
Lower bounds on dimensions of mod-p Hecke algebras:
The nilpotence method

Anna Medvedovsky

We present∗ a new method for obtaining lower bounds on the Krull dimension of a local compo-
nent of a Hecke algebra acting on the space of mod-p modular forms of level one and all weights at
once. This nilpotence method proceeds by showing that the Hilbert-Samuel function of the Hecke
algebra, which is a noetherian local ring, grows fast enough to establish a lower bound on dimen-
sion. By duality it suffices to exhibit enough forms annihilated by a power of the maximal ideal.
We use linear recurrences associated with Hecke operators to reduce the problem of finding these
many annihilated forms to a purely algebraic question about the growth of nilpotence indices of
recurrence operators on polynomial algebras in characteristic p. Along the way we introduce a
theory of recursion operators over any field. The key technical result is the Nilpotence Growth
Theorem for locally nilpotent recursion operators over a finite field; its proof is elementary and
combinatorial in nature. The nilpotence method currently works only for the small primes p for
which the modular curve X0(p) has genus zero (p = 2, 3, 5, 7, and 13), but we sketch a plan for
generalizing it to all primes and all levels.
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Chapter 1

Introduction

In 2012, Nicolas and Serre were able to determine, by elementary means, the structure of the Hecke algebra
acting on modular forms mod 2 of level one. Neither their very precise results nor their techniques appear to
generalize directly to other primes, but their elementary ingredients serve as the backbone of a new method,
presented here, for obtaining a lower bound for the Krull dimension of a local component of the mod-p Hecke
algebra.

This so-called nilpotence method works by exhibiting enough forms annihilated by powers of the maximal
ideal — which exhibition, in turn, is achieved via an upper bound on the nilpotence index of a form relative
to its weight filtration. The key technical result is purely algebraic and entirely elementary. The method
currently works for the small primes p for which Fp[∆] is Hecke-invariant: p = 2, 3, 5, 7 and 13; but I expect
that it can be extended to all primes, and even all levels.

1.1 Historical background
Some informal notation: let p be a prime, M the space of level-one modular forms modulo p of all weights,
A the shallow (i.e., without Up) Hecke algebra acting on M , and Aρ̄ one of the local components of A
corresponding to a mod-p modular Galois representation ρ̄.

The space of forms M was first studied by Swinnerton-Dyer [29], Serre [26], and Tate in the 70s. The
structure of Aρ̄ itself was first investigated by Jochnowitz in the early 80s: in [19], she uses results of Serre
and Tate to establish that Aρ̄ is infinite-dimensional over Fp. Noetherianness results from deformation theory
imply that the Krull dimension of Aρ̄ is at least 1, as was first observed by Khare in [20]. Until recently that
was the best lower bound.

In 2012, Nicolas and Serre revived interest in mod-p Hecke algebras when they determined the structure of
A for p = 2 explicitly: it is a power series ring in the Hecke operators T3 and T5. Their results appeared
in two short articles. In [23], they use the Hecke recursion for ∆ (also see Chapter 6) to deduce, through
lengthy but elementary calculations, a precise and surprising formula for how fast T3 and T5 annihilate ∆n.
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Chapter 1. Introduction 1.2. Nilpotence method for p = 2

The structure of A follows by duality in [24].

In the last two years the Nicolas-Serre method has attracted some interest. Gerbelli-Gauthier [13] has found
alternate and apparently simpler proofs of their key lemmas. The most technical parts of her calculations,
in turn, can now be replaced by theta series arguments of Monsky (unpublished). Despite this activity and
improvements, a direct generalization of the Nicolas-Serre method even to p = 3 has remained elusive.

At the same time, a lower bound for dimAρ̄ for all p ≥ 5 was determined by Bellaïche and Khare using
completely different techniques [5]. They compare Aρ̄ to the corresponding characteristic-zero Hecke algebra
Tρ̄, whose dimension is known to be at least 4 as witnessed by the Gouvêa-Mazur infinite fern. In passing
from Tρ̄ to Aρ̄, two dimensions are lost, one for p and one for a weight twist, so that the dimension of dimAρ̄

is at least 2. In the unobstructed case, they find that Aρ̄ is a power series ring in two variables, extending
Nicolas-Serre. These results have been generalized to level N by Deo [9].

What about p = 3? In the appendix to Bellaïche-Khare, Bellaïche lays out an approach for tackling this
remaining case by bounding nilpotence indices rather than calculating them precisely. This approach is
implemented in this document; in particular the key missing lemma is the Nilpotence Growth Theorem
(Theorem A below). But the same method also yields yet another proof of the case p = 2 (section 1.2
below), and recovers and slightly refines the Bellaïche-Khare results for p = 5, 7, and 13. It seems reasonable
to hope that this method can be extended to all primes, and all levels.

Incidentally, the nilpotence method gives an inverse answer to an fifteen-year-old question posed by Khare in
[20] about the relationship between the weight filtration of a mod-p form and what he called its “nilpotence
filtration,” closely related to the nilpotence index of a Hecke operator used here. See comments at the end
of Chapter 8 for details.

1.2 The nilpotence method for p = 2

The space of modular forms modulo 2 is just the space of polynomials in ∆ (Swinnerton-Dyer [29]). By
a theorem of Tate [30], or an elementary argument of Serre [5, footnote in section 1.2], there is only one
semisimple modular Galois representation ρ̄, namely 1⊕ 1, so that tr ρ̄ = 0. Therefore A is a local ring, and
every T` for ` an odd prime is in the maximal ideal m (Proposition 2.7 below). In particular, the T` act
locally nilpotently on M = F2[∆], and hence lower the ∆-degree of each form.

Using deformation theory (of Chenevier [7], in this case), we can show that m is generated by T3 and T5

(section 7.5). Moreover, the sequences {T3(∆n)}n and {T5(∆n)}n of polynomials in ∆ both satisfy linear
recursions over F2[∆], namely

T3(∆n) = ∆T3(∆n−3) + ∆4 T3(∆n−4)

and
T5(∆n) = ∆2 T5(∆n−2) + ∆4 T5(∆n−4) + ∆T5(∆n−5) + ∆6 T5(∆n−6),

with companion polynomials in F2[∆][X]

P3,∆ = X4 + ∆X + ∆4 and P5,∆ = X6 + ∆2X4 + ∆4X2 + ∆X + ∆6,

7



Chapter 1. Introduction 1.3. Statement of results

respectively ([23, Théorème 3.1] or Chapter 6).

The key technical result of this document is the Nilpotence Growth Theorem:

Theorem A (cf. Theorem 5.1). Let p be any prime, and T : Fp[y] → Fp[y] be a degree-lowering linear
operator on a polynomial algebra in characteristic p. Suppose further that the sequence {T (yn)}n satisfies a
linear recursion over Fp[y] whose companion polynomial

P = Xd + a1X
d−1 + · · ·+ ad−1X + ad ∈ Fp[y][X]

has deg ai ≤ i for all 1 ≤ i < d and deg ad = d.

Then there exists an α < 1 so that the nilpotence index NT (yn)� nα.

Here the nilpotence indexNT (yn) for any locally nilpotent operator T on a space containing f is the minimum
power of T annihilating f .

It is easy to see that both T3 and T5 acting on M = F2[∆] satisfy the conditions of the theorem, with y = ∆.
Therefore, there exists a constant α < 1 such that

N(∆n) := NT3
(∆n) +NT5

(∆n)� nα.

(From a refined version of the Nilpotence Growth Theorem, we get the bound N(∆n) < 7
3n

2
3 . Compare

to the more precise results of Nicolas and Serre, who give an exact recipe for the minimum k so that ∆n

annihilated by mk. This recipe depends on the digits of n base 2 and implies that 1
2

√
n < N(∆n) < 3

2

√
n

for n odd — in other words, for ∆n in the kernel of U2.)

Continuing with the nilpotence method, it is easy to see that N(∆n) < k implies that ∆n is annihilated by
mk, so that the dimension of the space of forms f in the kernel of U2 annihilated by mk grows at least as
fast as k

1
α , faster than linearly in k.

By duality, the Hilbert-Samuel function of A grows faster than linearly as well:

k 7→ dimA/mk = dim{f ∈ kerU2 : f annihilated by mk} ≥ #{n : N(∆n) < k} � k
1
α .

But for any noetherian local ring such as A, the Hilbert-Samuel function k 7→ dimA/mk is known to
eventually coincide with a polynomial in k of degree equal to the Krull dimension of A [1, Chapter 11]. Since
the Hilbert-Samuel function of A grows faster than linearly, we must have dimA ≥ 2. On the other hand,
the maximal ideal has only two generators, so that A = F2JT3, T5K.

1.3 Statement of results
In addition to Theorem A above, the main results of this document are given in Theorem B. The reducible
and irreducible components of a Hecke algebra are those Aρ̄ for which ρ̄ is reducible or irreducible as a
representation, respectively.
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Chapter 1. Introduction 1.4. Overview of document

Theorem B (cf. Theorem 8.1). If p = 2, 3, 5, 7, 13, then Aρ̄ ' FpJx, yK. More precisely:

• For p = 2, the Hecke algebra is A = F2JT3, T5K = F2JT`3 , T`5K for any pair of primes `3 and `5 with
`i ≡ i mod 8.

• For p = 3, the Hecke algebra is A = F3JT2, T7 − 2K = F3JT`− , T`+ − 2K for any pair of primes `− and
`+ satisfying `− congruent to 2 or 5 modulo 9,

3 is not a perfect cube modulo `+.

• For p = 5, there are four twist-isomorphic reducible local components. In each case,

Aρ̄ = F5JT11 − 2, T19K = F5JT`+− 2, T` − 1− `−1K

for any pair of primes satisfying` 6≡ 1 mod 5 and ` 6≡ ±1,±7 mod 25,

neither 5 nor 2 +
√

5 are perfect fifth powers modulo `+.

• For p = 7, there are nine local components, all reducible, in two isomorphism classes up to twist. In
each case,

Aρ̄ = F7JT`+ − 2, T`−K,

where `− is any prime congruent to −1 modulo 7 but not modulo 49; and `+ is congruent to 1 modulo
7 with additional conditions not described by congruences.

• For p = 13, there are 48 local components: 36 are reducible in three different isomorphism classes up
to twist, and 12 are irreducible and all twist-isomorphic. If ρ̄ is reducible, then

Aρ̄ = F13JT`+ − 2, T`−K,

where `± satisfy similar conditions as above; moreover, Aρ̄ ' F13Jx, yK for every ρ̄.

The case p = 2 recovers a theorem of Nicolas-Serre [24, Théorème 4.1]. The case p = 3 is new. The case
p ≥ 5 recovers and mildly refines results of Bellaïche-Khare [5, Theorem III, Theorem 22]. For an outline of
the proof using the nilpotence method, see section 8.100.

1.4 Overview of this document
In Chapter 2 we set notation and basic facts about modular forms modulo p and their Hecke algebras that
will be used in the rest of the document. A reader familiar with these objects as presented by Jochnowitz
[19, 18] will do well to skip this chapter. Key notation will be briefly recalled in later chapters.

Chapter 3 sets out the basic framework of the nilpotence method: given a sublinearity bound on the growth
of the nilpotence index of a sequence of forms (the sequence {∆n}n odd in the p = 2 example above), one
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Chapter 1. Introduction 1.4. Overview of document

obtains a lower bound of 2 for the Krull dimension of the corresponding Hecke algebra. Short, and not to
be missed.

Chapter 4 is an extended introduction to the theory of recursion operators, which are the algebraic avatars
of Hecke operators acting on algebras of modular forms for the purposes of applying our Nilpotence Growth
Theorem. This theory is still a work in progress. The chapter deals with recursion operators on polynomial
algebras only, which limits the primes for which the nilpotence method works to those for which the forms
whose weight filtration is divisible by p − 1 is a polynomial algebra. This is the case for p = 2, 3, 5, 7, 13;
in each case the polynomial algebra in question is Fp[∆]. This chapter may be used as a reference only,
especially on a first reading. Pure abstract algebra, and self-contained.

Chapter 5 states and proves the Nilpotence Growth Theorem (Theorem A above). The first three sections
are just enough for a first reading. The proof is long and combinatorial in spirit, and not particularly
illuminating, at least in its current state. This chapter is also just algebra, this time in characteristic p. It
is also self-contained, though the terminology of Chapter 4 can give it some context.

Chapter 6 proves that Hecke operators acting on spaces of modular forms are recursion operators. For
p = 2, 3, 5, 7, 13, a Hecke operator acting locally nilpotently on Fp[∆] satisfies the conditions of the Nilpotence
Growth Theorem.

Chapter 7 gives an algorithm for finding special Hecke operators to generate the maximal ideal of a local
component of the Hecke algebra corresponding to a reducible mod-p Galois representation. This chapter
refines dimension statements to the more precise statements of Theorem B.

Chapter 8 applies key theorems from Chapters 3, 5, and 6 to prove Theorem B.
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Chapter 2

Modular forms modulo p

This chapter is a review of well-known properties of modular forms modulo p and their Hecke algebras
that will be used in later chapters. The main references are Swinnerton-Dyer [29], Serre [27, 26], and
Jochnowitz [18, 19].

Throughout this document, we work only with forms of level one.

2.1 The space of modular forms mod p

The basic space that we consider is the space of modular forms modulo p in the sense of Swinnerton-Dyer
and Serre [29, 26]: M ⊂ FpJqK will be the span of mod-p reductions of q-expansions of all modular forms
over Z of level one and all weights.

More precisely, let Mk

(
SL2(Z),Z

)
be the space of modular forms of level one and weight k, and define Mk

to be the space of q-expansions of forms in Mk

(
SL2(Z),Z

)
reduced modulo p. That is,

Mk := image
(
Mk

(
SL2(Z),Z

)
→ ZJqK→ FpJqK

)
⊂ FpJqK,

where the first map is f 7→ (q-expansion of f) and the second map is reduction of the q-series modulo p.

Finally, let M be the span of all the Mk inside FpJqK:

M :=
∑
k≥0

Mk ⊂ FpJqK.

Note that the sum is not direct. For p > 3, the q-expansion of the Eisenstein series Ep−1 inMp−1

(
SL2(Z),Z

)
is congruent to 1 modulo p, so that Mk ↪→ Mk+p−1 via multiplication by the image of Ep−1. For p = 2, 3,
both E4 and E6 have residual q-expansions equal to 1, so there’s a similar phenomenon.

Since the product of two modular forms is another modular form (the weights add), and both maps above
preserve algebra structure, the space M is an Fp-subalgebra of FpJqK.

From now on, we assume that all named modular forms — the Ramanujan ∆-function, the Eisenstein series
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Chapter 2. Modular forms modulo p 2.1. The space of modular forms mod p

Ek of weight k, their products — are considered as q-series over Fp unless otherwise noted: we will simply
equate Ep−1 = 1.

2.1.1 Weight grading on M

Although the sum
∑
kMk ⊂ FpJqK is not direct, essentially the only thing that goes wrong is the fact that

Mk embeds into Mk+p−1. For example, we have the following

Lemma 2.1. If f ∈Mk

(
SL2(Z),Z

)
and f ′ ∈Mk′

(
SL2(Z),Z

)
are two (characteristic-zero) forms, then their

q-expansions are congruent modulo p only if k ≡ k′ mod (p− 1).

Proof. See [29, Theorem 2 (iv)]. Generalized by Serre in [27, Théorème 1].

For i ∈ 2Z/(p− 1)Z, let M i be the sum of all the Mk with k ≡ i mod (p− 1):

M i :=
∑
k≡i

Mk =
⋃
k≡i

Mk.

Here and below, congruences such as k ≡ i are modulo p − 1 unless otherwise specified. In particular, if
p = 2 or 3, then M0 = M .

Now the the sum of the M is inside FpJqK is direct:

Lemma 2.2 (Swinnerton-Dyer). M =
⊕

i∈2Z/(p−1)ZM
i.

Proof. See [29, Theorem 2 (iv)]. Lemma 2.1 is a special case of Lemma 2.2.

The decomposition M =
⊕

iM
i makes M into a (2Z/(p− 1)Z)-graded algebra, with M i the weight-i-graded

piece of M . The weight-0-graded piece M0 is a (filtered) algebra in its own right, with an exhaustive weight
filtration

0 ⊂ Fp = M0 ⊂Mp−1 ⊂M2(p−1) ⊂M3(p−1) ⊂ · · · ⊂M0

A form f ∈M i for some i will be called weight-graded or simply graded.

2.1.2 Weight filtration on M i

As discussed above, the weight of a mod-p modular form is not as robust a notion as it is in characteristic
zero. Instead, it is replaced by the notion of a weight filtration: for f ∈Mk, set

w(f) := min{k′ : f ∈Mk′}.

For f ∈ Mk, clearly w(f) ≤ k, but the inequality may be strict. For example, w(Ep−1) = 0. Lemma 2.1
implies that w(f) ≡ k mod (p− 1).

The weight filtration evidently satisfies w(fg) ≤ w(f) + w(g). But this inequality, too, may be strict: for
example, if p = 11, then w(E4) = 4 and w(E6) = 6, whereas w(E4E6) = w(E10) = 0. For graded f and g,
the congruence w(fg) ≡ w(f) + w(g) mod (p− 1) is forced by the weight grading.

We do have the following lemma about the multiplicativity of the weight filtration, proved by Serre in [27,
§2.2 Lemma 1b]:

Lemma 2.3. If f ∈M is graded, then w(fn) = nw(f).

12
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We will only use the weight filtration on the graded pieces M i, not on the entire space M .

2.1.3 The algebra structure on M

Swinnerton-Dyer proves that, as an abstract algebra,

M =

Fp[E4, E6]/(A(E4, E6)− 1) if p > 3

Fp[∆] if p = 2 or 3,

where A(E4, E6) is the polynomial in E4 and E6 that gives Ep−1 in characteristic zero [29, Theorem 2(iv),
Theorem 3].

For example, in characteristic zero, we have 691E12 = 441E3
4 + 250E2

6 , so that for p = 13 we have

M = F13[E4, E6]/(3E2
6 − E3

4 − 2).

For more examples, see Chapter 8.

2.2 The Hecke algebra on modular forms mod p

2.2.1 Hecke operators on M

For each positive integer n, the operator Tn defines a linear action on the characteristic-zero spaceMk

(
SL2(Z),Q

)
.

If ` is prime, then this action has the following form on q-expansions:

an(T`f) =

a`n(f) + `k−1an
`
(f) if ` | n

a`n(f) otherwise.

If k > 0, then Mk

(
SL2(Z),Z

)
is T`-invariant. (If k = 0, the only obstruction is that T`(1) = `+1

` .)

In any case, if ` 6= p, then T`, and hence also Tn for n prime to p, acts on Mk. Since `k−1 ≡ `(k+p−1)−1

mod (p−1), this action is compatible with the inclusionsMk ↪→Mk+p−1. So the actions onMk fits together
to give an action on each M i, and therefore we have an action of each Hecke operator Tn with (n, p) = 1 on
the entire space of modular forms.

We also have an action of Tn on any subspace of bounded weight of M .

2.2.2 The Hecke algebra A

First definition: product of graded pieces

For each k, let Ak be the Hecke algebra generated by all Tn with (n, p) = 1 acting on Mk. That is, let
Hp := Z[Tn : (n, p) = 1] be the abstract polynomial algebra of Hecke operators, and define

Ak := im
(
Hp → EndMk

)
⊂ EndMk.

Here and always, EndMk = EndFpMk is the space of Fp-linear maps Mk →Mk.

As remarked above, we have restriction maps Ak+p−1 → Ak. These are surjective since each Ak is generated

13



Chapter 2. Modular forms modulo p 2.2. The Hecke algebra

by the action of the same Hecke operators. We define

Ai := lim←−
k≡i

Ak.

This is the (shallow, i.e., without Up) Hecke algebra acting on M i, a profinite ring. Finally, the (shallow)
Hecke algebra on all of M =

⊕
iMi is simply

A :=
∏
i

Ai.

Second definition: all at once

Alternatively, we can let M≤k :=
∑
k′≤kMk ⊂ FpJqK be the subspace of M of weight bounded by k, and let

A≤k be the Hecke algebra acting on M≤k defined just as above. The inclusion maps M≤k ↪→ M≤k+1 give
restriction maps A≤k+1 � A≤k. I claim that

A = lim←−
k

A≤k.

Indeed, each M≤k splits up into a direct sum of Hecke-invariant subspaces according to weight modulo p−1,
so that each A≤k splits up into a finite direct product. This separation persists up the inverse limit.

