{C}^{\times}$ be a character (continuous, of course!). Show that there is a Dirichlet character ψ so that $\chi(\operatorname{Frob}_p) = \psi(p)$ for all but finitely many primes p.
- (19) A two-dimensional Artin representation: Let L/\mathbb{Q} be a degree-6 extension, the splitting field of an irreducible monic cubic polynomial f(x) in $\mathbb{Z}[X]$, so that $\operatorname{Gal}(L/\mathbb{Q}) \simeq S_3$.

Let $\sigma: S_3 \to \operatorname{GL}_2(\mathbb{C})$ be the irreducible two-dimensional representation. (This is the standard representation of S_3 , which you can realize as follows. Let S_3 act on \mathbb{C}^3 by permuting the coordinates, and take the subrepresentation on the plane x+y+z=0.)

We thus obtain the Artin representation

 $\rho: G_{\mathbb{Q}} \to \operatorname{Gal}(L/\mathbb{Q}) \simeq S_3 \xrightarrow{\sigma} \operatorname{GL}_2(\mathbb{C}).$

Determine $\operatorname{tr}\rho(\operatorname{Frob}_p)$ for p unramified in L; it will depend on some property of f(x) relative to p.

To fix ideas, you may assume that $f(x) = x^3 - x^2 + 1$ if you like. (In this case you may eventually want to explore the connection between ρ and the modular form https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/1/b/a/.)

(20) Following from (19), what can you say more generally about the case of irreducible f of degree n? Keith Conrad's writeup Factoring after Dedekind may be helpful. Or see Tim and Vladimir Dokchitser's Identifying Frobenius elements in Galois groups from 2010.

Brauer-Nesbitt theorem

6

- (21) Give an example of two nonisomorphic representations of a group over a characteristiczero field that have the same trace function.
- (22) Give an example of two nonisomorphic semisimple representations of a group over a field of characteristic p with the same trace function.
- (23) The full Brauer-Nesbitt theorem says that if $\rho_1, \rho_2 : G \to \operatorname{GL}_n(F)$ are two semisimple representations of a group G over any field F, then $\rho_1 \simeq \rho_2$ if and only if we have

charpoly
$$(\rho_1(g)) =$$
charpoly $(\rho_2(g))$ in $F[X]$

for every $g \in G$.

If char F = 0, deduce that it suffices to know $\operatorname{tr} \rho_1(g) = \operatorname{tr} \rho_2(g)$ in F for every $g \in G$. Can you ever use this trace version if char F = p?

Invariant lattice in a representation of a compact group over a *p*-adic local field

- (24) Let F be a finite extension of \mathbb{Q}_p , \mathcal{O} its ring of integers, and V a finite-dimensional vector space over F. A *lattice* Λ in V is a finite \mathcal{O} -submodule that generates V as a vector space.
 - (a) Show that if Λ is a lattice, then there is a basis of V such that Λ is the set of vectors that have coefficients in \mathcal{O} in that basis.
 - (b) Show that if Λ and Λ' are lattices, so is $\Lambda + \Lambda'$.
 - (c) Let (ρ, V) be a continuous representation of a compact topological group G. Show that there is a lattice in V stable by $\rho(G)$.

Cyclotomic characters

- (25) What is the *p*-adic cyclotomic character on G_K for $K = \mathbb{R}$? Explain.
- (26) (a) How big is the extension F₇(ζ₁₉)/F₇?
 Describe the image of its Galois group in (Z/19Z)[×].
 - (b) Describe the *p*-adic cyclotomic character on G_K for $K = \mathbb{F}_{\ell}$. (Here $\ell \neq p$.)
- (27) Describe the *p*-adic cyclotomic character on G_K for K a finite extension of \mathbb{Q}_ℓ ? (Here again $\ell \neq p$.)