Third definition: topology

There is a topological way to define the Hecke algebra: A is the completion, for the compact-open topology,
of the image of the action of the Hecke operators in EndM . That is,

A = îm
(
Hp → EndM

)
⊂ EndM.

Unpacking this definition gets its own section below. The equivalence of this definition with the previous
ones is proved in Proposition 2.4.

2.2.3 The topology on A as a subspace of EndM
We analyze the compact-open topology on EndM , and reconcile the naïve algebraic definition of the Hecke
algebra on M with A as we’ve defined it.

The compact-open topology

First, we recall the definition of the compact-open topology: this is a topology on the space of continuous
maps from one topological space to another. In the special case where the two spaces are topological abelian
groups X and Y , with {Uα} a collection of open subgroups forming a basic system of neighborhoods of 0 in
Y , and {Kβ} a collection of compact subgroups of X with the property that any compact subset C of X
containing 0 is contained in some Kβ , a basis for the compact-open topology on Homcont

Z -mod(X,Y ) is given
by the collection

{
{f : f(Uα) ⊂ Kβ}

}
α,β

.

The compact-open topology on EndM

Next, we see EndM with its compact-open topology. In this case, X = Y = M with the discrete topology.
This means that the zero subspace by itself is already a basis of open neighborhood-spaces around 0. The
compact sets are the finite ones; since our base field is finite, a compact subspace is a finite-dimensional

14
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one. So the spaces M≤k form a basic system of compact subspaces of M (that is, any compact subset
of M is contained in some M≤k). Finally, the compact-open topology on EndM has, as a basis of open
neighborhoods around 0, the collection

{
{T : T (M≤k) = 0}

}
k

= {annM≤k}k, a nested sequence of two-sided
ideals. This topology is Hausdorff: if an endomorphism annihilates every M≤k, then it annihilates all of M ,
so that

⋂
k annM≤k = {0}.

The naïve Hecke algebra on M

Let Ã ⊂ EndM be Fp-algebra of all polynomials in the Hecke operators Tn with (n, p) = 1. In other words,

Ã := im
(
Hp → EndM

)
⊂ EndM.

The algebra Ã has perhaps a more natural definition than A— and in fact it has a part to play in this story:
see Corollary 6.5. At the same time, Ã is not an easy ring to study.

For example, in section 2.4 below, we will discuss the (well-known) fact that Ak, A≤k, and A are all semilocal
rings whose maximal ideals have arithmetic meaning: they are in bijection with continuous modular Galois
pseudocharacters unramified outside p with certain determinants depending on the space Mk, M≤k, or M .
In this way, A is the natural generalizations of the Hecke algebra construction to infinite-dimensional spaces.

On the other hand (at least for p = 2), Ã has uncountably many maximal ideals: in [4, Theorem 4] Bellaïche
shows for p = 2 that the image of the Hecke operators T` for ` prime and odd are all algebraically independent
in A, and hence in Ã ⊂ A. Therefore any arbitrary sequence {λ`}` of elements in F2 indexed by odd primes
` defines a map Ã→ F2 simply by T` 7→ λ`, and the kernel of such a map is a maximal ideal of Ã containing
only those T` with λ` = 0. There are uncountably many such sequences, so uncountably many maximal
ideals.

The completed Hecke algebra on M

Finally, we refine the third definition of A and prove that it is equivalent to the other two.

Proposition 2.4. The following are naturally isomorphic as topological rings:

1. the closure of Ã in EndM with respect to its compact-open topology;
2. the completion of Ã with respect to the sequence of ideals annÃ (M≤k);
3. the profinite ring A = lim←−

k

(A≤k).

Proof. Temporarily, let A(1), A(2), and A(3) denote the rings described in the three parts of the proposition,
in order. We first prove that A(2) is isomorphic to A(3). By definition,

A(2) = lim←−
k

(
Ã/ annÃ(M≤k)

)
.

But Ã/ annÃ(M≤k) is naturally isomorphic to A≤k: the kernel of the restriction map Ã � A≤k is clearly
annÃ(M≤k). This proves the isomorphism between A(2) and A(3).

The topology on Ã induced from the compact-open topology on EndM has the set of

ann(M≤k) ∩ Ã = annÃ(M≤k)

over all k as a basic system of open neighborhoods of 0. This topology is Hausdorff, so that Ã is a subalgebra

15



Chapter 2. Modular forms modulo p 2.3. Maximal ideals of the Hecke algebra

of the completion A(2). In turn A(2) is a subalgebra of EndM : any compatible system of endomorphisms
modulo ann(M≤k) defines an endomorphism of all of M . Since A(2) is profinite, it is a closed subset of
EndM . Finally, Ã is dense in its completion, so that A(2) is the closure of Ã in EndM .

2.2.4 T` vs. Tn: a note on generators
We have defined each Hecke algebra as (topologically) generated by the Hecke operators Tn with (n, p) = 1.
But in fact, the weight-graded Hecke algebras Ak and Ai are (topologically) generated by the T` with `

prime only. Indeed if n factors as n =
∏
`nii , then Tn factors as the product Tn =

∏
T`nii

, so that it always
suffices to consider prime-power Hecke operators. Moreover, the `-power Hecke operators satisfy the (linear
over the Hecke algebra) recursion

T`n = T`T`n−1 − `k−1T`n−1 .

In a weight-graded (that is, fixed weight modulo p − 1) Hecke algebra, `k−1 is a constant, so that T` along
with T1 = 1 is enough to generate T`n over Fp. But in a graded Hecke algebra like A and A≤k, we need,
along with T`, a weight-separating operator for each ` that acts as `k−1 on the k-graded component. See,
for example, the operator denoted S` in [5].

2.3 Maximal ideals of the Hecke algebra
From now on, we assume that ` always refers to a prime different from p.

2.3.1 Systems of Hecke eigenvalues
Let M ′ be a Hecke-invariant space of mod-p modular forms (for example, Mk, M≤k, M

i, M). By a system
of eigenvalues appearing in M ′ we shall mean a sequence {λ`}` of elements in a finite extension F of Fp,
such that there is a form f in M ′F := M ′ ⊗ F so that T`(f) = λ`f for every `. If this f ∈ M ′F is normalized
so that a1(f) = 1, then in fact we must have λ` = a`(f), but in characteristic p we cannot count on being
able to normalize every eigenform. For example, Ep−1 = 1 ∈ M0 corresponds to the system of eigenvalues{

1 + `−1
}
`
, but a`(Ep−1) = 0 for every `. Since moreover there may be more than one mod-p eigenform

that gives the same system of eigenvalues — for p = 2, both E4 = 1 and ∆ correspond to the system of
eigenvalues {λ` = 0}` — it turns out to be more convenient to work with systems of eigenvalues instead of
eigenforms.

The following theorem is proved, in a slightly different form, by Jochnowitz in [18, Theorem 4.1]; she credits
it to Serre and Tate in level one. See also Theorem 2.42 and Corollary 2.43 at the end of this chapter.

Theorem 2.5. If λ = {λ`} is a system of eigenvalues appearing in M , then there is some k ≤ p2− 1 so that
λ appears in Mk.

Corollary 2.6. There are only finitely many systems of eigenvalues appearing in M .

2.3.2 The maximal ideals of the Hecke algebra
Let M ′ one of the spaces of modular forms modulo p as in the previous section, and A′ be the corresponding
Hecke algebra as defined above. Let F be a finite extension of Fp big enough so that all of the finitely many
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systems of eigenvalues appearing in M ′ are defined over F. The following proposition and proof is adapted
from [2, Chapter 1].

Proposition 2.7. There are natural bijections between the following three sets:

1. {maximal ideals of A′ ⊗ F}
2. {continuous F-algebra maps A′ ⊗ F� F}
3. {systems of eigenvalues appearing in M ′}

Proof. We first assume that M ′ is finite-dimensional over Fp and then use the finite correspondence to
conclude the general case.

Finite case: We establish a bijection between (1) and (2). A maximal ideal m of A′ ⊗ F = A′F is sent to
the map A′F � A′F/m = F. (Since A′ ⊂ EndM is a finite Fp-algebra, A′F is algebraic over F.). Conversely, a
map h : A′F � F is mapped back to the maximal ideal kerh. The correspondence is clearly a bijection.

Next, (3)  (2): a system of eigenvalues λ engenders the map A′F � F sending T` 7→ λ`. This also tells us
how to get from (3) to (1): the system of eigenvalues λ gives rise to the ideal

∑
`(T` − λ`) of A′F, which is

maximal because the quotient by it is a field.

The trickiest direction is (1)  (3) because it requires actually producing an eigenvector. The algebra A′F
is artinian, as it is finite as a vector space. That means that it is semilocal, and factors as a product of
localizations at maximal ideals

A′F = (A′F)m1
× · · · × (A′F)mn .

Therefore its module M ′F will also factor as a direct sum of localizations, each with an action of (A′F)mi :

M ′F = (M ′F)m1
⊕ · · · ⊕ (M ′F)mn .

Since A′F acts faithfully on M ′F, each (A′F)mi will act faithfully on (M ′F)mi , so that each of the latter pieces is
nonzero. Finally, each (M ′F)mi is the generalized eigenspace for mi, and will contain at least one eigenvector.
We have proved the direction (1)  (3): starting with a maximal ideal m, we get an nonzero eigenvector in
M ′F[m] ⊂ (M ′F)m = M ′F[m∞]. This completes the proof in the case that M ′ is finite.

Limit of finite cases: Now suppose that M ′ = lim−→k
M ′k (here either M ′k = M≤k so that M ′ = M , or

M ′k = Mi+k(p−1) so that M ′ = M i) and that A′ = lim←−k A
′
k, where A

′
k is the Hecke algebra on M ′k and the

correspondence is already established for A′k. Suppose λ is a system of eigenvalues appearing in M ′K for
some K, so that it also appears in M ′k for every k ≥ K. For each such k, let mk,λ be the maximal ideal of
A′k corresponding to λ (and here we drop the F from notation). Since each maximal ideal is generated by
{T` − λ`}`, in the projection A′k+1 � A′k we have mk+1,λ mapping onto mk,λ.

Now let K be big enough so that M ′K contains all of the finitely many systems of eigenvalues appearing in
M ′ ⊂M (Corollary 2.6). The observation in the previous paragraph tells us that, for k ≥ K, the projection
maps A′k+1 � A′k respects the decomposition of each A′k into local rings. That is,

A′ = lim←−
k≥K

A′k = lim←−
k≥K

∏
λ

(A′k)mk,λ =
∏
λ

lim←−
k≥K

(A′k)mk,λ .

Write A′λ := lim←−k≥K(A′k)mk,λ for each λ. As an inverse limit of local rings under local maps, A′λ is local,
with maximal ideal mλ := lim←−k≥K mk,λ: anything in A′λ −mλ is a limit of units, hence a unit.
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We have now decomposed A′ as a finite product of local rings
∏
λA
′
λ, with each maximal ideal corresponding

to a system of eigenvalues appearing in M ′. The rest of the correspondence is clear.

Corollary 2.8. The Hecke algebra AF is semilocal, and factors as a product of localizations at its maximal
ideals, each with residue field F.

Because eachM i is Hecke-invariant, this factorization of A is a finer one than the one into graded components
in section 2.2.2. Therefore we can define the weight grading for a system of eigenvalues appearing in M . If
λ is a system of eigenvalues appearing in M i ⊂M , set k(λ) = i ∈ 2Z/(p− 1)Z.

2.3.3 The profinite topology on a local component of A
Let m be a maximal ideal of A corresponding to system of eigenvalues λ, and Am the corresponding local
component of A. Let Mm ⊂ M be the generalized eigenspace corresponding to m, and Mm,k := Mm ∩Mk,
the weight-k contribution of Mm. As noted above, Mm,k = 0 unless k ≡ k(λ) modulo (p− 1).

The topology that Am inherits from A is profinite, in that Am is an inverse limit of finite rings

Am = lim←−
k≡k(λ)

Am/ annMm,k.

As a local ring, Am also has an m-adic topology. How do these topologies compare?

Aside on profinite local rings

Let B = lim←−k B/ak be a profinite local ring, an inverse limit of finite local rings under local maps. Let m be
the maximal ideal of B. Then m = lim←−m/ak.

Proposition 2.9.
1. The residue field F = B/m is finite.
2. m is open in B.
3. Every open ideal of B is m-adically open, so that the m-adic topology is finer than the given profinite

topology on B. The map (B,m-adic)→ B is continuous.
4. B is m-adically separated: ∩mn = {0}.
5. B is m-adically complete.
6. If dimF m/m2 is finite, then B is noetherian, and the two topologies coincide.

Proof.
1. The residue field F is a quotient of B/ak for any k, hence finite.
2. The ideal m = lim←−k m/ak is profinite, hence compact, hence closed in B. Since it has finite index, it is

automatically open as well.
3. Since B/ak is finite, it is an artinian local ring, so that some power (m/ak)n of its maximal ideal is

zero. Therefore mn ⊂ ak; and ak, and hence every open ideal, is m-adically open.
4. Since every mn is contained in some ak, we know that ∩nmn ⊂ ∩kak = {0}.
5. Any m-adic Cauchy sequence is automatically ak-Cauchy, and those converge by assumption.
6. If m/m2 is finite dimensional over F , say, generated by x1, . . . , xk, then by the Cohen Structure Theorem
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the power series ring W (F )Jx1, . . . , xkK surjects onto B (here W (F ) is the Witt vectors) so that B is
noetherian. The surjection also shows that B/mn is finite dimensional over F , and hence finite, for
every n. Therefore, B, already known to be m-adically complete, is also m-adically compact. That
means that the continuous map (B,m-adic) → B sends closed sets to closed sets. Therefore, the two
topologies coincide.

Back to the local Hecke algebra

In section 2.5.2, we will show that a local component of A is always noetherian, so that the profinite topology
will indeed be the same as the m-adic topology.

2.4 Modular Galois pseudocharacters

2.4.1 Continuous pseudocharacters of dimension 2

A 2-dimensional pseudocharacter of a group G over ring B is an algebraic gadget designed to mimic the
algebraic behavior of the trace of a representation G→ GL2(B). Pseudocharacters were initially studied in
the 90s by Rouquier in [25] and more recently generalized by Chenevier in [7] to work in any characteristic.

To fix ideas, by a continuous two-dimensional pseudocharacter∗ of a topological group G over a topological
ring B where 2 is a unit we mean a continuous map t : G → B satisfying t(1) = 2 along with two more
properties:

1. t is central: for all g, h ∈ G, we have t(gh) = t(hg).
2. t satisfies the trace-determinant identity : for all g, h ∈ G,

t(gh) + d(g)t(g−1h) = t(g)t(h), (A)

where d = det(t) is the multiplicative character G→ B× defined by d(g) := t(g)2−t(g2)
2 .

In characteristic 2, the continuous character d : G → B× satisfying the trace-determinant identity must be
given as additional data, but we will omit it from notation unless we are specifically discussing p = 2.

A pseudocharacter t : G→ B of dimension 2 is reducible if t = ψ1 +ψ2 where ψi : G→ B× are multiplicative
characters. It is irreducible if there is no such decomposition. If B is a field, and t remains irreducible after
any extension of scalars, then t is absolutely irreducible.

2.4.2 The Galois group
Let Q{p,∞} be the maximal extension of Q unramified outside p and ∞, and set GQ,p = Gal(Q{p,∞}/Q).
Let ω : GQ,p → F×p be the mod-p cyclotomic character. (If p = 2, then ω = 1.)

∗In fact, we are intentionally conflating two ways of mimicking the trace of a two-dimensional representation. A Rouquier
pseudocharacter is defined as a central map t satisfying a Frobenius identity, which is equivalent to the identity (A) if 1

2
∈ B.

A Chenevier pseudorepresentation (or determinant) is a pair of maps (t, d) satisfying the definitions given above. The key
property of a dimension-2 pseudocharacter — if B is an algebraically closed field then t is the trace of an actual two-dimension
representation of G over B — works for Rouquier pseudocharacters if 1

2
is in B, and for Chenevier pseudorepresentations in

any characteristic. So it is Chenevier’s notion that we are using here, although we continue to use the word pseudocharacter
and largely ignore d. For a definition of Rouquier pseudocharacters and a proof of the equivalence of the two notions if 1

2
∈ B,

see Appendix A.
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Lemma 2.10. If ψ : GQ,p → F×p is a continuous character, then ψ = ωi for some i in Z.

Proof. Since ψ is continuous, F×p is discrete and abelian, and GQ,p is profinite, ψ must factor through a finite
quotient of Gab

Q,p = Gal(Q(µp∞)/Q), which means that the image is contained in some finite extension F of
Fp. But since F× has order prime to p, the character ψ must further factor through a prime-to-p quotient
of Gab

Q,p, that is, though Gal(Q(µp)/Q). The claim follows.

Corollary 2.11. If t : GQ,p → F is a continuous two-dimensional pseudocharacter over some extension F of
Fp, then t is irreducible if and only if it is absolutely irreducible.

If p > 2 and τ : GQ,p → Fp is a continuous two-dimensional pseudocharacter, let its weight k(τ) ∈ Z/(p−1)Z
be the residue class of any integer k that satisfies det(τ) = ωk−1.

2.4.3 Galois pseudocharacters attached to systems of eigenvalues
Via a theorem of Deligne, we can associate, to every system of eigenvalues λ = {λ`} appearing in Mk,
a 2-dimensional continuous odd Galois pseudocharacter τλ : GQ,p → F characterized by the fact that
τλ(Frob`) = λ` and det(τλ) = ωk−1. The condition on det(τλ) is automatic if p > 2. The condition of
being odd corresponds to the fact that τλ(c) = 0 for any complex conjugation c ∈ GQ,p.

Briefly, the construction involves lifting λ to a system of eigenvalues — that is, a normalized eigenform
f — appearing in Mk(SL2(Z),OK) for some finite extension K of Qp. This can always be done, by the
Deligne-Serre lifting lemma. This gives an eigenform of weight k. Then one uses Deligne’s theorem to
construct a continuous odd Galois representation ρf : GQ,p → GL2(K) whose trace at Frobenius elements
gives Fourier coefficients of f . Reducing any GQ,p-invariant OK lattice modulo a prime above p gives a
representation ρf : GQ,p → GL2(F′) for some extension F′ of F. This residual representation is well-defined
up to semisimplification only, but its trace τλ = tr ρf : GQ,p → F is a well-defined Galois pseudocharacter,
and depends only on λ.

Conversely, given a continuous odd 2-dimensional Galois pseudocharacter τ : GQ,p → F, the theory of
pseudocharacters guarantees that it comes from a true representation over Fp. Then Serre’s Conjecture in
level one (now a theorem due to Khare) tell us that the system of eigenvalues {τ(Frob`)}` appears in Mk(τ).

Therefore, we can augment Proposition 2.7. We state this refinement for the entire Hecke algebra A, but
it can easily be modified for Ai, A≤k and Ak by putting conditions on the weight of the pseudocharacter.
From now on we will always assume that F is a finite extension of Fp big enough to contain all the systems
of eigenvalues of M .

Proposition 2.12. There are natural bijections between the following four sets:

1. {maximal ideals of AF}
2. {continuous F-algebra maps AF � F}
3. {systems of eigenvalues appearing in M}
4. {continuous odd dimension-2 pseudocharacters GQ,p → F}

In the future, we will write “modular pseudocharacter” as an abbreviation for “continuous, odd, dimension-2
pseudocharacter.”
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We will usually index the sets by the modular Galois pseudocharacter τ . That is, we let mτ be the maximal
ideal of AF corresponding to τ , let Aτ := (AF)mτ be the corresponding local component of AF, and let
Mτ := (MF)mτ be the corresponding generalized eigenspace.

2.5 Results from deformation theory
Let τ : GQ,p → F be a modular Galois pseudocharacter. In this section, we introduce the universal deforma-
tion ring corresponding to τ to prove that Aτ is noetherian.

2.5.1 The universal deformation ring of τ
Let Dτ be the functor that takes profinite local F-algebras B to continuous pseudocharacter deformations
τ̃ : GQ,p → B of τ subject to the constraint that det(τ̃) = det(τ).† This functor is representable by a
complete noetherian local F-algebra Rτ with maximal ideal mRτ . (The noetherian condition follows from
the p-finiteness of GQ,p. See [14, Theorem 1.6], for example; the local topology comes from Proposition 2.9.)
Let τ̃τ : GQ,p → Rτ be the universal pseudocharacter deforming τ ; write t` for τ̃τ (Frob`) ∈ Rτ and t′` for
t` − τ(Frob`) ∈ mRτ .

Proposition 2.13. There is a natural isomorphism of vector spaces

Dτ (F[ε]) −→∼ Hom(mRτ /m
2
Rτ ,F).

Here ε2 = 0: these are infinitesimal deformations.

Proof. To make sense of the statement, we need to see Dτ (F[ε]) as an F-vector space. Since τ is a pseu-
docharacter, this is not difficult: the vector space operations are on the ε-component of the deformation.
See also [14, Problem 2.28] for a careful conceptual approach. The isomorphism itself is easy [14, Lemma
2.6 and ff.].

Following Bellaïche-Khare, we define the tangent space to Dτ , or to Rτ , as

Tanτ := Dτ (F[ε]) ' Hom(mRτ /m
2
Rτ ,F).

We say that (the deformation problem defined by) τ is unobstructed if dimF Tanτ = 2.

Proposition 2.14. Suppose τ is irreducible.

1. The Krull dimension of Rτ is at least 2.
2. τ is unobstructed if and only if Rτ ∼= FJx, yK.

Proof. If τ is irreducible, then it the trace of an absolutely irreducible representation ρ : GQ,p → GL2(F),
and Rτ coincides with the constant-determinant universal deformation ring of ρ. The dimension statement
then follows from a theorem of Mazur [21, Corollary 3]. If τ is unobstructed, then the maximal ideal of Rτ
is generated by two elements, so that there is a surjection FJx, yK � Rτ . But since dimRτ = 2, and since
FJx, yK is already a domain of dimension 2, there can be nothing in the kernel. The converse is clear.
†If p = 2, then τ is a Chenevier pseudorepresentation, that is, a pair (τ, d), and we deform τ while keeping d fixed and adding

the constraint τ̃(c) = 0. (The constraint τ̃(c) = 0 is automatic for a constant-determinant deformation if p > 2.) In level one
we in fact only have one τ , coming from the representation 1⊕ 1; see [4] for more details on Dτ in this case.
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Chapter 2. Modular forms modulo p 2.5. Deformation information

Obstruction in the reducible case

The analog of Proposition 2.14 is not known in the reducible case. However, assuming Vandiver’s conjecture
for p, a reducible τ is always unobstructed. We follow [5, Section 10]. Let Dred

τ ⊂ Dτ be the subfunctor
of reducible constant-determinant deformations and Tanred

τ := Dred
τ (Fp[ε]) its tangent space. Let C be the

p-torsion part of the class group of Q(µp), and C[ωk] be the part of C on which Gal(Q(µp)/Q) acts through
ωk. Vandiver’s conjecture for p states that C[ωk] = 0 if k is even. Fix τ = 1 + ωb, a reducible modular
pseudocharacter GQ,p → Fp.

Proposition 2.15.
1. There is a short exact sequence of Fp-vector spaces

0→ Tanred
τ → Tanτ → H1(GQ,p, ω

b)⊗H1(GQ,p, ω
−b)→ 0.

2. We have dimFp Tanred
τ = 1.

3. For odd b we have dimH1(GQ,p, ω
b) = 1 + dimFp C[ω1−b].

4. The pseudocharacter τ is unobstructed if and only if dimFp C[ω1−b] = dimFp C[ω1+b] = 0.
5. If Vandiver’s conjecture for p holds, then every reducible modular τ : GQ,p → Fp is unobstructed.

Proof. See [5, Section 10] for (1) and (3). For (2) see section 7.2. The other points follow immediately.
The exact sequence is a consequence of the modification from [5, Proof of Proposition 20] to the constant-
determinant case of a more general exact sequence: see [3, Theorem 2]; the last arrow is actually a double
cup product to H2(GQ,p, 1)2, which vanishes here.

For more details, see Chapter 7, where a basis for Tanτ is constructed in the unobstructed case.

Obstruction for p = 2, 3, 5, 7, 13

Proposition 2.16.
If p = 2, 3, 5, 7, 13 and τ : GQ,p → Fp is a modular pseudocharacter, then τ is unobstructed.

Proof. If τ is reducible, then it is unobstructed by Proposition 2.15 since Vandiver’s conjecture holds for
all these p. If τ is irreducible, then p = 13 and τ is either the mod-13 representation attached to ∆ or a
cyclotomic twist (see Chapter 8 for details). In this case, τ is unobstructed by an argument of Weston given
in Appendix F.

2.5.2 The map Rτ � Aτ

Deligne’s construction of a p-adic representation attached to eigenforms over Qp may be glued together and
reduced modulo p to obtain a Galois pseudocharacter over A. For an example of this construction, see [4].

Proposition 2.17.
1. There is a unique continuous odd dim-2 pseudocharacter t : GQ,p → A satisfying t(Frob`) = T`.
2. For each τ , there is a unique continuous odd two-dimensional pseudocharacter tτ : GQ,p → Aτ satisfying

tτ (Frob`) = T`. Each of these further satisfies det tτ = ωk(τ)−1.

The first part is the construction alluded to above. The second part follows by localizing at mτ .

Corollary 2.18. There is a surjection Rτ � Aτ sending t` to T`.
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Proof. The pseudocharacter tτ : GQ,p → Aτ is a deformation of τ : GQ,p → F, since the maximal ideal mτ
is by definition is generated by elements of the form T ′` = T` − τ(Frob`), so that T` ≡ τ(Frob`) modulo
mτ . Since Rτ is the universal deformation ring for τ , the deformation tτ is induced by a continuous map
Rτ → Aτ . This map is surjective: we must have t` map to T` (both are images of Frob` ∈ GQ,p), the image
of Rτ is compact and hence closed in Aτ , and the T` topologically generate Aτ .

Proposition 2.19. The rings Aτ and A are noetherian.

Proof. The local ring Aτ is a quotient of the noetherian ring Rτ , and A is a product of finitely many Aτ s.

Corollary 2.20. The topology on Aτ coincides with the mτ -adic topology.

Proof. Proposition 2.9.

Corollary 2.21. The Krull dimension of Aτ satisfies 1 ≤ dimAτ ≤ dimRτ . If τ is unobstructed, then
1 ≤ dimAτ ≤ 2; and if further we know that dimAτ = 2, then Rτ = Aτ ' FJx, yK.

For irreducible τ , the inequality dimAτ ≥ 1 was first observed by Khare in [20].

Proof. For the first statement, Jochnowitz shows that dimFAτ is infinite [19, Corollary 6.6]. If dimAτ were
equal to 0, then Aτ would be artinian, hence finite over F. Therefore dimAτ ≥ 1. The other inequality
follows from the surjection Rτ � Aτ from Corollary 2.18. The first clause of the second statement is
definition of unobstructedness plus the Cohen Structure Theorem surjection FJx, yK� Rτ in that case. The
last bit follows from the surjection FJx, yK � Rτ � Aτ . (In the irreducible case, by Proposition 2.14 we
already know that Rτ is isomorphic to FJx, yK as soon as τ is unobstructed. But the isomorphism with Aτ
still requires dimAτ = 2.)

2.6 The operator U and its kernel

Three interrelated operators act on M and its Hecke-invariant subspaces: U , the pth power map F , and θ.
We define these operators and discuss their properties. Most of the basic facts are from Jochnowitz [18].

2.6.1 The U operator and the pth power map

Definitions

The operator U = Up acts on M by sending f =
∑
n anq

n to

Uf =
∑
n

apnq
n.

This operator is the image of Tp modulo p, so it commutes with every Tn for n prime to p, and hence with
every T ∈ A. Every Mk, M≤k, and M i is U -invariant.

The operator U has a right inverse, the pth power map. We will denote it by F , so that

Ff =
∑
n

anq
pn.

If n is prime to p, then Tn and F commute; every Hecke-invariant space of modular forms is F -invariant.
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Chapter 2. Modular forms modulo p 2.6. The operator U and its kernel

Since U is right-invertible, it is surjective on M . Let K ⊂ M be the kernel of U . A form f is in K if and
only if its nonzero Fourier coefficients appear in prime-to-p places:

K = {f ∈M : an(f) 6= 0 =⇒ (n, p) = 1}.

Properties

The operator FU is a projector, sending a form inM onto the image of F : FUf =
∑
p|n anq

n. Its complement
1− FU projects a form f ∈M to K: (1− FU)f =

∑
(n,p)=1 anq

n.

Therefore, we have a decomposition

M = imF ⊕K,

f 7→
(
FUf, (1− FU)f

)
.

We record some generalizations of these properties of U and F .

Proposition 2.22. For every integer m ≥ 1:

1. UmFm = 1

2. The operator FmUm is a projector onto imFm and gives a decomposition

M −→∼ imFm ⊕ kerUm,

f 7→
(
FmUmf, (1− FmUm)f

)
,

∑
n

anq
n 7→

∑
pm|n

anq
n,
∑
pm-n

anq
n

 .

3. We have an exact sequence

0→M
Fm−−→M

1−FmUm−−−−−−→M
Um−−→M → 0.

Proof. The case m = 1 is discussed above, and the general case is the same. The core of the exact sequence
above is the usual sequence associated to a projector P : V → V acting on a linear space V :

0→ kerP → V → im(1− P )→ 0.

In our case for m = 1, we have V = M and P = FU , so that

0→ kerFU

=

imF

→M → im(1− FU)

=

kerU

→ 0,

and we can splice in maps on both sides of the projector exact sequence.

As m grows, imFm gets smaller and kerUm gets bigger, so that, in some sense, more of the “bulk” of M in
the exact sequence moves to the right. Here’s one attempt to make this observation precise.

Lemma 2.23. For every nonzero f ∈M , the image of f in kerUm under the decomposition above is nonzero
for all m sufficiently large.

Proof. The image of f in kerUm under the projection 1 − FmUm is given in terms of q-expansions in
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Proposition 2.22 above:
(1− FmUm)f =

∑
pm-n

an(f)qn.

Since f is nonzero, there is some n with an(f) 6= 0. Any m > vp(n) will work.

2.6.2 The θ operator
The θ operator is a little miracle particular to modular forms modulo p.

Lemma 2.24 (Swinnerton-Dyer). The operator θ = q ddq that takes a q-series f =
∑
n anq

n to

θf =
∑
n

nanq
n

sends Mk to Mk+p+1. Moreover, w(θf) = w(f) + p+ 1 unless p divides w(f).

Recall that w(f) = min{k : f ∈Mk} is the weight filtration of f .

Proof. [29, Lemma 5(ii)].

In particular θ(M i) ⊂M i+2, so that θ permutes the graded components of M .

Corollary 2.25. For f graded in M , w(θp−1f) ≤ w(f) + p2 − 1 with equality iff w(f) ≡ 1 mod p.

Proof. By Lemma 2.24 above, w(θp−1f) ≤ w(f) + p2 − 1, with equality if and only if for every n with
0 ≤ n < p− 1, we have p - w(θnf). But the only way to ensure that that none of the p− 1 numbers in the
arithmetic sequence

w(f), w(f) + p+ 1, w(f) + 2(p+ 1), . . . , w(f) + (p− 2)(p+ 1)

is divisible by p is to start with w(f) ≡ 1 mod p.

Unlike Tn and U , the θ operator does not preserve Mk. However, it does satisfy the following easy-to-prove
properties.

Lemma 2.26. 1 . im θ = K 2 . θp−1 = 1− FU 3 . θp−1
∣∣
K

= 1K

In fact, θ and T` commute up to a twist:

Lemma 2.27. T` ◦ θ = ` θ ◦ T`.

Proof. It suffices to check this on f ∈Mk, keeping in mind that θf ∈Mk+2. On one hand,

` θ T`
∑
n

anq
n = ` θ

∑
n

(
a`n + `k−1 an/`

)
qn =

∑
n

`
(
na`n + `k−1 nan/`

)
qn.

On the other hand,

T` θ
∑
n

anq
n = T`

∑
n

nanq
n =

∑
n

(
` n a`n + `k+2 (n/`) an/`

)
qn.

Lemma 2.27 implies that, if f ∈M is an eigenform then so is θf ! More precisely, if the eigensystem for f is
{λ`}, then the eigensystem for θf is {`λ`}. On the Galois side, twisting by θ corresponds to twisting by ω,
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the mod-p cyclotomic character. We continue this discussion in Section 2.8.

2.6.3 The U-nilpotent component of M
Let M [Un] := kerUn be the part of M killed by Un and let

M [U∞] = {f ∈M : Unf = 0 for some n} =
⋃
n≥1

M [Un]

be the U -nilpotent part of M .

Lemma 2.28.
1. M [Un] = K ⊕ F (K)⊕ F 2(K)⊕ · · · ⊕ Fn−1(K)

2. M [U∞] =
⊕∞

n=0 F
n(K)

Proof. It suffices to prove the first part. Certainly the right-hand side is contained in the left, and the
sum is direct, since Fn(K) = {f ∈ M : Un+1f = 0 but Unf 6= 0} ∪ {0}.‡ It remains to show the reverse
containment. Proceed by induction. The case n = 1 is the definition of K. For n > 1, if f ∈ kerUn, use the
projector Fn−1Un−1 and its complement (see Proposition 2.22) to write f as a sum f = Fn−1g+ fn−1 with
fn−1 ∈ kerUn−1. Finally, 0 = Unf = UnFn−1g + Unfn−1 = Ug shows that g ∈ K.

How does M [U∞] interact with Mτ? Jochnowitz proves that, for every τ , “most” of Mτ is contained in
M [U∞] — the complementary subspace only contains forms of low filtration. More precisely, since the
operators in A commute with U , the generalized eigenspace Mτ is U -invariant and splits up further into
(A,U)-eigencomponents. Jochnowitz proves that every generalized (A,U)-eigenspace that contains a form
of high enough filtration is actually U -nilpotent.

First, a lemma:

Lemma 2.29. w(Uf) ≤ w(f)−1
p + p with equality if and only if w(f) ≡ 1 mod p.

We give the proof from [18, Lemma 1.9]:

Proof. From Lemma 2.26, 1 − FU = θp−1, so that w(f − FUf) ≤ w(f) + p2 − 1 with equality if and only
if w(f) ≡ 1 mod p (Lemma 2.25). Since w(f) < w(f) + p2 − 1 but the two numbers are congruent modulo
p− 1, we can conclude that

w(FUf) = w
(
(Uf)p

)
= pw(Uf) ≤ w(f) + p2 − 1,

with the same condition on equality. The claim follows.

As a corollary, U lowers the filtration of every form of filtration greater than p+ 1:

Corollary 2.30. If w(f) > p+ 1, then w(Uf) < w(f).

Proof. Immediate from Lemma 2.29. If p+ 1 < w(f), then p2 − 1 + w(f) < pw(f), so that

w(Uf) ≤ w(f)− 1

p
+ p < w(f).

‡In the notation of Chapter 3, Fn(K) is the set of forms f in M with NU (f) = n, along with 0.
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This is the main proposition:

Proposition 2.31 (Jochnowitz, [19, Lemma 3.2]). If there is a form f in a generalized (A,U)-eigencomponent
with w(f) > p+ 1, then this (A,U)-eigencomponent is contained in M [U∞].

Proof. Let Mτ,λp be this (A,U)-eigencomponent, with λp the U -eigenvalue, and suppose that λp is nonzero.
Then U is bijective on Mw(f) ∩ Mτ,λp . Choose g ∈ Mw(f) ∩ Mτ,λp with Ug = f . Since Mw(g) is also
U -invariant, we must have w(g) = w(f) > p+ 1. But Lemma 2.30 then forces w(f) = w(Ug) to be strictly
less than w(g): a contradiction.

Proposition 2.31 and Lemma 2.28 imply that to understanding the full Hecke algebra, which is topologically
generated by all the Tn including Tp = U , it essentially suffices to understand the Hecke algebra on K; see
subsection 2.7.3 below for a precise statement. But first, we prove that the Hecke algebra on K is isomorphic
to A.

2.7 Duality between A and kerU

We show that A is also the Hecke algebra on the kernel K of U , and establish a duality between A and K.

2.7.1 The Hecke algebra on K

We begin by restricting the spaces of modular forms to K. Namely, define

Kk := Mk ∩K, K≤k := M≤k ∩K, Ki := M i ∩K, Kτ := Mτ ∩K.

Here k is an integer, i ∈ 2Z/(p− 1)Z, and τ is a modular Galois pseudocharacter corresponding to a system
of eigenvalues appearing in M . Because all the M -subspaces are U -invariant (U commutes with all the
operators in A), we get the same kind of decompositions for K as we do for M . To wit,

K =
∑
k

Kk =
∑
k

K≤k =
⊕
i

Ki =
⊕
τ

Kτ and Ki =
⋃
k≡i

Kk.

All equivalence here and below are modulo p− 1.

Proposition 2.32. The Hecke algebra A acts faithfully on K.

Proof. Let T 6= 0 be in A, and find f ∈ M with Tf 6= 0. Let m be the least p-valuation of any n with
an(Tf) nonzero. Then UmTf is not in imF , so that its image in K under the projector 1−FU is nonzero.
In other words, the form g = (1− FU)Umf is both in K (because it’s in the image of 1− FU) and satisfies
Tg 6= 0.

Corollary 2.33. The Hecke algebra components Ai and Aτ act faithfully on Ki and Kτ , respectively.

Proof. The decomposition of A into a product of localizations
∏
τ Amτ (Corollary 2.8) gives a decomposition

of K as a direct sum of faithful Ai-modules K =
⊕

i K̃
i: let K̃i := eiK, where ei ∈ A is the idempotent

corresponding to Ai; it follows that AjK̃i = 0 if i 6= j. On the other hand, we have the decomposition
K =

⊕
iK

i, and the action of A on K restricts to the action of Ai on each Ki. Since AjKi = 0 if i 6= j
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again, we must have K̃i ⊂ Ki, so that the action of Ai on Ki is faithful. The proof for Kτ is the same

In particular, K contains an eigenvector for each system of eigenvalues appearing inM . See also section 2.8.

There doesn’t appear to be any reason for Ak and A≤k to act faithfully on Kk and K≤k: the tricks we use in
Proposition 2.32 all rely on going to arbitrarily high weight. One has no choice but to soldier on: let Bk and
B≤k be Hecke algebras acting on Kk and K≤k, respectively, defined just as in section 2.2. Since Kk ⊂ Mk

and the Hecke algebras are generated by the same Hecke operators, we have a surjective map Ak � Bk,
and similarly A≤k � B≤k, so that the “B” rings are just the faithful-on-their-part-of-K quotients of the “A”
counterparts. Finally, let

Bi := lim←−
k≡i

Bk and B := lim←−
k

B≤k

be the Hecke algebras on Ki and K, respectively. They satisfy all the same wondrous properties of section
2.2 and Proposition 2.12, so that we can define Bτ , but fortunately we can forget about these stopgap Hecke
algebras immediately:

Proposition 2.34. There are natural (i.e., Tn maps to Tn) isomorphisms of topological rings

1 . A −→∼ B 2 . Ai −→∼ Bi 3 . Aτ −→∼ Bτ .

Proof. The compatible surjections A� A≤k � B≤k for each k piece together to give a continuous surjection
A � B. Since A acts faithfully on K (Proposition 2.32), this map is also injective. Use Corollary 2.33 for
the rest.

2.7.2 Duality between A and K

Proposition 2.35. The pairing of A-modules

A×K → Fp
〈T, f〉 7→ a1(Tf)

is nondegenerate and continuous on both sides. It induces isomorphisms of A-modules

A −→∼ K∨ and K −→∼ A∨,cont.

Here we use the notation M∨ for an A-module M to denote the Fp-linear dual Hom(M,F) viewed as an A-
module, withA-action a·g = [m 7→ g(am)], for a ∈ A,m ∈M , and g ∈M∨. SimilarlyM∨,cont = Homcont(M,F),
the continuous linear dual, with the same A-module structure.

Proof. The pairing is nondegenerate on the right precisely because we’ve restricted to K; the analogous
pairing A ×M → Fp has a right kernel. It is nondegenerate on the left because A acts faithfully on K

(Lemma 2.32 above).

More precisely, if f ∈ K is nonzero, then there is some n prime to p with an(f) 6= 0. Since an(f) = a1(Tnf),
we see that 〈Tn, f〉 6= 0. So the right kernel is trivial. On the other hand, if T ∈ A is nonzero, find f ∈ K
with Tf 6= 0, and then find n prime to p with an(Tf) 6= 0. Then 〈T, Tnf〉 6= 0. So the kernel on the left is
trivial.
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Continuity on the right is trivial since K is discrete. On the left, recall that the topology on A has, as a
basis of neighborhoods of 0, the annihilators of M≤k (Proposition 2.4). Since every f ∈M is in some M≤f ,
the map [T 7→ 〈T, f〉] in A∨ factors through A≤k and is therefore continuous.