- (28) Describe the *p*-adic cyclotomic character on G_K for K a number field.
- (29) More tame inertia: Let K be a p-adic local field and k its residue field; let I_K^{tr} be the tame inertia of K as in (9). Show that the action of $G_k \simeq \text{Gal}(K^{\text{ur}}/K)$ induced by the exact sequence

$$1 \to I_K^{\mathrm{tr}} \to \mathrm{Gal}(K^{\mathrm{tr}}/K) \to G_k \to 1$$

is by the ℓ -adic cyclotomic character $G_k \to \mathbb{Z}_{\ell}^{\times}$ on the the ℓ -component of I_K^{tr} .

This is sometimes captured in the notation $I_K^{\text{tr}} = \prod_{\ell \neq p} \mathbb{Z}_{\ell}(1)$.

- (30) (Don't get stuck on this one come back to it if you need to!) Consider the group homomorphism $\chi : \mathbb{Z} \to \mathbb{Z}_p^{\times}$ defined by $\chi(1) = \alpha$ in \mathbb{Z}_p^{\times} .
 - (a) For which α does χ extend to a continuous character $\mathbb{Z}_p \to \mathbb{Z}_p^{\times}$?
 - (b) For which α does χ extend to a continuous character $\mathbb{Z}_{\ell} \to \mathbb{Z}_p^{\times}$ for $\ell \neq p$?
 - (c) For which α does χ extend to a continuous character $\widehat{\mathbb{Z}} \to \mathbb{Z}_p^{\times}$?
- (31) Let K be a p-adic local field. Show that an unramified n-dimensional representation of G_K is determined by a single matrix in $\operatorname{GL}_n(\mathbb{Q}_p)$ with invertible integral eigenvalues. What can you say about a tamely ramified representation of G_K ?

3. TATE MODULES OF ELLIPTIC CURVES

(32) Isogenies as rational maps

Let K be a field of characteristic $\neq 2, 3$. You may assume that all the elliptic curves we consider have a simplified Weierstrass equation of the form

$$y^2 = x^3 + Ax + B.$$

Consider an isogeny $\alpha: E_1 \to E_2$. In homogeneous coordinates it is of the form $\alpha([X:Y:Z]) = [\alpha_X: \alpha_Y: \alpha_Z]$ with $\alpha_X, \alpha_Y, \alpha_Z \dots$ On the affine piece $E_1 \setminus \{\mathcal{O}\}$ we have

$$\alpha(x,y) = (r_1(x,y), r_2(x,y)), \quad \text{with } r_1, r_2 \in K(x,y).$$

(a) Show that

(3.0.1)
$$r_1(x,y) = \frac{p_1(x) + p_2(x)y}{p_3(x) + p_4(x)y}, \quad \text{with } p_i \in K[x].$$

(b) Refining this, show that

$$r_1(x,y) = \frac{q_1(x) + q_2(x)y}{q_3(x)}, \quad \text{with } q_i \in K[x].$$

(Hint: Multiply numerator and denominator of Eq. (3.0.1) by $p_3(x) - p_4(x)y$.)

(c) Use the multiplication by -1 on E_1 and the fact that α is a group homomorphism to deduce that $r_1(x, y) = r_1(x, -y)$ and therefore that $q_2 = 0$.

(d) Proceed with $r_2(x, y)$ in a similar manner and conclude that α is given by the standard form

$$\alpha(x,y) = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y\right)$$

with $u, v, s, t \in K[x]$ such that u, v are relatively prime, and s, t are relatively prime.

- (e) With the notation above, let $f_1 \in K[x]$ be such that E_1 is given by $y^2 = f_1(x)$. Show that $v^3 \mid t^2$ and $t^2 \mid v^3 f_1$. Conclude that v and t have the same roots in \overline{K} .
- (f) (This one's a bit nasty. Feel free to skip, or have a look at Corollary 5.23 of Andrew Sutherland's 2015 notes on elliptic curves, the section on isogenies.) Show that the kernel of α consists of the point at infinity \mathcal{O} together with the set

$$\ker \alpha = \{ \mathcal{O} = [0: 1: 0] \} \cup \{ [x_0: y_0: 1] \in E(\overline{K}) : v(x_0) = 0 \}.$$

Conclude that ker α is finite.