We therefore get injective maps K ↪→ A∨,cont and A ↪→ K∨. These maps are A-module morphisms because
the pairing is A-equivariant: 〈T, T ′f〉 = 〈T ′T, f〉.

Finally, these maps are surjective because the pairing is a limit of finite perfect pairings, which automatically
give isomorphisms to duals. That is, the pairing we defined descends, for each k, to a pairingB≤k×K≤k → Fp.
This pairing is nondegenerate on both sides for the same reason as the pairing A ×K, and hence perfect,
inducing isomorphisms B≤k −→∼ K∨≤k and K≤k −→∼ B∨≤k. From here, the isomorphism A −→∼ K∨ is formal.
The other one is even easier: a linear form in A∨ is continuous if and only if it factors through some B≤k,
so that A∨,cont = lim−→k

B∨≤k = lim−→k
K≤k = K.

Corollary 2.36. The pairing in Proposition 2.35 restricts to perfect pairings

1. Ai ×Ki → Fp,
2. Aτ ×Kτ → F,
3. A/a×K[a]→ Fp for every open (i.e. cofinite) ideal a ⊂ A.

Proof. The first two are clear. For the third, the key is that A/a acts faithfully on K[a].

2.7.3 The full Hecke algebra
Given a modular pseudocharacter τ , let Mτ =

⊕
ap
Mτ,α be the decomposition of the A-eigencomponent

Mτ into (A,U)-eigecomponents, with α the U -eigenvalue. Let Afull
τ,α be the corresponding local full Hecke

algebra.

Corollary 2.37 (Jochnowitz).
1. If α 6= 0, then Mτ,α is finite-dimensional and consists of forms of filtration bounded by p+ 1.
2. Moreover, Mτ,0 =

⊕
n≥0 F

n(Kτ ), so that Afull
τ,0 = Aτ JUK.

Proof. Proposition 2.31 for the first part. For the second, Lemma 2.28 restricted to Mτ and the fact that
Un is the left inverse of Fn (Proposition 2.22 (1)).

2.8 θ-twists of local components
We continue the study of the θ operator from section 2.6.2, beginning where we left off:

Lemma 2.38. If f ∈ M i is a Hecke eigenform for corresponding to pseudocharacter τ : GQ,p → F, then
θf ∈M i+2 is a Hecke eigenform for the Hecke corresponding to the pseudocharacter ω τ .

Proof. Lemma 2.27 and the observations immediately following.

The component change from f to θf is consistent with Lemma 2.24. Indeed, recall that k(τ) is determined
by det τ = ωk(τ)−1, and note that det(ω τ) = ω2 det τ , so that k(ω τ) = k(τ) + 2.

Corollary 2.39. Every eigensystem appearing in M is a twist of an eigensystem appearing in M0.
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Proof. Let λ = {λ`} be an eigensystem appearing inM with (even) weight k = k(λ). Then θp−1− k2 λ appears
in M0.

Lemma 2.40. K is θ-invariant, and θ|K is an isomorphism (of vector spaces). Moreover, θ permutes the
components Kτ of K.

Proof. The inverse is given by θp−2 (Lemma 2.26) and we already know that θ(Kτ ) ⊂ Kω τ .

Proposition 2.41. The isomorphism Kτ
θ−→∼ Kω τ is Hecke equivariant, in the sense that there is an iso-

morphism of topological F-algebras

Aτ
Θ−→∼ Aω τ defined by T` 7→ `T`

that satisfies, for T ∈ Aτ and f ∈ Kτ ,
θ(Tf) = Θ(T )θ(f).

Proof. The isomorphism θ : Kτ → Kω τ induces an twisted action of Aω τ on Kτ via

T · f := (θ−1 ◦ T ◦ θ)f.

Write Kτ (1) for Kτ as an Aω τ -module with this new twisted action. By construction, θ is now an isomor-
phism of Aω τ -modules Kτ (1) −→∼ Kω τ : indeed T (θf) = θ (T · f). In particular, if T = T`, Lemma 2.27 tells
us that T` · f = ` T`f for every f ∈ Kτ (1).

We now compare the images of three maps

Aω τ → EndAω τ , Aω τ → EndKτ (1) = EndKτ , Aτ → EndKτ .

All three are topologically generated by the T`. The first and third are, by definition, Aω τ and Aτ , respec-
tively. The first and second are isomorphic by construction of the Aω τ -action on Kτ (1).

Now consider the second and third together. The second image uses the twist action, so that the image of
T` is ` times what it is in the third. But when we identify EndKτ (1) with EndKτ , we see that the action
of T` spans the same F-line. If T is in some Fp-Hecke algebra A′, then so is ` T .

Therefore, the images of second and third maps are the same inside EndKτ = EndKτ (1). In other words,
Aτ and Aω τ are isomorphic via the map Θ that sends T` to ` T`.

The rest of the proposition follows immediately.

The bottom line is that to understand the structure of every Aτ , it suffices to understand A0, the 0-graded
component of A with its action on K0.

2.8.1 Sequences of generalized eigenforms
We close with results of Jochnowitz about filtrations of generalized eigenforms, slightly massaged for our
purposes. These will allow us to separate the various eigencomponents of the Hecke algebra. First, a theorem
for context, one that we will also use in applications. Jochnowitz credit it to Serre and Tate in level one.

Theorem 2.42 ([18, Theorem 4.1]). Every system of (A,U)-eigenvalues appearing in M is a twist of a
system appearing in Mk with 4 ≤ k ≤ p+ 1.
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Note that Theorem 2.5 stated in section 2.3.1 is an immediate corollary. We state it again.

Corollary 2.43. Every system of eigenvalues appearing in M appears in some Mk with 4 ≤ k ≤ p2 − 1.

Proof. By Theorem 2.42, our system of eigenvalues is a twist of one appearing in weight k with 4 ≤ k ≤ p+1.
To find our twist, we apply θ no more than p− 2 times, which raises the weight filtration by no more than
(p− 2)(p+ 1).

The upper bound is sharp if k is required to be strictly positive. For example, for p = 5, the eigensystem
1 + ω−1 appears first in filtration 0 (carried by E4 = 1) but then not again until filtration 24 (carried by
θ3E6, the reduction of a characteristic-zero eigenform defined over Q(

√
144169)). The same is true for any

p ≥ 5: the system of eigenvalues τ = 1 + ω−1 appears in weight 0 and then not again until weight p2 − 1.
Indeed, τ is a twist of 1 + ω, which is carried by Ep+1; Tate’s theory of θ-cycles guarantees that no other
form in weight up to p+ 1 is a twist of τ (see [18, Lemma 6.2(3)]). Therefore τ in positive weight is carried
only by θp−2Ep+1, which has weight p2 − 1.

Following Jochnowitz, write Wk for the Hecke module of quotient forms of weight filtration exactly k: that
is Wk := Mk/Mk−p+1; of course, we interpret Mk = 0 if k < 0.

Proposition 2.44 (Jochnowitz, [18, Lemma 6.4]).
1. If k ≡ 1 mod p, then θp−1 gives an isomorphsm Wk −→∼ Wk+p2−1

2. For any k > p+ 1, the Hecke modules W ss
k and W ss

k+p2−1 are isomorphic.

The notation W ss above denotes the the semisimplification of W as a Hecke module.

Sketch of proof. If k ≡ 1 mod p then, by Lemma 2.25, Wk injects into Wk+p2−1. Dimension formulas for Mk

imply that this map is actually an isomorphism. The deails for the general case are in [17, XIII.2].

Here is the implication in the form that we need:

Corollary 2.45. Let τ be a system of eigenvalues appearing in M0. There exists a sequence {f0, f1, f2, . . . , }
of forms in Kτ with w(fn) a linear function of n.

Proof. We will produce such a sequence with w(fn) = p(p2−1)n+kp2 for some positive constant k divisible
by p− 1. This k will be the filtration of a starting eigenform corresponding to τ .

First, I claim that we can find an eigenform g0 of filtration k > p + 1 carrying τ . Since τ appears in
M0, certainly there is some eigenform g corresponding to τ with w(g) positive and divisible by p − 1. If
w(g) 6= p − 1, then w(g) > p + 1, so that g0 = g already works. Otherwise, let g0 = θp−1g. I claim that
w(g0) = p2 − p.

Indeed, the theory of θ-cycles implies that Ug 6= 0: see [19, Corollary 7.7] for details. Therefore we must
have w(Ug) = 0 or w(Ug) = p − 1. But if w(Ug) = 0 then τ = 1 + ω−1, which contradicts the assump-
tion that w(g) = p − 1 by the discussion following Corollary 2.43. Therefore w(Ug) = p − 1, so that
w(FUg) = pw(Ug) = p2 − p, and therefore w(θp−1g) = w(g − FUg) = p2 − p. See also [19, Example 7.8].

Now that we have g0 of weight k > p+ 1, we can use the second part of Proposition 2.44 to inductively find
a sequence of generalized τ -eigenforms g1, g2, . . ., with gm of filtration k+m(p2−1) for each m ≥ 0. To find
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a similar sequence in Kτ , we will twist by θp−1, first taking a subsequence to ensure control of the filtration.

To form the subsequence: let hn := gk−1+np for every n ≥ 0. By construction hn is still in Mτ , but now the
weight filtration is always 1 modulo p:

w(hn) = w(gk−1+np) = k + (k − 1 + np)(p2 − 1) ≡ 1 mod p.

Finally, the twist: fn := θp−1(hn) for every n. Certainly fn ∈ Kτ : it is in K because it’s in the image of
θ, and it is in Mτ because θp−1 preserves eigencomponents. And since w(hn) ≡ 1 mod p, we have, again by
Lemma 2.25,

w(fn) = w(hn) + p2 − 1 = kp2 + np(p2 − 1).

In other words, the sequence {fn} satisfies our requirements.§

§(October 2015) Thanks to Naomi Jochnowitz for finding a mistake in this argument in an earlier version of this document.
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Chapter 3

The nilpotence method

In this section, we state and prove two theorems formalizing the nilpotence method.

We use the notation of Chapter 2. The key players are the algebraM of modular forms modulo p; the kernel
of the U -operator K ⊂ M ; the Hecke algebra A, which is in duality with K and splits into a product of
local noetherian algebras (Aτ ,mτ ) corresponding to modular Galois pseudocharacters τ defined over a finite
extension F of Fp. Finally, Mτ and Kτ = K ∩Mτ are the corresponding pieces of M and K. Note that
restricting to the weight-0-graded spaces M0, K0, and A0 (section 2.1.1 and ff.) does not change this setup.

3.1 The nilpotence index
Any form f ∈Mτ is a generalized eigenform for the action of every T ∈ Aτ . If T ∈ mτ , then the corresponding
eigenvalue is 0 (Proposition 2.7). Therefore every T ∈ mτ acts locally nilpotently onMτ : for any form f ∈Mτ ,
there is an integer k with T k(f) = 0.

Definition. If T is a locally nilpotent operator on any linear space V , we define the nilpotence index of any
nonzero f ∈ V with respect to T as the integer

NT (f) := min{k : T k+1f = 0} = max{k : T kf 6= 0}.

Also set the nilpotence index of 0 ∈ V to be NT (0) := −∞.

If V is a polynomial ring, then an operator on V is locally nilpotent if and only if it lowers degrees; in this
case, clearly NT (f) ≤ deg f for all f ∈ V . On the other hand, if V is the space of modular forms modulo p
and T is a Hecke operator in A, then T is locally nilpotent on M if and only if T is in every maximal ideal
of A. For p = 2, 3, 5, 7, 13, we know that M0 = Fp[∆] (see Chapter 8), so we can put these observations
together.

Lemma 3.1. Let p = 2, 3, 5, 7 or 13. If T is in A0, then the following are equivalent.

1. T acts locally nilpotently on M0.
2. T lowers ∆-degrees.
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Chapter 3. The nilpotence method 3.2. The Hilbert-Samuel trick

3. T is in every maximal ideal of A0.

And a version for general primes:

Lemma 3.2. There exists an integer d ≥ 1 so that the following are equivalent for T ∈ A0.

1. T acts locally nilpotently on M0.
2. T d lowers weight filtration on M0.
3. T is in every maximal ideal of A0.

Proof. We show why the other parts imply (2); the rest is clear. Quite generally, if a filtration-preserving
operator on a filtered module is locally nilpotent, then corresponding graded operator is also locally nilpotent
on the associated graded module. In our case, assuming that T is locally nilpotent on M0, we know that
grT is locally nilpotent on

grM0 =
⊕

k≡0 mod p−1

Wk.

Here Wk = Mk/Mk−p+1 as discussed in section 2.8. Moreover, since dimWk stays bounded as k grows
(Proposition 2.44, or the dimension formulas used in its proof), in fact grT is just plain nilpotent on grM0:
that is (grT )d = 0 for d = maxk dimWk. In other words, T d lowers filtration.

3.2 The Hilbert-Samuel trick
We now state and prove two theorems that will allow us to get lower bounds on dimensions of some local
Hecke algebras. They are both generalizations of a suggestion of Bellaïche outlined in [5, appendix].

Theorem 3.3 (Basic Hilbert-Samuel trick). Suppose that there exists finitely many operators T1, . . . , Tm in
A and a form f ∈M so that both of the following conditions are satisfied.

• (T1, . . . , Tm)Aτ = mτAτ for every τ
• There exists an α < 1 so that NTi(fn)� nα for every i.

Then at least one of the local components Aτ has Krull dimAτ ≥ 2.

The first condition simply requires the operators T1, . . . Tm to generate the maximal ideal mτ of each local
component. The second is a condition on the growth of the nilpotence index NTi(fn) as a function in n.
Note that, since we’ve assumed that the Ti generate each mτ , each Ti must be in every mτ , so that Ti is
locally nilpotent on M and NTi(fn) is defined.

In practice we will be applying the theorem not to A and K but to A0 and K0; as noted already, this changes
nothing. Here is how the basic application looks: if all the τ are reducible and unobstructed (p = 2, 3, 5, 7),
then we can use the results of Chapter 7 to find just two Hecke operators in A to generate every maximal
ideal at once. The Nilpotence Growth Theorem (Theorem A from Chapter 1) combined with results from
Chapter 6 will then yield an αi for each Ti; set α := maxαi.

Before proving Theorem 3.3, we state and prove a simple lemma.

Lemma 3.4. If f is in K, then for every m ≥ 1, the form fpm+1 is in K as well.
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The proof uses the notation of section 2.6.1; in particular F is the pth-power map.

Proof. Consider q-expansions: an(fpm+1) =
∑
i+j=n ai(F

mf)aj(f). If p divides n, then either both i and j
are divisible by p, in which case aj(f) = 0 since f ∈ K, or else neither i nor j is divisible by p, in which case
ai(F

mf) = 0 since Fmf ∈ imF . Either way an(fpm+1) = 0 whenever p | n, so that fpm+1 ∈ K.

Proof of Theorem 3.3. Suppose that we have T1, . . . , Tm satisfying the first condition, and then f satisfying
the second. Let J := (T1, . . . , Tm), an ideal of A. The first condition says that JAτ = mτ for every τ .

For any g ∈ M , define the function N(g) =
∑
iNTi(g). The second condition implies that N(fn) grows no

faster than nα does.

Claim. For any g in M , if N(g) < k, then Jkg = 0.

Proof. Indeed, if N(g) < k, then every monomial generator Tn1
1 · · ·Tnmm of Jk, satisfies∑

i

ni = k > N(g) =
∑
i

NTi(g),

so that there exists at least one i with ni > NTi(g), which implies that Tn1
1 · · ·Tnmm g = 0.

We are ready for the key manoeuvre. Recall that, for a noetherian local ring (B,m), the Hilbert-Samuel
function k 7→ dimB/mB/m

k is, for k � 0, a polynomial in k of degree equal to the Krull dimension of B
(see, for example, [1, Chapter 11]). Consider a generalized Hilbert-Samuel function

k 7→
∑
τ

dimFAτ/m
k
τ .

By duality, dimFAτ/m
k
τ = dimFKτ [mkτ ] (Corollary 2.36), so that our function becomes

k 7→
∑
τ

dimFAτ/m
k
τ =

∑
τ

dimFKτ [mkτ ] =
∑
τ

dimFKτ [Jk]

= dimF
⊕
τ

Kτ [Jk] = dimFK[Jk].

Here we’ve used the fact that, on Kτ , the ideals mkτ and Jk coincide and the fact that the various eigenspaces
Kτ are in direct sum.

By Lemma 3.4 and the claim above, K[Jk] certainly contains every fpn+1 with N(fpn+1) < k, and these
are all linearly independent because they have distinct filtrations (Lemma 2.3). Therefore,

dimFK[Jk] ≥ #{n : N(fpn+1) < k} � k
1
α . (A)

Here the last inequality is because N(fpn+1)� (pn+ 1)α � nα.

Since 1
α > 1, we have shown that the Hilbert-Samuel function k 7→ dimFAτ/m

k
τ grows faster than linearly

in k, so that at least one Aτ has dimension at least 2.

Sublinearity vs. O(nα)

In fact, this Hilbert-Samuel trick requires only that each NTi(fn) grow slower than linearly in n.

We recall the definitions: a function g : N → R+ grows slower than linearly or sublinearly if g(n) is o(n):
that is, g(n)

n → 0 as n→∞. The condition that g is O(nα) (equivalently, g � nα) for some α < 1 is strictly
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stronger: g is O(nα) if there exists a constant C so that g(n) ≤ Cnα for n large enough. For example,
f(n) = n

log(n) is o(n) but not O(nα) for any α < 1.

The Hilbert-Samuel trick still works if N(fn) is merely o(n): in that case the quantity #{n : N(fn) < k}
still grows faster than linearly, or supralinearly, in k, and the conclusion that at least one Aτ has dimension
at least 2 still stands. In practice (at least for now) all the sublinear functions come from finitely many
applications of the Nilpotence Growth Theorem (Theorem 5.1), which yield O(nα). So that is how Theorem
3.3 is stated.

3.2.1 The refined Hilbert-Samuel trick
We also give a component-separating refinement of Theorem 3.3.

Theorem 3.5. Let Aτ be a local component of the mod-p Hecke algebra. Suppose that there exist finitely many
operators T1, T2, . . . , Tm in Aτ that generate mτ , and a sequence of linearly independent forms f1, f2, f3, . . . ∈ Kτ

so that for all i, NTi(fn)� nα for some fixed α < 1. Then dimAτ ≥ 2.

Proof. The proof is essentially the same as for Theorem 3.3. For g ∈ Mτ , let N(g) =
∑
iNTi(g). Then the

Hilbert-Samuel function for Aτ is

k 7→ dimFAτ/m
k
τ = K[mkτ ] ≥ #{n : N(fn) < k} � k

1
α ,

which grows supralinearly in k. Therefore, dimAτ ≥ 2.

The basic way that this theorem will be applied is that the sequence f1, f2, f3, . . . will have w(fn) depending
linearly on n, and then the Nilpotence Growth Theorem will guarantee NT (f)� w(f)α.

Corollary 3.6. Fix Aτ , a local component of the Hecke algebra. Suppose that there exist Hecke operators
T1, . . . , Tm in A and a sequence of forms f1, f2, f3, . . . in Kτ so that the following conditions are satisfied.

1. T1, . . . , Tm are in every maximal ideal of A and generate mτ .
2. There exists an α < 1 so that for every i and every g ∈M , we have NTi(g)� w(g)α.
3. The filtration w(fn) depends linearly on n.

Then dimAτ ≥ 2.

3.3 Plan of action
Theorem 3.3 guides our way forward. In the next two chapters, we step out of the world of modular forms
to develop a purely algebraic theory of recursion operators (Chapter 4) and prove an abstract Nilpotence
Growth Theorem (Chapter 5) in characteristic p. Then we return to modular forms and establish that the
theory of recursion operators applies to Hecke operators acting on spaces of modular forms (Chapter 6). We
find explicit Hecke generators for maximal ideals of reducible components in Chapter 7. Finally we put it
all together in Chapter 8.
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Chapter 4

Recursion operators

We develop a theory of recursion operators: linear operators T on an algebra B so that for any f ∈ B the
sequence {T (fn)}n satisfies a linear recursion over B. This chapter provides a formal language for the key
technical result of this document: the Nilpotence Growth Theorem (Theorem 5.1), which is a statement about
the annihilating behavior of certain kinds of locally nilpotent recursion operators on polynomial algebras.
Eventually, we will establish that Hecke operators are recursion operators of this certain kind.

This chapter is still a work in progress. Note that we do not fix a prime p.

4.1 Recurrence sequences
Let N = {0, 1, 2, . . .} be the set of nonnegative integers.

Let B be a ring. We will assume that B is an integral domain, although this assumption is not necessary for
the basic definitions. The space BN is the set of infinite sequences in B. An element s ∈ BN will be written
as s = (s0, s1, s2, . . .). The zero sequence in BN is denoted 0.

Let E : BN → BN be the shift-left operator, so that

E s = E(s0, s1, s2, . . .) = (s1, s2, s3, . . .).

We can view BN as a module over the polynomial algebra B[X] by letting X act as E.

4.1.1 Linear recurrence relations and companion polynomials
Let B′ ⊃ B be any ring containing B. A sequence s ∈ B′N satisfies a linear recurrence relation of order d
over B if there exist a0, a1, . . . , ad−1 ∈ B so that for every n ≥ d,

sn = a1sn−1 + a2sn−2 + · · ·+ adsn−d. (A)

Note that we do not assume that ad 6= 0. The words recursion and recurrence will be used as synonyms for
recurrence relation, as in speech.
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A sequence s satisfies the recurrence (A) if and only if

P (E)s = 0,

where P (X) is the polynomial

P (X) = Xd − a1X
d−1 − a2X

d−2 − · · · − ad ∈ B[X],

called the companion polynomial (or characteristic polynomial) of the recurrence relation (A).

A recurrence relation is entirely determined by its companion polynomial. If P ∈ B[X] is a monic polynomial,
we will speak of the recurrence relation defined by P or simply the recursion P . The order of the recurrence
relation defined by a monic polynomial P is its degree.

Solutions to linear recurrences

If a sequence in B′N satisfies the recursion defined by a polynomial P , it is also called a solution to the
recursion P . A root of the companion polynomial always gives a solution to the recursion:

Proposition 4.1. Let P ∈ B[X] be monic and α a root of P in some extension B′ of B. Then the sequence
{αn}n = {1, α, α2, . . .} in B′N is a solution to the recursion defined by P .

Note that even α = 0 gives a nonzero solution sequence.

Proof. Since E{αn} = α{αn}, we have (E − α){αn} = 0. It is now clear that if (X − α) divides P (X), then
P (E){αn} = 0.

If B is a field or a domain, then the converse of Proposition 4.1 is also true; see Proposition 4.7 on page 40
below.

4.1.2 Solutions to linear recurrences over a field
In this section, we will assume that B = K is a field, K is its algebraic closure, and K ′/K an arbitrary
extension. We explore the space of solutions to a given recursion P over K of order d.

Lemma 4.2. The space of all solutions in K ′N to a recurrence relation of order d is a d-dimensional vector
space in K ′N.

Proof. Satisfying a recurrence relation is a linear condition, and every solution to a recurrence of order d is
determined by its first d terms, which may be chosen arbitrarily.

All solutions, separable case

A recursion defined by P (X) ∈ K[X] will be called separable if P is separable as a polynomial: that is, its
roots in K are all distinct.

Corollary 4.3 (of Proposition 4.1). If P is separable with roots α1, . . . , αd ∈ K, then every K-solution to
the recursion defined by P is a K-linear combination of the d solutions

{αn1}n, {αn2}n, . . . , {αnd}n.

Proof. Proposition 4.1 says that these sequences are all solutions; Vandermonde determinant says that they
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are all linearly independent; and Lemma 4.2 seals the deal.

As an immediate corollary of Corollary 4.3, we record for future use:

Corollary 4.4. If α1, · · · , αd, c1, . . . , cd are elements of K, then the sequence s with

sn = c1α
n
1 + c2α

n
2 + · · ·+ cdα

n
d

satisfies the recursion defined by P (X) = (X − α1)(X − α2) · · · (X − αd) ∈ K[X].

The constants c1, . . . , cd in K are the weights of the recurrence sequence s.

All solutions, general case

If P is not separable, there is still a general form, but it is more complicated. The following proposition
holds in any characteristic:

Proposition 4.5. Suppose that P ∈ K[X] factors as

P (X) = (X − α1)e1 · · · (X − αr)er

with α1, . . . , αr ∈ K distinct. Then every solution to the recursion P in K
N
is a linear combination of the

e1 + · · ·+ er solutions {(
n

j

)
αn−ji

}
n

, with 1 ≤ i ≤ r and 0 ≤ j < ei.

Here
(
n

j

)
is the integer-valued binomial coefficient function

n 7→ n(n− 1)(n− 2) · · · (n− j + 1)

j!
,

and we insist that
(
n
j

)
αn−j = 0 if n < j for all values of α. A proof of Proposition 4.5 is given in Appendix B.

If charK is 0 or bigger than j, then then the span of(
n

0

)
= 1,

(
n

1

)
= n,

(
n

2

)
=
n2 − n

2
, . . . ,

(
n

j

)
=
n(n− 1)(n− 2) · · · (n− j + 1)

j!

is the same as the span of 1, n, n2, . . . , nj ; and if αi is nonzero then the span of {αn−ji }n is the same as
the span of {αni }n. In other words, the general solution to the recursion defined by P can be rewritten in
the following more familiar way:

Corollary 4.6. In the notation of Proposition 4.5, if charK = 0 or if charK ≥ maxi ei, and if αi 6= 0 for
all i, then every solution s ∈ KN

to the recursion defined by P has the form

sn = g1(n)αn1 + g2(n)αn2 + · · ·+ gr(n)αnr ,

where gi is a polynomial in n of degree less than ei.

The problem in characteristic p is that the set of functions represented by polynomials of degree ≤ p is only p-
dimensional: because the polynomial functions n and np coincide and we’re “missing” the function np−n

p . The
basis of binomial coefficient functions 1, n,

(
n
2

)
,
(
n
3

)
. . .
(
n
p

)
fixes this problem and gives a (p+ 1)-dimensional

space of integer-valued polynomial functions.
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4.1.3 Recurrence sequences over a field
Recall that K is a field, and K ′ an arbitrary extension. A sequence s in K ′N is a K-recurrence sequence, or
simply recurrence sequence, if it satisfies a linear recurrence over K. The order of a recurrence sequence s is
the minimum order of any recurrence that it satisfies.

Minimal polynomial

Proposition 4.7. Let s ∈ KN be a recurrence sequence of order d, satisfying a recursion of order defined by
P ∈ K[X]. Let Q ∈ K[X] be any monic polynomial. Then s is a solution to the linear recurrence defined by
Q if and only if P divides Q.

Proof. Recall that s satisfies recursion P if and only if P (E)s = 0, where E is the shift-left operator defined
on the first page of this chapter. If s satisfies P , then it will satisfy any polynomial that divides P . And if s
satisfies both P and Q, then it will satisfy any K[X]-linear combination of P and Q, including their (monic)
greatest common divisor. But we’ve assumed that s has order equal to the degree of P . Therefore s satisfies
Q if and only if P divides Q.

Proposition 4.7 shows that the minimal polynomial Ps of any recurrence sequence s is well-defined: it is
the recursion polynomial of least degree satisfied by s. Equivalently, it is the (monic) generator of the ideal
ann(s) inside K[X] when X acts on KN through E.

Proposition 4.8. The following are equivalent, for a sequence s ∈ KN:

1. s is a recurrence sequence.
2. The map K[X]→ KN given by P 7→ P (E)s is not injective.
3. The image K[E]s ⊂ KN is finite-dimensional.

The proof is clear.

The space of all recurrence sequences

Let S ⊂ KN be the space of all recurrence sequences, and Ssep ⊂ S the subspace of separable recurrence
sequences: sequences s satisfying a separable recursion.

Proposition 4.9.
1. S is a subalgebra of KN.

2. Ssep is a subalgebra of S.

Proof. We want to show that S is closed under addition and multiplication. If s and t are two recursion
sequences, then PsPt will annihilate s + t. For multiplication, we use the general form of solutions to
recurrences from Proposition 4.5. Over Z, the binomial coefficient functions

(
n
k

)
are a basis for the space

of all integer-valued polynomial functions (Theorem B.2), so that products of binomial coefficient functions
are expressible as linear combinations of binomial coefficient functions. The analogous claim over any ring
follows. In particular, if Ps =

∏
i(X − αi)

ei and Pt =
∏
j(X − βj)

fj , then the componentwise product
sequence s · t will satisfy the recursion defined by∏

i,j

(X − αiβj)ei+fj−1.
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Finally, if s and t are separable recurrence sequences, then no binomial coefficient functions appear in the
their sum or product, so that s+ t and st will be separable as well.

4.2 Recursion operators on polynomial rings
Let k be a field, and B = k[y] the polynomial algebra over y. A parameter on B is any y′ ∈ B so that
B = k[y]: that is, y′ is a parameter if y′ = ay + b with a nonzero.

We will be considering recurrence sequences over k[y]. Whenever we need a field, we embed into K = k(y)

or into k(y).

4.2.1 Recurrence sequences over k[y]
We begin with a general lemma about recurrence sequences over k[y], which already illustrates how the
theory of recursion over k[y] is different from the general case.

Lemma 4.10. Let {sn} ∈ k[y]N be a recurrence sequence satisfying recursion polynomial P (y,X) ∈ k[y][X].
If α is an element of some extension L of k(y), then {sn(α)}n ∈ LN is a recurrence sequence satisfying the
recursion defined by P (α,X) ∈ L[X].

Proof. For a sequence s ∈ BN to satisfy a recurrence relation defined by a polynomial P ∈ B[X] is a
completely algebraic property: we must have P (E) s = 0 ∈ BN. In particular, this property is preserved
under base change: if φ : B → B′ is any map of algebras, then φ(s) := {φ(sn)} ∈ B′N satisfies the recursion
defined by the polynomial φ(P ) := φ[X](P ), where φ[X] : B[X]→ B′[X] is the map induced by φ.

Apply this principle to the map k[y] → L defined by y 7→ α. Since the sequence {sn(y)} ∈ k[y]N satisfies
the recurrence relation P (y,X) defined over k[y], the sequence {sn(α)} ∈ LN satisfies the recurrence relation
P (α,X) defined over K.

If {sn} is separable, then I expect that {sn(α)} will be separable as well, but I do not have a full proof of
this fact. However, we will make use of a special case, which requires the following definition.

Definition. Let L be any field extension of K. A K-recurrence sequence s ∈ LN has weights in k if

sn = c1α
n
1 + c2α

n
2 + · · ·+ cdα

n
d (B)

for some αi ∈ K and ci ∈ k.

In particular, s is automatically separable. Since s is separable, we know a priori sn has the form (B) for
ci ∈ K (Corollary 4.4); the condition of weights in k restricts the ci. Recurrence sequences with weights in k
are closed under addition and multiplication: the arguments of Proposition 4.9 are easily adapted.

Lemma 4.11 (cf. Lemma 4.10). If s = {sn(y)} ∈ k[y]N is a recurrence sequence with weights in k, then so
is s(α) = {sn(α)}n for any α in any extension L of k(y).

Proof. From Lemma 4.10 we already know that s(α) is a recurrence sequence. By linearity, we can reduce to
the case where t has equal weights 1. (Factor its recursion polynomial into irreducibles over k[y]; a recurrence
sequence whose recursion polynomial is irreducible over k[y] has weights that are Galois conjugates, equal if
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in k.) Let P = P (y,X) be the companion polynomial of the recursion satisfied by s, and β1, . . . , βd be its
roots. The Xd−i coefficient of P is, up to sign, ai = ei(β1, . . . , βd), the ith elementary symmetric polynomial.
By assumption, sn = pn(β1, . . . , βd), the nth power sum polynomial. Newton’s identities express pn as a
polynomial in the e1, . . . , en with coefficients in Z; to fix ideas, let pn = Φn(e1, . . . , en). In particular, since
en(β1, . . . , βd) = 0 for n > d, we know that sn = Φn(a1, . . . , ad): this is a polynomial relationship between
elements of k[y].

Passing to the sequence s(α) via the map y 7→ α doesn’t change this polynomial relationship: that is,
sn(α) = Φn

(
a1(α), . . . , ad(α)

)
. This means that sn(α) is the nth power sum function of the roots of P (α,X):

in other words, s(α) is separable sequence with weights in k. (Note that P (α,X) need not any longer have
distinct roots, so we cannot conclude that s(α) has equal weights: the most we can say is that the weights
of s(α) are sums of the weights of s.)

4.2.2 Introducing recursion operators
Definition. A recursion operator T : k[y] → k[y] is a k-linear operator so that the sequence {T (yn)}n of
elements of k[y] is a recurrence sequence over k[y].

We endow T with all of the properties of the recurrence sequence {T (yn)}: its minimal polynomial PT is
the minimal polynomial of T ; its order is also the order of T ; if it is separable, then T is separable as well;
if it is separable with weights in k, the so is T .

Example. The identity operator 1 is a separable recursion operator of order 1, since {1(yn)} = {yn} satisfies
the recursion defined by the polynomial X − y in k[y][X].

Example. The basic degree-lowering operator T defined by {T (yn)}n≥0 = {0, 1, y, y2, y3, . . .} is a separable
recursion operator of order 2. The nth term of the defining sequence is yn−0n

y , and the minimal polynomial
is X(X − y).

For many more interesting examples, see section 6.2.

We will show that many important properties of PT,y depend only on T and not on the parameter y, and
eventually drop the y from notation.

Intrinsic definition

The definition of a recursion operator is less arbitrary, and less dependent on the parameter y, than it appears
at first glance:

Proposition 4.12. A linear operator T : k[y]→ k[y] is a (separable) recursion operator (with weights in k)
if and only, for every f ∈ k[y], the sequence {T (fn)}n is a (separable) recurrence sequence over k[y] (with
weights in k).

Proof. One direction is clear. For the other, we take a recursion operator T and an f ∈ B, and seek to prove
that {T (fn)} is a recurrence sequence.

Separable case: First suppose that T is separable, so that T (yn) =
∑d
i=0 ciα

n
i for some ci, αi ∈ K
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(Proposition 4.3). For any g(y) =
∑
k bky

k ∈ k[y],

T
(
g(y)

)
=
∑
k

bkT (yj) =
∑
i,k

bk ci α
k
i =

d∑
i=0

cig(αi).

Therefore, with g = fn, we have
T (fn) =

∑
i

cif(αi)
n,

so that {T (fn)}n is visibly a separable recurrence sequence whose weights are sums of the weights of
{T (yn)}n; it satisfies the recursion defined by(

X − f(α1)
)
(X − f(α2)

)
· · ·
(
X − f(αd)

)
.

General case (sketch): We use notation from Appendix B. From Proposition B.5,

T (yn) =
∑
i,j

ci,j

(
n

j

)
αn−ji

for some αi and ci,j ∈ K. With g(y) =
∑
k bky

k a general element of B as above, and dm the differential-like
operator defined on page 101, we have for every m,

dmg(y) =
∑
k

bk

(
k

m

)
yk−m,

which means that

T
(
g(y)

)
=
∑
i,j,k

bk ci,j

(
k

j

)
αk−ji =

∑
i,j,k

bk ci,j

(
k

j

)
αk−ji =

∑
i,j

ci,j djg(αi).

Therefore, with g = fn,
T
(
fn
)

=
∑
i,j

ci,j (djf
n)(αi).

Now we can use an analog of Faà di Bruno’s formulas for dj

dyj f
n to express djfn as a B-linear combination of

fn−1, . . . fn−j with coefficients equal to products of binomial coefficient functions and powers of various d`f
for ` ≤ j. Since products of binomial coefficient functions are themselves Z-linear combinations of binomial
coefficient functions (Theorem B.2), the final expression can again be recognized as a recurrence sequence.

Minimal polynomials of recursion operators

For a recursion operator T , we let PT,f be the minimal polynomial of the recurrence sequence {T (fn)}n.
This is a polynomial in k[y][X]; for any such P ∈ k[y][X], we will attempt to keep track of the variables by
writing P (y,X), if necessary. The proof of Proposition 4.12 shows that, for a separable∗ operator T and for
any f ∈ k[y], the sequence {T (fn)} satisfies

Q =
(
X − f(α1)

)
(X − f(α2)

)
· · ·
(
X − f(αd)

)
(C)

If f(αi) = f(αj) for some i 6= j in the notation of the proof, then the order of {T (fn)} may be strictly less
∗In fact, I expect that this is true for all recursion operators.
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than the order of {T (yn)}. Nonetheless, by Proposition 4.7, if T is separable

PT,f (y,X) divides Q in K[X], (D)

so that the order of the sequence {T (fn)} is less than or equal to the order of {T (yn)}. If we choose another
parameter y′ = a+ by of k[y], then by symmetry, we must have degX PT,y = degX PT,y′ , since each divides
a polynomial of degree equal to the degree of the other one. In particular, the order of a separable recursion
operator T on k[y] depends only on T and not on the choice of parameter y.

Corollary 4.13 (of discussion above). If T is a separable recursion operator of order d, then

d = maxf∈B
{

order of recursion sequence {T (fn)}
}
.

In other words, we may freely speak of the order of the recursion satisfied by a separable recursion operator
T without specifying anything else.

Weights in Fp and the frobenian property

Here we briefly consider the case k = Fp for some prime p, before quickly returning to the general case. Call an
operator T on an Fp-algebra B frobenian if it commutes with the pth power map: that is, if T (fp) =

(
T (f)

)p
for all f ∈ B. For example, Hecke operators Tn with n prime to p acting on spaces of modular forms mod p
are frobenian operators.

Lemma 4.14. Let F be an arbitrary extension of Fp. A separable recursion operator T on F[y] is frobenian
if and only if it has weights in Fp.

Proof. Let s = {T (yn)}n be separable. We must show that s has weights in Fp if and only if spn = snp for
all n. For the “only if” direction, let sn =

∑
i ciα

n
i for some ci, αi in F(y). If ci ∈ Fp, then

snp = c1α
np
1 + · · ·+ cdα

np
d = (c1α

n
1 + · · ·+ cdα

n
d )
p

= spn.

Conversely, suppose that for all n,

0 = spn − snp =
d∑
i=1

(cpi − ci)α
np
i =

(
αnp1 · · · αnpd

)
cp1 − c1

...
cpd − cd

 .

Putting these together for n = 0, 1, . . . , d− 1, we get a matrix equation
1 · · · 1

αp1 · · · αpd
...

. . .
...

(αp1)
d−1 · · · (αpd)

d−1



cp1 − c1

...
cpd − cd

 =


0
...
0

 .

The matrix on the left is in Vandermonde form, and its determinant is∏
1≤i<j≤d

(αpj − α
p
i ) =

∏
1≤i<j≤d

(αj − αi)p.

Since the αi are assumed to be distinct, the Vandermonde matrix is invertible over K, which means that
cpi = ci for all i: all the weights are in Fp.

44



Chapter 4. Recursion operators 4.2. Recursion operators

In other words, the weights-in-k property is a very natural one to consider in the context of Hecke operators
in characteristic p.

4.2.3 Properties of recursion operators
We define three related properties that a recursion operator on a polynomial algebra may satisfy, in addition
to separability and the weights-in-k property.

Filteredness

Recall that B = k[y]. We use the convention that the degree of the polynomial 0 ∈ B is −∞.

Definition. A sequence s ∈ BN is filtered if deg sn ≤ n for all n, and i-filtered if deg sn ≤ n− i for all n.
An operator T on B is (i-)filtered if the sequence {T (yn)} is.

Being filtered is the same thing as being 0-filtered.† Unless otherwise noted, everything stated below for
filtered sequences and operators will still be true if filtered is replaced by i-filtered. For example:

An operator T on B is filtered if and only if {T (yn)} is a filtered sequence for any (every) parameter y on B.

Properness

Definition.
• A polynomial P = a0X

d + a1X
d−1 + a2X

d−2 + · · · + ad in B[X] is proper if deg ai ≤ i for all i. In
other words P is proper if and only if its total degree is equal to its X-degree.

• A linear recurrence over B defined by the polynomial P is proper if P ∈ B[X] is a proper polynomial.
• A recursion operator T on B is proper if PT,y is proper for any (equivalently, every) parameter y on B.

Lemma 4.15. Let P and Q be two polynomials in B[X]. Then the product PQ is proper if and only if both
P and Q are proper.

Proof. For any polynomial P ∈ B[X], let dP and tP be the X-degree and the total degree, respectively. Let
R = PQ. Then dR = dQ + dP and tR = tQ + tR. Now use the inequality d ≤ t for all three polynomials.