(g) Take it for granted that, given the standard form of α described above, the degree of α equals max{deg(u), deg(v)}, and that α is separable if the derivative (u/v)' is nonzero.

Let p > 2 be prime. Find the standard form of the Frobenius isogeny $F: E \to E$, $F(x, y) = (x^p, y^p)$ and use it to: determine the degree of F, show that F is inseparable, and show that 1 - F is separable.

Tate modules of elliptic curves over arbitrary fields

(33) Let E_1 and E_2 be two elliptic curves over a field K, and let $\alpha : E_1 \to E_2$ be an isogeny (nonzero by definition) defined over an extension L of K.

Fix a prime p; feel free to assume that $p \neq \operatorname{char} K$.

- (a) Show that α induces a G_L -equivariant embedding of Tate modules $T_p(E_1) \hookrightarrow T_p(E_2)$.
- (b) Show by example that this embedding need not be surjective.
- (c) Show that in any case α induces an isomorphism of G_L -representations

$$T_p(\alpha): V_p(E_1) \longrightarrow V_p(E_2).$$

- (d) Show that the resulting map $\operatorname{Hom}(E_1, E_2) \to \operatorname{Hom}(T_p(E_1), T_p(E_2))$ is an injective homomorphism of abelian groups. More precisely, for every extension L of K, isogenies defined over L induce G_L -equivariant maps on Tate modules: $\operatorname{Hom}_L(E_1, E_2) \to \operatorname{Hom}_{G_L}(T_p(E_1), T_p(E_2))$. (In fact, these maps stay injective when $\operatorname{Hom}(E_1, E_2)$ is replaced by $\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Z}_p$; see Silverman, Theorem III.7.4.)
- (e) Finally, if $E_1 = E_2 = E$ and L is an extension of K, then we get a ring homomorphism $\operatorname{End}_L(E) \hookrightarrow \operatorname{End}_{G_L}(V_p(E))$.
- (34) Now let E be an elliptic curve defined over K.

- (a) Suppose that $V_p(E)$ is absolutely irreducible as a G_L -representation for some extension L of K. Show that any isogeny from E to E defined over L is actually defined over K.
- (b) If $V_p(E)$ is absolutely irreducible as a G_K -representation, show that $\operatorname{End}_K(E) = \mathbb{Z}$.
- (c) If $V_p(E)$ is strongly absolutely irreducible as a G_K -representation (that is, $V_p(E)$ stays absolutely irreducible when restricted to G_L for any finite extension L of K), show that $\operatorname{End}_{\bar{K}}(E) = \mathbb{Z}$.
- (d) Show that the converse (that is, $\operatorname{End}_K(E) = \mathbb{Z}$ means $V_p(E)$ is absolutely irreducible as a G_K -representation) is false in general.

However, it's true for number fields, by a theorem of Serre. In particular, if $K = \mathbb{Q}$, then $V_p(E)$ is an absolutely irreducible $G_{\mathbb{Q}}$ -representation, as $\operatorname{End}_{\mathbb{Q}}(E) = \mathbb{Z}$.

More on this topic next time!

Exercises Day 3

Back

4. TATE MODULES OF ELLIPTIC CURVES, CONTINUED

(35) Weil pairing, complex version

(For the purposes of this question only, you may assume that every elliptic curve is defined over the complex numbers and use the complex uniformization $E(\mathbb{C}) \simeq \mathbb{C}/\Lambda$ for some lattice $\Lambda \subset \mathbb{C}$. Note however that all the definitions and statements from this question hold for elliptic curves over arbitrary fields—obviously, different proofs may be needed then.)

Let $\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} with $\omega_1/\omega_2 \in \mathbb{H}$ and let $E = \mathbb{C}/\Lambda$ be the complex elliptic curve it defines. Let $N \geq 1$.

(a) Fix $P, Q \in E[N]$. Show that there exists $\gamma \in M_2(\mathbb{Z}/N\mathbb{Z})$ such that

$$\begin{pmatrix} P \\ Q \end{pmatrix} = \gamma \begin{pmatrix} \frac{\omega_1}{N} + \Lambda \\ \frac{\omega_2}{N} + \Lambda \end{pmatrix}.$$

(b) Set

$$e_N(P,Q) = e^{(2\pi i \det \gamma)/N}.$$

Show that e_N is independent of the various apparent choices, including the choice of basis $\{\omega_1, \omega_2\}$ of Λ with $\omega_1/\omega_2 \in \mathbb{H}$.

(c) Show that e_N is a bilinear, alternating, non-degenerate pairing (part of the work is figuring out what these words should mean in this setting, keeping in mind that E[N] is additive and μ_N is multiplicative):

$$e_N \colon E[N] \times E[N] \longrightarrow \mu_N.$$

such that for any integers N and M we have

 ϵ

$$e_N(MP,Q) = e_{MN}(P,Q)$$
 for all $P \in E[MN], Q \in E[N]$.

(d) Let $\psi: E_1 \to E_2$ be an isogeny. Show that

$$e_N(\psi(P),Q) = e_N(P,\psi^{\vee}(Q)) \quad \text{for all } P \in E_1[N], Q \in E_2[N].$$

(e) Show that there is an ℓ -adic Weil pairing

$$e: T_{\ell}(E) \times T_{\ell}(E) \longrightarrow T_{\ell}(\mu) := \varprojlim_{n} \mu_{\ell^{n}}$$

that is bilinear, alternating, and nondegenerate.

(f) Let $\psi: E_1 \to E_2$ be an isogeny and let $\psi_\ell: T_\ell(E_1) \to T_\ell(E_2)$ denote the induced map on Tate modules. Then

$$e(\psi_{\ell}(v), w) = e(v, \psi_{\ell}^{\vee}(w)) \quad \text{for all } v \in T_{\ell}(E_1), w \in T_{\ell}(E_2).$$

(g) Let $\psi \in \text{End}(E)$ and let ℓ be prime. Let $\psi_{\ell} \in \text{End}_{\mathbb{Z}_{\ell}}(T_{\ell}(E))$ be the induced map on the Tate module. Show that

$$\det(\psi_{\ell}) = \deg(\psi), \qquad \operatorname{Tr}(\psi_{\ell}) = 1 + \deg(\psi) - \deg(1 - \psi).$$

(*Hint*: Choose basis vectors v_1, v_2 for $T_{\ell}(E)$ and use the properties of the Weil pairing to show that $e(v_1, v_2)^{\deg(\psi)} = e(v_1, v_2)^{\det(\psi_{\ell})}$. For the statement about the trace, show that the relevant claim relating trace and determinants holds for any 2×2 matrix.)

(36) Bad reduction examples

- (a) Show that E/\mathbb{Q}_5 given by $y^2 = x^3 x^2 + 35$ has split multiplicative reduction.
- (b) Show that E/\mathbb{Q}_7 given by $y^2 = x^3 x^2 + 35$ has nonsplit multiplicative reduction. Find an extension K of \mathbb{Q}_7 over which E acquires split multiplicative reduction.
- (c) Show that E/Q₅ given by y² = x³ + 5 has additive reduction. Find an extension K of Q₅ over which E acquires good or split multiplicative reduction.
 [One possibility is to follow the proof of the Semistable Reduction Theorem (Silverman, Proposition VII.5.4).]

Isomorphic Tate modules vs. isogenous curves

- (37) Over finite fields: Let E_1 and E_2 be two elliptic curves over a finite field $K = \mathbb{F}_p$. Show that the following are equivalent.
 - (a) $V_{\ell}(E_1) \simeq V_{\ell}(E_2)$ as G_K -representations for one prime $\ell \neq p$
 - (b) $V_{\ell}(E_1) \simeq V_{\ell}(E_2)$ as G_K -representations for all primes $\ell \neq p$

(c)
$$\#E_1(K) = \#E_2(K)$$

Does the same argument work over $K = \mathbb{F}_{p^2}$?