Lemma 4.15 allows us some freedom of expression:

Lemma 4.16.
If T is a recursion operator, then T is proper if and only if it satisfies a proper recursion.

Proof. Suppose {T (yn)} satisfies the recursion defined by R in B[X]. By Proposition 4.7, PT divides R —
a priori in K[X], but since the dividend is monic in B[X], the quotient Q is in B[X]. By Lemma 4.15, R is
proper if and only if PT is.

You can see if a proper recursion operator is filtered by looking at the first few terms of the sequence {T (yn)}
only:

Proposition 4.17.
A proper recursion operator T of order d is filtered if and only if deg T (yn) ≤ n for all n < d.

†Note that some authors use the term filtered for what I have called k-filtered for some k ∈ Z.
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Proof. Let sn = T (yn). We show that sn is a filtered sequence by induction. The base case is n < d. For
n ≥ d, the filtered recursion says that there exist ai ∈ k[y], with deg ai ≤ i, so that sn =

∑
i aisn−i. By

induction deg sn−i ≤ n− i, so that deg sn ≤ n.

Similarly, the condition of being i-filtered for a proper recursion operator of order d can be checked on the
first d terms of the sequence {T (yn)}.

We record one more convenient lemma, easy to prove for separable recursion operators.

Lemma 4.18. A separable‡ recursion operator T is proper if and only if, for every f ∈ B,

PT,f = Xd + a1X
d−1 + · · ·+ ad−1X + ad

satisfies deg ai ≤ i deg f for all i.

Proof. Suppose PT,y is proper, let αi be its roots, and fix f ∈ B of degree d. We want to prove that the nth

elementary symmetric function en of the f(αi)s has degree bounded by dn given that the nth elementary
symmetric function of the αis has degree bounded by n. The highest-degree term of en will come from
the nth elementary symmetric function of the yd term of f , which will be the ndth elementary symmetric
function of the αis. This establishes the f -properness of Q from equation (C). Then use Lemma 4.16.

Fullness

Definition.
• A proper polynomial P = a0X

d+a1X
d−1 +a2X

d−2 + · · ·+ad in B[X] will be called full if deg ad = d.
In other words, P is proper and full if and only if

X-degree of P = y-degree of P = total degree of P .

• A proper recursion defined by P in B[X] will be called full if P is a full polynomial.
• A proper recursion operator T on B is full if PT,y is full for any (equivalently, every) parameter y of B.

The fullness property is not particularly meaningful unless accompanied by properness.

Example. The identity operator is full.

Example. The recursion operator T associated to the sequence {T (yn)}n≥0 = {0, 1, y, y2, . . .} is proper but
not full. Its companion polynomial is PT,y = X2 − yX.

The following three statements are all very easy to prove.

Proposition 4.19.
1. If P and Q are two proper polynomials, then PQ is full if and only if both P and Q are full.
2. A recursion operator is proper and full if and only if it satisfies a proper and full recursion.
3. A proper separable§ recursion operator of order d is full if and only if for every f ∈ B, the constant

term of PT,f has degree ddeg(f).

‡I expect this lemma to be true in general: the proof only requires that {T (fn)}n satisfies the recursion with companion
polynomial as given in equation (C).
§I expect this property to hold in general.
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4.3 The algebra of recursion operators
We will prove that the space of separable with-weights-in-k recursion operators on B = k[y] is a subalgebra
of the algebra of linear operators on B.¶

For concision, we fix a parameter y on B and write PT := PT,y for a recursion operator T on B. Recall
that we write P (y,X) to clarify the dependence of a polynomial P ∈ B[X] on y and X. Recall also that
K = FracB = k(y).

4.3.1 Sum of recursion operators
Proposition 4.20. Let S, T be two operators.

1. If S, T are filtered, then so is S + T .
2. If S, T are recursion operators, then so is S + T .
3. If S, T are separable recursion operators, then so is S + T .
4. If S, T are separable recursion operators with weights in k, then so is S + T .
5. If S, T are proper recursion operators, then so is S + T .
6. If S, T are full and proper recursion operators, then so is S + T .

Proof. Preservation of filtration is clear. From the proof of Proposition 4.9 and the remark S+T is a recursion
operator satisfying PSPT and separability and separability with weights-in-k is preserved. Lemmas 4.15 and
Proposition 4.19 complete the proof.

We record the following simple lemma for later use.

Lemma 4.21. If T : k[y]→ k[y] is a recursion operator, and α ∈ k, then the operator T ′ = T +α, satisfying
T ′(yn) = T (yn) + αyn is also a recursion operator, and satisfies the polynomial

(X − y)PT (X).

In particular, T ′ is proper (repspectively, proper and full) if T is.

4.3.2 Composition of recursion operators
Proposition 4.22. If S and T are two separable recursion operators and S has weights in k, then S ◦ T is
also a separable recursion operator with weights in k, satisfying the recursion defined by

Q(y,X) = PT (α1, X)PT (α2, X) · · ·PT (αd, X) ∈ B[X] (E)

where α1, . . . , αd ∈ K are the distinct roots of PS(X).

Observe that Q as defined above need not be a separable polynomial; part of the claim is that T ◦ S is a
separable recursion sequence with weights in k nonetheless. In other words PT◦S may be a proper divisor of
Q. (The same phenomenon happens with sums of recursion operators.)

Remarks.
1. I expect this proposition to be true more generally: if S and T are recursion operators, then S ◦ T
¶In fact, I expect that this is also true for the space of all separable recursion operators and the space of all recursion

operators generally, but I do not have a full proof.
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should be as well, satisfying the same Q as above; and if S and T are separable then S ◦ T should be
as well.

2. If the full expected form of Proposition 4.22 holds, then a linear operator on k[y] is a (separable) recur-
sion operator precisely when it transforms (separable) recurrence sequences to (separable) recurrence
sequences.

Proof of Proposition 4.22. We can slightly enlarge our definition of a recursion operator to include recursion
maps S′ : k[y] → K: linear maps S′ from k[y] to some extension K of k(y) with the additional condition
that {S′(yn)}n in KN satisfies a linear recursion over K.

Since we are assuming that S is separable with weights in k, we know that there exist elements αi in K and
ci ∈ k so that S(yn) = c1α

n
1 + · · · + cdα

n
d . Let Si : k[y] → K be the recursion map Si(yn) = ciα

n
i , so that

S = S1 + · · ·+ Sd.

As in the proof of Proposition 4.12, for any f(y) ∈ k[y], we know that Si(f) = cif(αi). Let tn = T (yn).
Then Si

(
T (yn)

)
= Si(tn) = citn(αi). By Lemma 4.11 above, the sequence {citn(αi)} satisfies the recursion

defined by PT (αi, X) ∈ K[X] and has weights in k. Therefore,
{
S
(
T (yn)

)}
satisfies the recursion defined by

Q(X) =
∏
i PT (αi, X) and has weights in k as well. The fact that Q(X) is in k[y][X] comes from symmetry;

this can be made precise using the resultant perspective below.

Remark. More generally, the same argument shows that if S and T are recursion operators with
S separable, then S ◦ T is also a recursion operator satisfying the polynomial (E). But it neither
obviously restricts to showing that S ◦ T is separable if both S and T are, nor obviously generalizes to
general S, and the asymmetry is inconvenient.

The resultant perspective

There is another way to interpret the polynomial Q in Proposition 4.22 above.‖ Consider the algebra
B̃ = k[y,X], and introduce a new variable Z. Then both PT (Z,X) and PS(y, Z) can be viewed as polynomials
in B̃[Z]. I claim that

Q(y,X) = Res
(
PS(y, Z), PT (Z,X)

)
∈ B̃ = k[y,X]. (F)

Here Res(f, g), for polynomials f, g ∈ L[x] over a field L, is the resultant of f and g. It is most commonly
defined as a determinant of a matrix whose rows are shifts of coefficient vectors of f or g padded out with
zeros (see [16] for a self-contained exposition, for example). But an equivalent definition for our monic case
is the following: suppose f = (x− β1) · · · (x− βd) factors over some extension of L. Then

Res(f, g) =

d∏
i=1

g(βi) ∈ L.

Equation (F) is now clear: we find the roots of PS(y, Z) in K = k(y), and then plug them in for y in PT ,
and take the product.

Composition of filtered and proper recursion operators

Composition preservess all the properties that we have introduced.
‖Thanks to Paul Monsky for this suggestion.
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Proposition 4.23. Let S, T be two separable recursion operators on k[y] with weights in k.

1. If S, T are filtered, then so is S ◦ T .
2. If S, T are proper, then so is S ◦ T .
3. If S, T are proper and full, then so is S ◦ T .

Proof. Point 1 is clear (and has nothing to do with recursions): if S and T preserve the degree filtration,
then so does their composition.

Point 2 is proved using the homogeneity properties of the resultant. To see this explicitly, write

s(Z) = PS(y, Z) = Zd + a1Z
d−1 + · · ·+ a0

with ai ∈ k[y]. Similarly, write

t(Z) = PT (Z,X) = b0Z
e + b1Z

e−1 + · · ·+ be,

where bi are polynomials in k[X], degX be = e, and b0 may be zero if PT is not proper. Let s∗(Z) = Zd s
(

1
Z

)
and t∗(Z) = Ze t

(
1
Z

)
, so that Q = Res(s, t) = Res(t∗, s∗) by [16, Theorem 1.12]. The homogeneity property

[16, Theorem 1.4] applied to this case tells us that, if ai and bi is each weighted i, then Q is homogeneous
of weight ed. In our case, because of the filtration assumption, degy ai ≤ i and degX bi ≤ i. Therefore the
total degree of each term of Q is bounded by ed, which clearly the X-degree of Q.

Finally, point 3 can be seen by tracing through the y-degrees in the product expression from Proposition
4.22: the max-y-degree part of Q comes from the constant-in-X term

∏
i α

degy PT
i and the y-degree of that

term is (degy PS)(degy PT ), since degy (
∏
i αi) = degy PS .

4.3.3 The algebra of recursion operators
For simplicity, we will restrict our attention to filtered operators: that is, operators T that preserve the
degree filtration on k[y]. These clearly form a subalgebra F of End k[y].

Proposition 4.24. The following spaces are all subalgebras of F under composition:

1. The space of filtered separable recursion operators with weights in k
2. The space of proper filtered separable recursion operators with weights in k
3. The space of proper and full filtered separable recursion operators with weights in k.

Proof. Proposition 4.20, Proposition 4.22, and Proposition 4.23.

The subspace of i-filtered operators is a two-sided ideal in each algebra. The ideal of 1-filtered operators in
F is the Jacobson radical of F .

4.4 Towards generalizations:
Recursion operators on filtered algebras

A coda: the notion of a filtered recursion operator on a polynomial algebra may be generalized to filtered
algebras.
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Definition. A filtered algebra is an algebra B equipped with an exhaustive N-filtration of linear subspaces

{0} ⊂ B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ B with
⋃
i

Bi = B

so that 1 ∈ B0 and BiBj ⊂ Bi+j for all i, j.

The definitions imply that B0 is a subalgebra, and that each Bi is a B0-module and an ideal of B.

Example. Let B = k[y] and Bi = {f ∈ B : deg f ≤ i}.

Example. Fix a prime p and let B = M0 the space of 0-graded modular forms modulo p as defined in section
2.1.1, and Bi = Mi(p−1), the space of modular forms of filtration bounded by i(p − 1). This is a filtered
Fp-algebra, and every Hecke operator T` is a filtered operator on this space (definition natural and follows).

The second example essentially reduces to the first for p = 2, 3, 5, 7, 13, since M0 = Fp[∆] in each case. The
filtration is indexed differently, but since p − 1 divides w(∆) = 12 in each case, the adjustment is easy to
make.

The following are natural extensions of notions already defined for polynomial algebras.

Definition.
• If B is any algebra, then a linear operator T : B → B is a (separable, resp., separable with weights

in k) recursion operator if the sequence {T (fn)}n is a (separable, resp., separable with weights in k)
recursion sequence for every f ∈ B.

• If B is a filtered algebra, then an operator T : B → B is filtered if T (Bi) ⊂ Bi for all i, and j-filtered
if T (Bi) ⊂ Bi−j for all i. Positively filtered operators are locally nilpotent but the converse need not
be true in this setting.∗∗

• If B is a filtered algebra, recursion operator T on B is proper if, for every f ∈ Bk, the recursion
polynomial PT,f has the form

PT,f = Xd + a1X
d−1 + · · ·+ ad,

where ai ∈ Bki.
• If B is a filtered algebra, a recursion operator T on B is proper and full if for every f ∈ Bk, the

recursion polynomial PT,f has the form

PT,f = Xd + a1X
d−1 + · · ·+ ad,

where ai ∈ Bki and ad ∈ Bkd\Bkd−1.

In Chapter 6, we will show that the Hecke operator T` acting on the filtered algebra M0 is a proper filtered
separable recursion operator with weights in k. For p = 2, 3, 5, 7, 13, we will show that every T ∈ A0 is a
proper and full filtered separable recursion operator with weights in Fp.

∗∗Consider the algebra k[x, y] filtered by total degree. The operator T defined by T (xiyj) = xi+1yj−1 for j > 0 and
T (xi) = xi−1 is locally nilpotent but not 1-filtered.
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Chapter 5

The Nilpotence Growth Theorem

In this chapter we state and prove the Nilpotence Growth Theorem (Theorem 5.1 below). This is the key
technical result of this document, and it is purely algebraic. This chapter is self-contained, though the
discussion in Chapter 4 gives context to some of the conditions of the theorem.

Review of terminology

We fix a prime p. Let F be a field of characteristic p, and F[y] the polynomial algebra.

We rely on the terminology of Chapter 4.

• A linear operator T : F[y] → F[y] is a recursion operator if the sequence {T (yn)} satisfies a linear
recursion over F[y]. That is, there exist a1, a2, . . . , ad ∈ F[y] so that, for all n ≥ d,

T (yn) = a1 T (yn−1) + a2 T (yn−2) + · · ·+ ad T (yn−d).

• The companion polynomial of this recursion is

PT = Xd − a1X
d−1 − a2X

d−2 − · · · − ad ∈ F[y][X]

The operator T is called proper if for all i ≤ d, we have deg ai ≤ i. It is further called full if deg ad = d.
For a full and proper operator T , the X-degree, y-degree, and total degree of PT coincide.

• A linear operator T on F[y] is filtered, or E-filtered for some E ∈ Z, if deg T (yn) ≤ n, or deg T (yn) ≤ n−E,
respectively. Any positively filtered operator is degree-lowering, and therefore locally nilpotent.

• If T is a locally nilpotent operator on F[y], the nilpotence index of any nonzero f ∈ F[y] is

NT (f) = max{k : T kf 6= 0} = min{k : T k+1f = 0}.
Set NT (0) := −∞. Then NT (f) ≤ deg f for all f .

For discussion of these properties, see sections 3.1 and 4.2.

5.1 Statement of the theorem
Let T be a degree-lowering proper recursion operator on F[y]. We will show that if T is full, then NT (yn)

grows slower than linearly in n.
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5.1.1 The most general version
Theorem 5.1 (Nilpotence Growth Theorem (NGT)).

Suppose F is a finite field. Let T be a degree-lowering proper recursion operator on F[y].

If T is full, then NT (f)� (deg f)α for some α < 1.

Which of these conditions is necessary? The degree-lowering property guarantees that the operator is locally
nilpotent. Properness goes hand in hand with this kind of degree control: a proper recursion operator of
degree d is degree-lowering if and only if it lowers degrees on the first d powers of y (Proposition 4.17).
Conversely, if a recurrence is not proper, it is difficult to control the degree of the nth term.

Fullness is necessary, at least in this generality. We have already seen that operator T defined via the
sequence {T (yn)}n≥0 = {0, 1, y, y2, . . .} has recursion order 2 and PT,y = X2 − yX, filtered and proper but
not full. Here NT (yn) = n, so that the nilpotence index is linear in n.

This example is not rigged: computationally it appears that all degree-lowering T with PT proper of degree
d with intermediate terms of total degree d but no yd term to counterbalance them are either degenerate
(logarithmic growth, say) or give linear growth. For example: let p = 2 and consider the operator T defined
by PT = X2 + yX + y. (We have no choice for the initial values: if [T (1), T (y)] 6= [0, 1], then T is either the
zero operator or not degree-lowering.) By induction, deg T (yn) = n− 1. Therefore NT (yn) = n.

Characteristic p is necessary: A counterexample: consider a degree-lowering recursion operator T on
Q[y] with PT = X2 − yX − y2 and degree-lowering initial terms [T (1), T (y)] = [0, 1]. This is a proper, full,
separable recursion, and it is easy to show that T (yn) = Fny

n−1, where Fn is the nth Fibonacci number:
the recursion is sn = ysn−1 + y2sn−2. Therefore

T k(yn) = FnFn−1 · · ·Fn−k+1 y
n−k,

so that NT (yn) = n. (Of course, in characteristic p, we know that F5 = 5 and that p 6= 5 divides Fp±1. Since
Fk also divides Fnk for all n, in fact T p+1 is identically zero on Fp[y].)

Computationally, it appears that characteristic-zero examples that do not degenerate (to log n growth, say),
all exhibit linear growth. In characteristic p, however, you get a spectrum of O(nα) growth for various α.
Further study of these somewhat mysterious phenomena awaits.

Finiteness of F is necessary: The Fibonacci example above may be tweaked∗ to give a counterexample
over Fp(t). Let PT = X2− tyX − y2 and start with [0, 1] again. Then T (yn) = Fn(t)yn−1 with Fn(t) ∈ Fp[t]
monic of degree n − 1, so that NT (yn) = n again. This example suggests that the rather violent reduction
of Theorem 5.1 to Theorem 5.2, which is true over all F of characteristic p (see next section), cannot be
altogether avoided.

Values of α

In general, as the order of the recursion satisfied by T increases, α goes to 1. Not much more can be said
in this generality, but see Theorem 5.2 below, which gives a formula for α in the case where the companion
polynomial of the recursion PT has a particular shape. See also Appendix C.
∗Thanks to Paul Monsky for this observation.
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5.1.2 Special NGT
The proof of Theorem 5.1 proceeds by reduction to the following special case in which the shape of the
recursion satisfied by T is restricted. Note that the statement below has no finiteness restrictions on F, and
even no fullness restriction on the recursion.

Theorem 5.2 (Special NGT). Suppose T is a degree-lowering linear operator on F[y] so that the sequence
{T (yn)}n satisfies a linear recursion whose companion polynomial has the shape

Xd + ayd + (terms of total degree ≤ d−D)

for some D ≥ 1 and some constant a ∈ F. Suppose further that the order d of the recursion satisfies one of
the following conditions:

1. d is a power of p,
2. d is one less than a power of p,
3. d = qm(q − 1) where q > 2 is a power of p and m ≥ 1.

Then

NT (yn)� nα for α =
log(pk −D)

log pk
,where pk satisfies pk−1 < d ≤ pk.

The theorem is stated for yn for simplicity, but the same statement holds with yn replaced by f and n

replaced by deg f .

Case (3) alone is enough to prove Theorem 5.1 (see proof below), but the argument is substantially easier in
cases (1) and (2), and gives much better α bounds. For the sake of presentation, we will first give the proof
in the toy case d = p and D = 1 in section 5.3, which makes a good stopping point for a first reading. The
general case (1) is not much more complicated, but we give it together with case (2) next. The proof of case
(3) itself is technical.

I expect that Theorem 5.2, with its precise α, holds for any d. In addition to the cases above, I have proved
it for all d prime to p, but the proof is longer and even more technical, and relegated to Appendix D.

Computationally, it appears that α = logpk(pk −D) is optimal when d = p and not optimal otherwise. See
Appendix C for more discussion and some examples of T apparently achieving NT (yn) � nα.

Proof that Special NGT implies NGT (Theorem 5.2 =⇒ Theorem 5.1).
Let P = Xd + a1X

d−1 + · · · + ad ∈ F[y][X] be the companion polynomial of the proper and full recursion
satisfied by the sequence {T (yn)}n. We will show that P divides a polynomial of the form

Xe − ye + (terms of total degree < e)

for e = qm(q − 1), where q is a power of p and m ≥ 0. Then the sequence {T (yn)}n will also satisfy the
recursion associated to a polynomial of the shape required by Theorem 5.2.