A theorem of Tate (see "Endomorphisms of abelian varieties over finite fields," Invent. Math. 1966) says that the equivalence holds over any finite field, and that these properties are equivalent to E_1 and E_2 being isogenous.

(38) Over number fields: Let E_1 and E_2 be two elliptic curves over a number field K.

- (a) Show that the following are equivalent.
 - (i) $V_{\ell}(E_1) \simeq V_{\ell}(E_2)$ as G_K -representations for one prime ℓ .
 - (ii) $V_{\ell}(E_1) \simeq V_{\ell}(E_2)$ as G_K -representations for all primes ℓ .
 - (iii) For almost all finite places v of K for which E_1 and E_2 have good reduction at v, we have $\#\widetilde{E}_{1,v}(k_v) = \#\widetilde{E}_{2,v}(k_v)$. Here $E_{i,v}$ is E_i over the completion K_v , and $\widetilde{E}_{i,v}$ is E_i over the residue field k_v .
- (b) Show that these properties hold if E_1 and E_2 are isogenous over K.

A theorem of Faltings tells us that these properties hold if **and only if** E_1 and E_2 are isogenous.

- (39) Over *p*-adic local fields: Show that there exist two elliptic curves E_1 and E_2 over \mathbb{Q}_p whose Galois representations $V_{\ell}(E_1)$ and $V_{\ell}(E_2)$ are isomorphic but that are not isogenous over \mathbb{Q}_p . Proceed as follows.
 - (a) Let E_1 and E_2 be two curves over \mathbb{Q}_p both with good reduction. Show that if $\#\widetilde{E}_1(\mathbb{F}_p) = \#\widetilde{E}_2(\mathbb{F}_p)$, then $V_\ell(E_1) \simeq V_\ell(E_2)$ as representations of $G_{\mathbb{Q}_p}$ for all primes ℓ .
 - (b) Deduce that there are only a finite number of isomorphism classes of Galois representations of $G_{\mathbb{Q}_p}$ of the form $V_{\ell}(E)$ when E runs over all elliptic curves over \mathbb{Q}_p with good reduction.
 - (c) Show that the set of \mathbb{Q}_p -isomorphism classes of elliptic curves having good reduction is uncountable.
 - (d) Show that the isogeny class (over a fixed base field) of an elliptic curve has at most countably many isomorphism classes of elliptic curves.
 - (e) Conclude.

Surprisingly, if one assumes that E_1 , E_2 over \mathbb{Q}_p do *not* have good reduction but do have isomorphic Galois representations, then they are in fact isogenous. This is a theorem of Serre and Tate.

(40) Tate modules for ECs with multiplicative reduction over p-adic local fields: Tate's p-adic uniformization (stated below in full; see Silverman II) tells us that, given an elliptic curve E over a p-adic local field K with split multiplicative reduction, there is a unique nonzero q in the maximal ideal of K so that there is an isomorphism

$$E(\overline{K}) \simeq (\overline{K})^{\times}/q^{\mathbb{Z}}$$

commuting with the action of G_K .

Now let E be such an elliptic curve over such a K, and fix a prime ℓ .

- (a) Compute $E[\ell]$ and $E[\ell^n]$.
- (b) Compute $T_{\ell}(E)$ with its G_K -action.
- (c) Assume $\ell \neq p$.

- (i) Show that $T_{\ell}(E)$ is at most tamely ramified.
- (ii) Consider the representation $\bar{\rho}: G_K \to \operatorname{GL}_2(\mathbb{F}_\ell)$ carried by $E[\ell] = T_\ell(E) \otimes \mathbb{F}_\ell$. Under what conditions is $\bar{\rho}$ unramified?
- (iii) What is the connection with Ribet's level-lowering theorem discussed by Samir and Samuele?
- (d) Assume $K = \mathbb{Q}_p$. What can you say about $T_p(E)$? Must it be wildly ramified? Is it possible that $E[p] = T_p(E) \otimes \mathbb{F}_p$ is tamely ramified?
- (e) Start over, and now suppose that E is isomorphic to E_q defined below only over L, where L/K is the unique unramified extension of K, and not over K. Anything you can say?