Let H be the degree-d homogeneous part of P , so that P = H + (terms of total degree < d). I claim
that there exists a homogeneous polynomial S ∈ F[y,X] so that H · S = Xe − ye for some positive
integer e of required form. Once we find such an S, we know that P · S will have the desired shape
Xe − ye + (terms of total degree < e).
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To find S, we dehomogenize the problem by setting y = 1: let h(X) := H(1, X) ∈ F[X], a monic polynomial
of degree d and nonzero constant coefficient. Let F′ be the splitting field of h(X); under our assumptions
all the roots of h(X) are nonzero. Let q be the cardinality of F′. (Recall that we are assuming that F, and
hence its finite extension F′, is a finite field.) Every nonzero element α ∈ F′, and hence every root of h(X),
satisfies αq−1 = 1.

Finally, let qm be a power of q not less than any multiplicity of any root of h(X). Since every root of h
satisfies the polynomial Xq−1−1, we know that h(X) divides the polynomial

(
Xq−1−1

)qm
= Xqm(q−1)−1.

Set e = qm(q − 1), and let s(X) be the polynomial in F[X] satisfying h(X)s(X) = Xe − 1.

Now we can finally “rehomogenize” again: if S ∈ F[y,X] is the homogenization of s(X), then Q ·S = Xe−ye,
so that S is the homogeneous scaling factor for P that we seek.

5.1.3 Very special NGT with constants
Before we begin the proof of Theorem 5.2, we state a more precise version in a yet more constrained case.
It will be used for estimating growth nilpotence indices of modular forms with respect to certain Hecke
operators for p = 2, 3, 5 in Chapter 8.

Theorem 5.3 (Very special case of NGT). Let T be an E-filtered recursion operator F[y] satisfying the
recursion defined by a polynomial of the form

(X + ay)d + (terms of total degree ≤ d−D)

for some constant a ∈ F (not necessarily nonzero). Then

NT (yn) ≤ (pk −D)(pk − 1)

E(pk −D − 1)
nlog

pk
(pk−D). (A)

This is Corollary 5.20 in section 5.9 and proved there.

5.2 Overview of the proof
Here’s the general plan of attack for Theorem 5.2, and for its refinements in section 5.9 and Appendix D.

Given a degree-lowering recursion operator T we will define an integer-valued function cT : N → N with
growth on the order of nα for some α < 1 and satisfying cT (n) = 0 only if n = 0. We also define cT on
polynomials in F[y] by values on the exponents: for f =

∑
biy

ni ∈ F[y], define cT (f) := maxbi 6=0 cT (ni).
Also set cT (0) := −∞.

To get the bound on NT , we will show that T lowers cT : that is, that cT (T (f)) < cT (f) for all f 6= 0. Since
cT (f) takes integer values, we know that cT

(
T cT (f)(f)

)
≤ 0, which means that T cT (f)(f) is a constant, so

that NT (f) ≤ cT (f). Hence the growth bound NT (f) ≤ cT (f)� (deg f)α.†

From the definition of cT on polynomials, it’s clear that, to show that T is cT -lowering, it suffices to prove
that cT (yn) < cT (n) for all n. This step is done using the recursion by a tricky induction on n: instead of
†Remarkably, for d = p it appears that one can always find T satisfying the conditions of Theorem 5.2 with NT (yn) = cT (yn)

“most” of the time. See Appendix C for more discussion.
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using the recursion of order d corresponding to the given companion polynomial P (X), we use a so-called
deeper recursion of order d pk, corresponding to a (pk)th power of P (X) for some s depending on d and n.
The sequence {T (yn)}n will still satisfy the recursion given by P (X)p

k

since this polynomial is divisible by
P (X). The base case is always n < d, which is checked by hand.

On deeper recurrences

Deeper recurrences are a special case of a completely general recursion phenomenon, but in characteristic
p, they have a particularly nice form. The basic idea is very simple: if a sequence s ∈ F[y]N satisfies the
recursion defined by Q ∈ F[y][X], then it also satisfies the recursion defined by any polynomial divisible by
Q, in particular the recursion defined by Qp

k

for any k. That is, if s satisfies polynomial

Q = Xd − a1X
d−1 − a2X

d−2 − · · · − ad

corresponding to the recurrence

sn = a1sn−1 + a2sn−2 + · · ·+ adsn−d for all n ≥ d

then s will also satisfy
Qp

k

= Xdpk − ap
k

1 X(d−1)pk − ap
k

2 X(d−2)pk − · · · − ap
k

d

corresponding to the recurrence

sn = ap
k

1 sn−pk + ap
k

2 sn−2pk + · · ·+ ap
k

d sn−dpk for all n ≥ dpk.

It is not unreasonable to expect that any study of recursion operators and sequences in characteristic p would
involve looking at digits of a number base p. We see this phenomenon in Nicolas and Serre’s calculations
of NT3(∆n) + NT5(∆n) for p = 2 [23]. We also see it in Derksen’s recent theorem that the index set of the
zeros of any (nice enough) recurrence sequence (that is, the set Z(s) = {n : sn = 0}) in characteristic p is
p-automatic [10].

What deeper recursions allow is an inductive argument that allow you compare sn not with sn−1 or sn−2 —
these small differences can be very disruptive for the base-p expansion of n — but with sn−pk and sn−2pk

for a k of your choosing. In other words, it allows you to pretend that n has only one or two digits base p,
which idea is used in the proof of Theorem 5.2. I learned this technique from Gerbelli-Gauthier’s alternate
proof [13] of the key technical lemmas of Nicolas-Serre [23].

5.3 A toy case of the Nilpotence Growth Theorem
In this section, we prove a baby subcase of case (1) of Theorem 5.2: d = p, D = 1, F = Fp.

Theorem 5.4 (Toy case of NGT). If T : Fp[y] → Fp[y] is a degree-lowering linear operator so that the
sequence {T (yn)}n satisfies a linear recursion over Fp[y] with companion polynomial

P = Xp + (terms of total degree < p) + ayp ∈ Fp[y][X]

then NT (yn)� nlogp(p−1).

The proof is technically much simpler, but all of the main features of the general case are present.
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5.3.1 The helper content function
We define a function c : N→ N depending on our prime p as follows. Given an integer n, we write it base p
as n =

∑
i ai(n)pi with ai(n) digits base p, only finitely many of which are nonzero, and define the p-content

of n as c(n) :=
∑
i ai(n)(p− 1)i.

For example, since 71 = [2 4 1]5 in base 5, the 5-content of 71 is 2 · 42 + 4 · 4 + 1 = 49.

The following properties are easy to check. The first one is proved in Lemma 5.5 in section 5.4.1 below,
where the content function and many variations are discussed in great detail.

1. c(n)� nlogp(p−1)

2. c(pkn) = (p− 1)kc(n) for all k ≥ 0

3. If 0 ≤ n < p, then c(n) = n.
4. If i is a digit base p and i ≤ n < p2, then c(n− i) is either c(n)− i or c(n)− i+ 1.
5. If p ≤ n < p2, then c(n− p) = c(n)− p+ 1.

5.3.2 Setup of the proof
For f ∈ Fp[y], define the p-content of f 6= 0 by c (

∑
any

n) := maxan 6=0 c(n); set c(0) = −∞. For example,
the 3-content of 2y9 + y7 + y2 is 5.

Let T : Fp[y]→ Fp[y] be a degree-lowering recursion operator whose companion polynomial

P = Xp + a1X
p−1 + · · ·+ ap ∈ Fp[y][X]

satisfies deg ai < i for 1 ≤ i < p and deg ap = p, as in case (1) of Theorem 5.2.

We will show that T lowers p-content of any f ∈ Fp[y]: that is, that c(Tf) < c(f). It willl suffice to do
this for f = yn. We will proceed by induction on n, each time using the deeper recursion of order pk+1

corresponding to P p
k

with k chosen so that pk+1 ≤ n < pk+2. The base case is n < p, in which case being
p-content-lowering is the same thing as being degree-lowering.

5.3.3 The induction
Induction in the toy case. For n ≥ p, we show that c(T (yn)) < c(n) assuming that c(T (ye)) < c(e) for all
e < n. As above, choose k ≥ 0 with pk+1 ≤ n < pk+2. The polynomial

P p
k

= Xpk+1

− ap
k

1 Xpk+1−pk − ap
k

2 Xpk+1−2pk − · · · − ap
k

p ∈ Fp[y][X]

corresponds to the recursion of order pk+1

T (yn) = ap
k

1 T (yn−p
k

) + ap
k

2 T (yn−2pk) + · · ·+ ap
k

p T (yn−p
k+1

).

Pick a term ye appearing in T (yn); we want to show that c(e) < c(n). From the recursion, ye comes
from ap

k

i T (yn−ip
k

) for some i. More precisely, ye appears in yjp
k

T (yn−ip
k

) for some yj appearing in ai,
so that either j < i or i = j = p. Then ye−jp

k

appears in T (yn−ip
k

), and by induction we know that
c(e− jpk) < c(n− ipk). To conclude that c(e) < c(n), it would suffice to show that

c(n)− c(e) ≥ c(n− ipk)− c(e− jpk),
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or, equivalently, that
c(n)− c(n− ipk) ≥ c(e)− c(e− jpk).

Since subtracting multiples of pk leaves the last k digits of n base p untouched, we may replace n and e by
b n
pk
c and b e

pk
c, respectively, and then cancel out a factor of (p− 1)k. In other words, we must show that

c(n)− c(n− i) ≥ c(e)− c(e− j).

for n, e, i, j satisfying i ≤ n < p2 and j ≤ e < n and either j < i or i = j = p. But this an easy consequence
of the properties of c listed in section 5.3.1. For j < i, we know that c(n) − c(n − i) is at least i − 1 and
c(e)− c(e− j) is at most j ≤ i− 1. And for i = j = p both sides equal p− 1.

5.3.4 A good stopping point
This toy case already shows most of the features of the general case. Most of the difficulty of generalization
comes from working with more general versions of the content function. For example, the proof for case (1)
for d a power of p proceeds the same way, but we use base b = pk for the content function. The refinement
in α coming from the degree descent D comes from replacing the base b with b−D rather than b− 1. These
steps are both straightforwards. However, to prove cases (2) and (3) we must extend the notion of content
to rational numbers (section 5.4), whence the technical difficulties. Case (2) is still relatively simple because
the base b expansion of 1

b−1 is so easy; it is proved in sections 5.5 and 5.6 together with the general case (1).
Case (3) is more computationally complicated, and postponed until sections 5.7 and 5.8.

The rest of this chapter is devoted to the proof of Theorem 5.2, as well as a few technical refinements in
section 5.9. Now is an excellent stopping point for a first reading. Chapter 6 begins on page 70.

5.4 The helper function cT

5.4.1 The content function for integer n
First, we introduce a general type of function with sublinear growth out of which all the cT s will be built.
The idea for this kind of function was originally suggested by Bellaïche, as in the appendix to [5].

Definition. Fix an integer b ≥ 2 as the base. Let D be a descent : a integer with 0 ≤ D ≤ b − 1. Given a
nonnegative integer n, write it in base b as n = [a` a`−1 · · · a1 a0]b, where ai ∈ {0, 1, . . . , b − 1} are digits
base b, and ` = blogb nc, so that n =

∑
i aib

i. Then the (b,D)-content of n is the quantity

cb,D(n) =
∑̀
i=0

ai(b−D)i.

In particular, cb,0(n) = n, and cb,b−1(n) is sum of the digits in the base-b expansion of n. In applications, b
will always be a power of p and D ≥ 1.

For example, since 196 = [1 2 4 1]5 in base 5, we have c5,2(196) = 1 · 33 + 2 · 32 + 4 · 3 + 1 = 58.

If D > 0, then the growth rate of cb,D(n) is sublinear in n. Indeed, let ` = blogb nc. Then

cb,b−1(n) ≤ (b− 1)(`+ 1)� log(n).
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And for D < b− 1, note that (b−D)` ≤ nlogb(b−D):

cb,D(n) ≤
∑̀
i=0

(b− 1) · (b−D)i = (b− 1)
(b−D)`+1 − 1

b− 1−D
<

(b− 1)(b−D)

b− 1−D
nlogb(b−D) � nlogb(b−D).

We have therefore proved

Lemma 5.5. For 0 < D < b − 1, we have cb,D(n) ≤ (b−1)(b−D)
b−1−D nlogb(b−D) � nlogb(b−D). Moreover,

cb,b−1(n)� log n.

Although we will not use this fact in full generality for the proof of Theorem 5.2, the content function exhibits
a certain amount of regularity under addition and subtraction. See Lemma D.2 in Appendix D, where a
slight generalization of Theorem 5.2 is proved.

5.4.2 Extending content to rational n
From now on, we assume that b > 2 and that the descent D satisfies 1 ≤ D < b− 1.

We extend the definition of (b,D)-content to nonnegative rational numbers in the most natural way. Write
n ∈ Q+ in base b: that is, find a infinite sequence of base b digits[

ar, ar−1, ar−2, . . . , a0, a−1, a−2, . . . . . .
]

indexed by all integers less than or equal to r = blogb nc satisfying

n =

r∑
i=−∞

aib
i.

If the base-b expansion of n is finite — that is, if bkn is in Z for some k — then there are two choices for this
expansion, and we choose the “proper” one: the one with ai = 0 for i � 0. This proper base-b expansion
extends the one we use for integers. Finally, define cb,D(n) exactly as before:

cb,D(n) =
∑
i

ai(b−D)i.

This converges since we have assumed that D > b − 1 and the ai are uniformly bounded. Because n is
rational, its base-b digits ai will be eventually periodic for negative i, which implies that cb,D(n) is always
rational.

For example, if b = 7 and n = 1
3 , then n = [0.2]7 =

∑
i≤−1 2 ·7i, so that c7,2(n) =

∑
i≤−1 2 ·5i = 1

2 . Similarly,
c7,2
(

1
4

)
= c7,2

(
[0.1 5]

)
= 5

12 .

We record two lemmas. The first is a useful multiplicativity property clearly satisfied by (b,D)-content by
definition.

Lemma 5.6. Let b be a base and D a descent. If n ∈ Q≥0 and k ∈ Z, then

cb,D(bk n) = (b−D)k cb,D(n).

And the second is trivial:

Lemma 5.7. If 1 ≤ n < b, then cb,D(n)− cb,D(n− 1) = 1.
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Integrality

In this section, we suppose that d is prime to b.

Then 1
d base b is purely period of period `, where ` ≥ 1 is the multiplicative order of b modulo d. Write

1

d
=

A

b` − 1
,

where A = [a−1 a−2 . . . a−`] is the integer whose base-b digits are one full period cycle of 1
d .

Lemma 5.8. If i satisfies 0 ≤ i < d then

cb,D

(
i

d

)
=

cb,D(iA)

(b−D)` − 1
.

Proof. Computation using the periodicity of the expansion. Note that, for these values of i the number of
digits in im base b is exactly `.

Corollary 5.9. If n is any number in 1
dZ

+, and ` is the multiplicative order of b modulo d, then(
(b−D)` − 1) cb,D(n)

is an integer.

Proof. Write n = N + i
d where N is an integer and 0 ≤ i < d. Then cb,D(n) = cb,D(N) + cb,D

(
i
d

)
. Now use

Lemma 5.8.

Growth

The examples in the beginning of this subsection show that, if n is not an integer, then cb,D(n) need not be less
than n. However, we can easily bound the bad behavior. We have observed that cb,D(n) = cb,D

(
bnc
)
+cb,D

(
(n)
)
,

where (n) = n−bnc is the fractional part of n. Since cb,D(n) ≤ n for all integers n, to see how much cb,D(n)

may exceed rational n, it suffices to look at n strictly between 0 and 1. In this case, cb,D(n) is always strictly
bigger than n — but fortunately, not by much:

cb,D(n)− n =
∑
i≥1

a−i
1

(b−D)i
−
∑
i≥1

a−i
1

bi
=
∑
i≥1

a−i
bi − (b−D)i

bi(b−D)i
.

It is clear that for fixed b,D this sum is maximized if a−i = b − 1 for all i. (In this case, n = 1 and the
expansion is not proper, but this is irrelevant for the bound.) We estimate: for 0 < n < 1,

cb,D(n)− n <
∑
i≥1

b− 1

(b−D)i
− 1 =

b− 1

b−D
1

1− 1
b−D

− 1 =
D

b− 1−D
.

The weaker statement that, for 0 < n < 1, we have cb,D(n) < b−1
b−D−1 = O(1) establishes that cb,D(n) is still

O
(
nlogb(b−D)

)
. More precisely,

cb,D(n) <
(b− 1)(b−D)

b− 1−D
nlogb(b−D) +

b− 1

b−D − 1
. (B)
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5.4.3 Defining cT given T

Let P (X) = Xd + cyd + (terms of total degree ≤ d − D) be the companion polynomial of the recursion
satisfied by {T (yn)}. We take three cases, as in the conditions of Theorem 5.2. In each case, we will set
cT (n) := MT cb,D

(
n
d

)
for the smallest p-power b ≥ d and MT chosen to make cT integral, though note that

in case (3) there is a further condition on D.

1. Case d is a power of p. Let b = d. Set MT = d−D, so that

cT (n) := (d−D) cb,D

(n
d

)
= (b−D) cb,D

(n
d

)
.

This function coincides with cb,D(n), so it is integer-valued.

2. Case d is one less than a power of p. Define b so that d = b− 1. Set MT = d−D and

cT (n) := (d−D) cb,D

(n
d

)
= (b−D − 1) cb,D

(n
d

)
.

This is integer-valued by Corollary 5.9 with ` = 1.

3. Case d = qm−1(q−1) for q > 2 a power of p and m ≥ 2. Define b = qm. SetMT = (b−D)(b−D−1)

and
cT (n) := (b−D)(b−D − 1) cb,D

(n
d

)
.

The proof will require that D <
q[m]q

2 , where we use the notation [m]q = qm−1
q−1 .

This function is integer-valued because

cb,D

(n
d

)
= cb,D

(
b−1 nq

q − 1

)
= (b−D)−1cb,D

(
nq

q − 1

)
and Corollary 5.9 applies again with ` = 1.

Although case (3) reduces to case (2) for m = 1, it is actually quite a bit more complicated than case (2).
In fact, it is cases (1) and (2) that behave similarly, and simply, and unconditionally.

5.5 The base property and the step property
Let d, D, and b be as in one of the three cases above, and write c for cb,D. The induction argument for the
proof of Theorem 5.2 requires two properties of c.

The first property is required to establish the base case of the induction.

• Base property: c is strictly increasing on the set {0, 1
d ,

2
d , . . . ,

d−1
d }.

This is easily seen to be true in cases (1) and (2): in both cases, c
(
i
d

)
= i

d−D (Lemma 5.10 below). For case
(3), this is only true for D not to big. This is established in Corollary 5.14 in section 5.8.

The second property is required for the inductive step. The induction proceeds by considering each yjXd−i

term of the recursion polynomial in turn. Accordingly, i and j are integers between 0 and d satisfying
j ≤ i−D. Moreover, e and n are rational numbers in 1

dZ satisfying 0 ≤ e < n < b and n ≥ i
d and e ≥ j

d .
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• Step property: If i and j satisfy 0 ≤ j ≤ i−D < i ≤ d, then

c(n)− c
(
n− i

d

)
≥ c(e)− c

(
e− j

d

)
.

In cases (1) and (2), Lemma 5.11 below and Lemma 5.7 above establish that, for n and i in these ranges,

c(n)− c
(
n− i

d

)
∈
{

i

d−D
,
i−D
d−D

}
,

and similarly for e and j. Therefore the least possibility for the left-hand side is i−D
d−D , and the biggest

possibility for the right-hand side is j
d−D . Since j ≤ i−D, this is just enough to establish the inequality.

For case (3), this statement is more involved and established in section 5.8.

5.5.1 Lemmas for cases (1) and (2)
As noted above, we need the following lemma for the inductive step for cases (1) and (2), if d is either a
power of p or one less than a power of p. In fact, the lemma is true for any base b ≥ 2 and D ≤ d, where d
is either b or b− 1.

Lemma 5.10. If d = b or d = b− 1, then for A with 0 ≤ A < d,

cb,D

(
A

d

)
=

A

d−D
.

Proof. Computation. The fact that the formula looks the same is a coincidence that explains the similarity
of case (1) and case (2).

Lemma 5.11. Suppose n ∈ 1
dZ≥0 satisfies n < b, and i is an integer with 0 ≤ i < d and i

d ≤ n. Then

cb,D(n)− cb,D
(
n− i

d

)
∈
{

i

d−D
,
i−D
d−D

}
.

Proof. Write c = cb,D. Let n = N + A
d , where N < b and 0 ≤ A < d. We will use the fact that

c(n) = c(N) + c
(
A
d

)
and Lemma 5.10.