Theorem (Tate *p*-adic uniformization).

Let K be a finite extension of \mathbb{Q}_p , with absolute value $|\cdot|$.

(a) If $q \in K^{\times}$ satisfies |q| < 1, then the equation

$$E_q: y^2 + xy = x^3 + a_4(q)x + a_6(q),$$

where $a_4(q) = -5s_3(q)$ and $a_6(q) = -\frac{1}{12} (5s_3(q) + 7s_5(q))$ for $s_k(q) = \sum_{n=1}^{\infty} \frac{n^k q^n}{1-q^n}$, defines an elliptic curve over K with discriminant $\Delta(E_q) = q \prod_{n \ge 1} (1-q^n)^{24}$ and j-invariant $j(E_q) = \frac{1}{q} + 744 + 196884q + \cdots$.

- (b) There is an isomorphism $(\overline{K})^{\times}/q^{\mathbb{Z}} \to E_q(\overline{K})$ that commutes with the action of G_K . In particular, this gives an isomorphism $L^{\times}/q^{\mathbb{Z}} \to E_q(L)$ for any algebraic extension L of K.
- (c) If E is an elliptic curve over K with |j(E)| > 1, then there is a unique $q \in \overline{K}^{\times}$ with |q| < 1 such that $E \simeq E_q$ over \overline{K} . Moreover, $q \in K^{\times}$.
- (d) In the previous part, $E \simeq E_q$ over K if and only if E has split multiplicative reduction.

5. Modular forms and Galois representations

(41) Eisenstein series: For an integer k > 2, consider

$$G_k(z) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(mz+n)^k}.$$

- (a) Show that the series converges absolutely for all $z \in \mathbb{H}$.
- (b) Conclude that $G_k \colon \mathbb{H} \to \mathbb{C}$ is holomorphic.
- (c) Show that if k is odd then G_k is identically zero.
- (d) The behavior of G_k at $i\infty$ is governed by the summands with m = 0, that is

$$G_k(i\infty) = \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{n^k} = 2\zeta(k).$$

(e) Show that

$$G_k(z+1) = G_k(z)$$
 and $G_k(-1/z) = z^k G_k(z)$

for all $z \in \mathbb{H}$ and conclude that G_k is a modular form of weight k on $\Gamma_0(1) = \mathrm{SL}_2(\mathbb{Z})$.

(f) Take for granted the crazy-looking infinite product expansion

$$\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).$$

Show that

(5.0.1)
$$\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z+n} + \frac{1}{z-n} \right) = \sum_{n \in \mathbb{Z}} \frac{1}{z+n}.$$

(*Hint:* take logarithmic derivative.)

(g) Using the definition of the cotangent function, show that

(5.0.2)
$$\pi \cot(\pi z) = \pi i - 2\pi i \sum_{n=0}^{\infty} q^n,$$

where, as usual, $q = e^{2\pi i z}$.

(h) Combining Eqs. (5.0.1) and (5.0.2), show that for any $k \ge 2$ we have

$$\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} q^n,$$

where $q = e^{2\pi i z}$ with $z \in \mathbb{H}$.

(i) Show that for any k > 2 even

$$G_k(z) = 2\zeta(k) + \frac{2(-2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n,$$

where $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$.

(j) What is the ℓ -adic Galois representation of $G_{\mathbb{Q}}$ attached to G_k ?

(42) (a) The Hecke operator T_n $(n \in \mathbb{N})$ on $S_k(1, 1)$ is given on Fourier expansions by

$$T_n f = \sum_{m=1}^{\infty} \sum_{d | \gcd(m,n)} d^{k-1} a_{mn/d^2} q^m.$$

Let $f \in S_k(1, \mathbf{1})$, $f(z) = \sum_{n=1}^{\infty} a_n q^n$, be an eigenvector for all Hecke operators $T_n \ (n \in \mathbb{N})$ with eigenvalues λ_n . Show that $a_1 \neq 0$ and $a_n = \lambda_n a_1$ for all $n \geq 1$. (The same statement holds for **newforms** $f \in S_k(N, \varepsilon)$.)

(b) Let $V \subset M_k(\Gamma_1(N))$ be a subspace that is stable under the action of T_p for all $p \nmid N$. Let \mathbb{T} denote the \mathbb{Z} -subalgebra of $\operatorname{End}(V)$ generated by the Hecke operators T_p with $p \nmid N$. Let $\mathbb{T}_{\mathbb{C}} = \mathbb{T} \otimes \mathbb{C}$. Show that

$$\mathbb{T}_{\mathbb{C}} \times V \to \mathbb{C}$$

given by $\langle T, f \rangle = a_1(T(f))$ is a perfect pairing.

Show that the two resulting isomorphisms $\mathbb{T}_{\mathbb{C}} \to V^{\vee}$ and $V \to \mathbb{T}_{\mathbb{C}}^{\vee}$ are $\mathbb{T}_{\mathbb{C}}$ -equivariant.

- (c) Show that \mathbb{T} has finite \mathbb{Z} -rank.
- (d) Let $f \in M_k(\Gamma_1(N))$ be an eigenvector for all Hecke operators T_p with $p \nmid N$, with eigenvalues a_p , and let

$$K_f = \mathbb{Q}\big(\{a_p \colon p \nmid N\}\big).$$

Show that K_f is a number field.

(43) Modular forms for $\Gamma_1(N)$: Given an integer $N \ge 1$, consider the subgroup

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon c \equiv 0 \pmod{N}, a \equiv d \equiv 1 \pmod{N} \right\}.$$

Let $M_k(\Gamma_1(N))$ denote the vector space of holomorphic functions $f \colon \mathbb{H} \to \mathbb{C}$ that are holomorphic at the cusps and satisfy

$$f|_k[\alpha] = f$$
 for all $\alpha \in \Gamma_1(N)$,

where the slash operator is defined by

$$f|_{k}[\alpha](z) = \det(\alpha)^{k/2}(cz+d)^{-k}f(\alpha \cdot z), \qquad \alpha \cdot z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- (a) Show that $\Gamma_1(N)$ is a normal subgroup of $\Gamma_0(N)$.
- (b) Show that $f|_k[\alpha] \in M_k(\Gamma_1(N))$ for all $f \in M_k(\Gamma_1(N))$ and all $\alpha \in \Gamma_0(N)$.
- (c) Fix $d \in (\mathbb{Z}/N\mathbb{Z})^{\times}$. Show that $f \mapsto \langle d \rangle f := f|_k[\alpha]$ for any $\alpha = \begin{pmatrix} a & b \\ c & \delta \end{pmatrix} \in \Gamma_0(N)$ with $\delta \equiv d \pmod{N}$, gives a well-defined map

$$\langle d \rangle \colon M_k \big(\Gamma_1(N) \big) \to M_k \big(\Gamma_1(N) \big).$$

(d) Show that

$$M_k(\Gamma_1(N)) = \bigoplus_{c} M_k(N,\varepsilon),$$

where the sum ranges over all Dirichlet characters ε modulo N. (*Hint:* for any ε , show that

$$\pi_{\varepsilon} = \frac{1}{\varphi(N)} \sum_{d \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \varepsilon^{-1}(d) \langle d \rangle$$

defines a projection operator $\pi_{\varepsilon} \colon M_k(\Gamma_1(N)) \to M_k(N, \varepsilon)$.)

- (44) Induction of a character: Let G be a group, and $H \subset G$ a subgroup of index 2. Let F be a field with char $F \neq 2$. Let $\chi : H \to F^{\times}$ be a character. Choose $c \in G - H$.
 - (a) Define ${}^{c}\chi: H \to F^{\times}$ by ${}^{c}\chi(h) = \chi(c^{-1}hc)$ for $h \in H$. Prove that ${}^{c}\chi$ is a character of H. Prove that ${}^{c}\chi$ is independent of the choice of c.

(Alternative formulation: For any $c \in G$, set $c \cdot \chi := {}^{c}\chi$ as above and show that this defines an action (right or left?) of G on the set of characters $H \to F^{\times}$. Show that the action factors through G/H.)

- Let $\eta: G \to \{\pm 1\} \subseteq F^{\times}$ be the quadratic character with kernel H.
- (b) Show that the following defines a representation $\rho: G \to \operatorname{GL}_2(F)$:

$$g\mapsto \begin{cases} \begin{pmatrix} \chi(g) & 0 \\ 0 & c\chi(g) \end{pmatrix} & \text{ if } g\in H \\ \\ \begin{pmatrix} 0 & \chi(gc) \\ c_\chi(gc^{-1}) & 0 \end{pmatrix} & \text{ if } g\not\in H. \end{cases}$$

This is the *induced* representation $\rho = \operatorname{Ind}_{H}^{G} \chi$.

- (c) Show that $\rho = \operatorname{Ind}_{H}^{G} \chi$ satisfies $\rho \otimes \eta \simeq \rho$.
- (d) If $\chi \neq {}^{c}\chi$, show that χ does not extend to G and that $\operatorname{Ind}_{H}^{G}\chi$ is an irreducible representation of G.
- (e) On the other hand, if $\chi = {}^{c}\chi$, show that χ extends to all of G, in exactly two ways. Show that $\operatorname{Ind}_{H}^{G}\chi$ is reducible, a sum of two characters. Which ones?
- (f) Show that the complex representation in (19) is of the form $\operatorname{Ind}_{H}^{G} \chi$ for some G, H, χ . Explain everything.
- (45) Continuing the notation for G, F from (44), now suppose that $\rho : G \to \operatorname{GL}_2(F)$ is irreducible and satisfies $\rho \otimes \eta \simeq \rho$ for some nontrivial character $\eta : G \to F^{\times}$. Show that ρ is induced from a character of ker $\eta \subset G$ as follows.
 - (a) Show that η is quadratic.

Set $H = \ker \eta$. Show that $\rho(H)$ is abelian as follows.

- (b) Show that there is a matrix $M \in \operatorname{GL}_2(F)$ so that $M\rho(g)M^{-1} = \rho(g)\eta(g)$ for all $g \in G$. Up to passing to a quadratic extension of F, you may assume that M is upper-triangular (why?). Show that M has distinct eigenvalues by considering $g \in H$ and $g \notin H$.
- (c) Conclude that $\rho(H)$ is abelian.
- (d) Prove that ρ is induced from a character of H.
- (46) A modular eigenform f of weight $k \ge 2$ is called CM if there is a Dirichlet character χ so that $a_p(\ell)\chi(\ell) = a_p(\ell)$ for all but finitely many primes ℓ .
 - (a) Suppose f has rational coefficients. Let p be a prime not dividing the level of f. Show that the associated p-adic Galois representation $\rho_{f,\ell}$ is induced from a character of a quadratic extension K of \mathbb{Q} .
 - (b) Find a CM modular form in weight 2 and level 27. What is the character χ ? What is the field K?

ALEXANDRU GHITZA AND ANNA MEDVEDOVSKY WITH EMILIANO TORTI (TA)

- (47) Let $f = \sum a_n q^n$ be an eigenform of some weight k and some level N. Fix a prime **p** of the Hecke eigenvalue field K lying over a rational prime p, and reduce f modulo **p** to obtain a modular form over a finite extension \mathbb{F} or \mathbb{F}_p .
 - (a) Prove that there exists a positive density of primes ℓ such that $a_{\ell}(f) \equiv 0 \pmod{\mathfrak{p}}$. (*Hint*: Chebotarev density for the mod- \mathfrak{p} Galois representation attached to f.)
 - (b) If $p \neq 2$, prove that there is also a positive density of primes ℓ such that $a_{\ell}(f) \not\equiv 0 \pmod{\mathfrak{p}}$.
 - (c) Find a counterexample for p = 2 to (47b).

16

How much of this can be extended to forms that are not necessarily eigenforms?

(48) Connect the mod-23 representation associated to Δ to something on these exercises.