If A ≥ i, then

c(n)− c
(
n− i

d

)
= c(N) + c

(
A

d

)
− c(N)− c

(
A− i
d

)
=

A

d−D
− A− i
d−D

=
i

d−D
.

And if A < i, then

c(n)− c
(
n− i

d

)
= c(N) + c

(
A

d

)
− c(N − 1)− c

(
d+A− i

d

)
= 1 +

A

d−D
− d+A− i

d−D
=
i−D
d−D

,

by Lemma 5.7.

Proving the base and step properties for case (3) is postponed until section 5.8.
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5.6 The main induction
We are ready to give the proof of Theorem 5.2 for T assuming the base property and the step property from
the previous section hold.

Proof of Theorem 5.2. If d = 1, then T must be the zero operator and the sublinearity statement holds. So
assume that d ≥ 2. Use section 5.4.3 to define b, D, and the function cT (n) = Mcb,D

(
n
d

)
depending on the

case that we are in. (Note that b > 2 unless p = d = 2, in which case cT (n) = c2,1(n) and Lemma 5.11 holds.
The condition b > 2 is otherwise assumed in section 5.4.2 and thereafter.) We assume that c = cb,D satisfies
the two properties from section 5.5.

Write xn for T (yn). Recall that we want to use induction on n to show that cT (xn) < cT (n). The base
case is all n < d. Since T decreases degrees, the statement cT (xn) < cT (n) for n < d is equivalent to the
statement that c = cb,D is increasing on 0, 1

d , . . . ,
d−1
d . This is the base property from section 5.5.

For n ≥ d, let k ≥ 0 be the integer so that d · bk ≤ n < d · bk+1. Let P (X) be our given recursion, and write
it in the form

Xd + ayd +
∑

0≤j≤i−D<i≤d

ai,j y
j Xd−i

with ai,j and a all in F. Raise P (X) to the bk power to get

Xdbk + aydb
k

+
∑

0≤j≤i−D<i≤d

ai,j y
jbk X(d−i)bk .

(Here we have simplified notation by replacing ab
k

by a, and similarly for ai,j . The coefficients play no part
in this game.) This translates into the recursion

xn = −a ydb
k

xn−dbk −
∑

0≤j≤i−D<i≤d

ai,j y
jbk xn−ibk .

We want to show that, for all terms ye appearing in xn we have cT (e) < cT (n). We take two cases, depending
on which term of the order-d bk recursion above ye appears in.

Suppose ye appears in the (i, j)-term in the sum on the right. That is, ye appears in yjb
k

xn−ibk for some
0 ≤ j ≤ i −D < i ≤ d. That means that ye−jb

k

appears in xn−ibk , so that, by the induction assumption,
cT (e− jbk) < cT (n− ibk). To show that cT (e) < cT (n), it would therefore suffice to show that

cT (n)− cT (e)
?
≥ cT (n− ibk)− cT (e− jbk),

or, arranged more conveniently, that

cT (n)− cT (n− ibk)
?
≥ cT (e)− cT (e− jbk)

under our assumptions jbk ≤ e < n and dbk ≤ n < dbk+1 and 0 ≤ j ≤ i − D < i ≤ d. We divide by M ,
replace e and n by their respective quotients by d bk, and use the multiplicativity property of cb,D (Lemma
5.6) to pull out and cancel a factor of (b − D)k. We have therefore reduced the desired inequality to the
inequality

c(n)− c
(
n− i

d

)
?
≥ c(e)− c

(
e− j

d

)
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Note: There is a mistake here in the last reduction step rendering the rest of the proof of Theorem 5.2 invalid in the required generality. Indeed, e and n are now in (1/d) Z[1/b^k], not in (1/d) Z. 
This mistake is corrected in the published version. 
See Medvedovsky, A., “Nilpotence order growth of recursion operators in characteristic p”, Algebra and Number Theory 12 (2018) no. 3, or https://math.bu.edu/people/medved/Mathwriting/Nilgrowth_pubversion.pdf .
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assuming that e, n are in 1
dZ with 0 ≤ e < n < b and that i and j are integers with 0 ≤ j ≤ i−D < i ≤ d,

and that all the arguments of c are nonnegative. This inequality is exactly the step property of section 5.5.

Suppose, on the other hand, that ye appears in the first term. After the same reduction tricks, we must
show that

c(n)− c(n− 1) ≥ c(e)− c(e− 1)

provided that 1 ≤ e, n < b. This is trivially true by trivial Lemma 5.7: both sides are equal to 1.

This completes the proof of Theorem 5.2 in the case where d is a power of p or one less than a power of p.
It still remains to establish the necessary step properties for the case d = qm−1(q − 1). This will be done in
section 5.8. In the next section, we reformulate the properties in a way that makes them more tractable.

5.7 Reformulating the step property
In cases (1) and (2), the step property is proved relatively easily by using Lemma 5.11, which gives two
options for a difference like c(n)− c

(
n− i

d

)
depending on whether the fractional part of n exceeds i or not.

It turns out that a comparable lemma is tricky when summing two proper fractions of denominator d may
cause carrying in digits base b, which difficulty does not occur if d = b or d = b− 1.

The following proposition gives a sufficient condition for satisfying the step property.

Proposition 5.12. Let c = cb,D for some base b and integer descent D. Let d ≤ b be an integer.

Suppose that, for integers A, B, i, j satisfying 0 ≤ j, k, A,B < d and 0 < i ≤ d so that further all the
arguments of c are nonnegative, the following properties are satisfied.

1. If j ≤ i−D, then

c

(
A

d

)
− c
(
A− i
d

)
≥ c
(
B

d

)
− c
(
B − j
d

)
.

2. If k + j ≤ d−D, then

c

(
A

d

)
− c
(
A− k
d

)
+ c

(
B

d

)
− c
(
B − j
d

)
≤ 1.

3. If i+ k ≥ d+D, then

c

(
A

d

)
− c
(
A− i
d

)
+ c

(
B

d

)
− c
(
B − k
d

)
≥ 1.

Then c satisfies the step properties from section 5.5.

If, further, b is a power of p, and

4. The function c is strictly increasing on [0, 1) ∩ 1
dZ:

0 = c(0) < c

(
1

d

)
< c

(
2

d

)
< · · · < c

(
d− 1

d

)
.

then any recursion operator T : F[y]→ F[y] satisfying a recursion polynomial with shape

Xd + cyd + (terms of total degree ≤ d−D)
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is c-decreasing, where c(n) = cb,D
(
n
d

)
.

Proof. Let n, e, i, j be as in section 5.5: that is, n and e are in 1
dZ and satisfy 0 ≤ e < n < b, and

0 ≤ j ≤ i−D < i ≤ d.

Write n = N + A
d with N ∈ Z and 0 ≤ A < d. Similarly, let e = E + B

d .

For the step property, recall that we want to show that

c(n)− c
(
n− i

d

)
≥ c(e)− c

(
e− j

d

)
.

If A ≥ i, then

c(n)− c
(
n− i

d

)
= c(N) + c

(
A

d

)
− c(N)− c

(
A− i
d

)
= c

(
A

d

)
− c

(
A− i
d

)
.

And if A < i, then

c(n)− c
(
n− i

d

)
= c(N) + c

(
A

d

)
− c(N − 1)− c

(
d+A− i

d

)
= 1 + c

(
A

d

)
− c

(
A+ d− i

d

)
.

Similar statements are true for e, E, B, j.

We consider four cases, depending on how A compares to i and how B compares to j.

• A ≥ i, B ≥ j We want to show that c
(
A
d

)
− c

(
A−i
d

)
≥ c

(
B
d

)
− c

(
B−j
d

)
. This is property (1) in the

statement of the proposition.
• A < i, B < j We want to show that 1+ c

(
A
d

)
− c
(
A+(d−i)

d

)
≥ 1+ c

(
B
d

)
− c
(
B+(d−j)

d

)
. This is again

covered by property (1), with d− i playing the role of j and d− j the role of i.
• A < i, B ≥ j We want to show that 1+c

(
A
d

)
−c
(
A+(d−i)

d

)
≥ c

(
B
d

)
−c
(
B−j
d

)
. Since (d−i)+j ≤ d−D,

this is property (2) from the statement of the proposition, with k = d− i.
• A ≥ i, B < j We want to show that c

(
A
d

)
−c
(
A−i
d

)
≥ 1+c

(
B
d

)
−c
(
B+(d−j)

d

)
. Since i+(d−j) ≥ d+D,

this is property (3) from the statement of the proposition, with k = d− j.

Finally, the proof of Theorem 5.2 uses the properties from section 5.5 only, so that the last statement is
clear.

5.8 The proof of case (3)
We prove that case (3) satisfies the base property and the reformulated step properties from section 5.7 to
complete the proof of Theorem 5.2.

5.8.1 The base property for case (3)
Recall that d = qm−1(q− 1) and b = qm with q > 2 and m ≥ 2. Let M = (b−D)(b−D− 1) and write c for
cb,D. We will analyze i

d and c
(
i
d

)
for 0 ≤ i < d. Recall that [m]q = qm−1

q−1 = qm−1 + qm−2 + · · ·+ q + 1.

Lemma 5.13. For 0 ≤ i < d, let i = ai(q−1)+ri with 0 ≤ r < q−1, as in Euclid’s algorithm for i÷ (q−1).
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Then
i

d
=
[
0. i+ ai ri[m]q

]
and M c

(
i

d

)
= i
(
q[m]q −D

)
−Dai.

Proof. We prove the first assertion. It is clearly true for i = 0 and we already established that 1
d =

[
0. 1 [m]q

]
,

which proves the claim for i = 1. For i = 2, 3, . . . , q−2, one has i = ri and ai = 0, and it’s clear by multiplying
that i

d =
[
0. i ri [m]q

]
. If i is a multiple of q− 1, say i = ai(q− 1), then i

d = aiq
b =

[
0. aiq 0

]
. The claim

follows by considering sums of these: the first digit after the radix point is aiq+ri = ai(q−1)+(ri+ai) = i+ai,

and the second is clear. Observe that, since i < qm − qm−1, we know that ai < qm−1, so that i+ ai < qm is
a digit base b.

The second assertion follows by computation from the first using the relationship between i, ai and ri and
the definition of [m]q.

Corollary 5.14 (Base property). If D <
q[m]q

2 , then the function c is increasing on
{

0, 1
d ,

2
d , · · · ,

d−1
d

}
.

That is,

0 = c(0) < c

(
1

d

)
< c

(
2

d

)
< · · · < c

(
d− 1

d

)
.

The condition D <
q[m]q

2 is absolutely necessary: as you can see from the proof below, every violation will

give counterexamples. This condition is satisfied if D satisfies the simpler inequality D ≤ b
2 .

Proof. It suffices to see, for 0 ≤ i < d − 1, that the difference M c
(
i+1
d

)
−M c

(
i
d

)
is strictly positive. We

use Lemma 5.13 and note that ai+1 − ai is either 0 or 1 depending on i modulo q − 1.

M c

(
i+ 1

d

)
−M c

(
i

d

)
= q[m]q − (1 + ai+1 − ai)D ≥ q[m]q − 2D.

This last is strictly positive precisely when D <
q[m]q

2 .

5.8.2 The properties of Proposition 5.12 for case (3)
Recall that have d = qm−1(q− 1) and b = qm with q ≥ 3 and m ≥ 2. Let M = (b−D)(b−D− 1) and write
c for cb,D. We use the notation [m]q = qm−1

q−1 . Also set ai =
⌊

i
q−1

⌋
. In Lemma 5.13, we have shown that

c
(
i
d

)
= i([m]q −D)−Dai for i < d.

Lemma 5.15. Suppose i and j are integers with 0 ≤ j ≤ i < d. Then

c

(
i

d

)
− c
(
j

d

)
∈
{
c

(
i− j
d

)
− D

M
, c

(
i− j
d

)}
.

Proof. From Lemma 5.13, we know that

M c

(
i

d

)
−M c

(
j

d

)
= (i− j)(q[m]q −D)−D(ai − aj)

Since ai =
⌊

i
q−1

⌋
, and bxc+byc ∈ {bx+ yc, bx+ yc+ 1} for all reals x and y, it is clear that ai−aj ∈ {ai−j , ai−j + 1}.

The claim follows.
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Lemma 5.16 (Property (1)). Suppose A, B, i, j are integers satisfying 0 ≤ i, j, A,B < d so that moreover

i− j ≥ D and A− i, B − j ≥ 0. If D ≤ q[m]q
2 , then

c

(
A

d

)
− c
(
A− i
d

)
≥ c
(
B

d

)
− c
(
B − j
d

)
.

Proof. From Lemma 5.15, the left-hand side is at least c
(
i
d

)
− D

M , and the right-hand side is no more than
c
(
j
d

)
. Therefore it is enough to show that c

(
i
d

)
− c
(
j
d

)
≥ D

M . But by Lemma 5.15 again, the left-hand side
of this last is at least c

(
i−j
d

)
− D

M , and by Lemma 5.14, this last is no less than c
(
D
d

)
− D

M . So it is enough
to know that c

(
D
d

)
≥ 2D

M .

This is an easy estimate: since we are assuming that D ≤ q[m]q
2 , that implies that q[m]q −D ≥ q[m]q

2 , and

that aD =
⌊
D
q−1

⌋
≤ D

2 . Therefore

c

(
D

d

)
=
D(q[m]q −D)−DaD

M
≥
D
(
q[m]q

2 − D
2

)
M

≥
D
q[m]q

4

M
.

For q ≥ 3 and m ≥ 2, we have q[m]q
4 = q(qm−1)

4(q−1) ≥ 3, so that the desired inequality is easily satisfied.

Lemma 5.17 (Property (2)). Suppose A, B, k, j are integers satisfying 0 ≤ k, j, A,B < d so that moreover

k + j ≤ d−D and A− k,B − j ≥ 0. If D ≤ q[m]q
2 , then

c

(
A

d

)
− c
(
A− k
d

)
+ c

(
B

d

)
− c
(
B − j
d

)
≤ 1.

Proof. Same tricks using Lemmas 5.14 and 5.15. The left-hand side is bounded above by

c

(
k

d

)
+ c

(
j

d

)
≤ c
(
k + j

d

)
+
D

M
≤ c
(
d−D
d

)
+
D

M
.

To show that this quantity is no more that 1, we must prove that

(d−D)(q[m]q −D)−Dad−D +D
?
≤M.

This inequality is, again, true by a comfortable margin: I claim that

(d−D)(q[m]q −D) +D ≤M.

Indeed, the left-hand side is

dq[m]q −Dq[m]q − dD +D2 +D = qm−1(q − 1)
q(qm − 1)

q − 1
−Dq[m]q − qmD − qm−1D +D2 +D

= q2m − qm −Dq[m]q − qmD − qm−1D +D2 +D,

and the right-hand side is (qm −D)(qm −D − 1) = q2m − qm − 2Dqm +D2 +D. Canceling like terms and
dividing through by D leaves us with

−q[m]q − qm−1
?
≤ −qm,

which is obviously true, since qm is already strictly less than q[m]q.

Lemma 5.18 (Property (3)). Suppose A, B, i, k are integers satisfying 0 ≤ i, k, A,B < d so that moreover
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i+ k ≥ d+D and A− i, B − k ≥ 0. Then (with no condition on D),

c

(
A

d

)
− c
(
A− i
d

)
+ c

(
B

d

)
− c
(
B − k
d

)
≥ 1.

Proof. More same tricks. Then left-hand expression is at least

c

(
i

d

)
+ c

(
k

d

)
− 2D

M
=

(i+ k)(q[m]q −D)−D(ai + ak + 2)

M
;

we want to show that the numerator is bounded below by M . The numerator is bounded below by

(d+D)q[m]q −D(i+ ai + k + ak + 2).

As observed earlier, i+ ai ≤ qm − 1, and the same for k, so that this quantity is no less than

(d+D)q[m]q − 2Dqm = q2m − qm +Dq[m]q − 2Dqm.

On the other hand, M = q2m − qm − 2Dqm +D2 +D. As in the previous lemma, we cancel like terms and
divide by D to get the inequality

q[m]q
?
≥ D + 1,

which is trivially true, since q[m]q > qm = b ≥ D + 1.

Therefore, the properties in Proposition 5.12 are satisfied. This completes the proof of Theorem 5.2.

5.9 Complements
In this section, we state a more precise version of the growth bound for each of the cases in Theorem 5.2.

Theorem 5.19 (Refinement of Theorem 5.2). Suppose that T : F[y] → F[y] is an E-filtered recursion
operator for some E > 1 whose companion polynomial has the shape

Xd + ayd + (terms of total degree ≤ d−D)

for some D ≥ 1. Let b = pdlogp de is the smallest power of p no less than d.

1. If d is a power of p, then

NT (yn) <
(d−D)(d− 1)

E(d−D − 1)
nlogd(d−D).

2. If d is one less than a power of p, set b = d+ 1. Then

NT (yn) <
(b− 1)1−logb(b−1)(b−D)

E
nlogb(b−D) +

b− 2

E
.

3. If d = qm−1(q − 1), set b = qm. Then if D ≤ q[m]q
2 ,

NT (yn) <
(b− 1)(b−D)2

E dlogb(b−D)
nlogb(b−D) +

(b− 2)(b−D)

E
.

Proof.
1. If d = b is a power of p, then cT = cb,D. I claim that the proof of Theorem 5.2 can be minimally

adapted to show that cT (T (f)) ≤ cT (f) − E. Indeed, by the definition of cT on F[y], it suffices to
prove this for f = yn only. Since we’re assuming that deg T (yn) ≤ n− E for n < b, and cT (n) = n on
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this range, it’s clear that the base case is established. The inductive steps are unchanged, as they only
involve comparing a change in cT (n) with a change in cT (e) for some e < n, rather than an absolute
measure of change in cT (n) Therefore, the claim is established, and cT (T (f)) ≤ cT (f)− E.
Finally, since T lowers cT -value by at least E at each application, we see that NT (yn) ≤ cT (n)

n . The
estimate that cT (n) = cb,D(n) < (b−1)(b−D)

b−1−D nlogb(b−D) from Lemma 5.5 completes the proof.
2. In this case, with b = d + 1, we have set cT (n) = (b −D − 1) cb,D

(
n
d

)
. From Lemma 5.5 and the fact

that cb,D
(
d−1
d

)
= b−2

b−D−1 is the maximal value of cb,D on fraction less than 1 with denominator d, we
know that

cb,D

(n
d

)
<

(b− 1)(b−D)

b− 1−D

(
n

b− 1

)logb(b−D)

+
b− 2

b− 1−D
,

so that

cT (n) <
(b− 1)(b−D)

(b− 1)logb(b−D)
nlogb(b−D) + b− 2 =

(
(b− 1)1−logb(b−1)(b−D)

)
nlogb(b−D) + b− 2.

The proof of Theorem 5.2 shows that cT (T (f)) ≤ cT (f) − E for all f ∈ F[y]. The base case is true
because cT (n) = n for n < d, and the inductive step needs no adjustment as before. The claim follows.

3. Here we have set b = qm and cT (n) = (b−D)(b− 1−D) cb,D
(
n
d

)
. We bound the growth of cT :

cT (n) = (b−D)(b− 1−D) cb,D

(n
d

)
<

(b− 1)(b−D)2

dlogb(b−D)
nlogb(b−D) + (b− 2)(b−D),

and note that everything goes through as in the other parts.

Finally, we have two more refinements to Theorem 5.1, but they are only refinements of Theorem 5.1 in that
neither is formally covered by Theorem 5.2 as stated. In fact, in each case, it is the Theorem 5.2 argument
forms the backbone of the proof. The first is a generalization of case (2) of Theorem 5.2.

Corollary 5.20 (to Theorem 5.19). If T : F[y]→ F[y] is a recursion operator that lowers degrees by at least
E ≥ 1 and satisfies the recursion whose companion polynomial has the shape (X+ay)d+(terms of total degree ≤ d−D)

for some D ≥ 1 and a ∈ F, then

NT (yn) ≤ (pk −D)(pk − 1)

E(pk −D − 1)
nlog

pk
(pk−D)

for any k ≥ logp d.

Proof. Choose k so that pk ≥ d. Multiplying the companion polynomial by (X + cy)p
k−d puts us in the

power-of-p case of Theorem 5.19.

And the second is Theorem 5.2 exaclty, for the case where d is any number prime to p.

Theorem 5.21. Let T : F[y] → F[y] be a degree-lowering recursion operator so that the sequence {T (yn)}
satisfies a linear recursion of order d where d is prime to p and such that the companion polynomial has the
shape Xd+ayd+(terms of total degree ≤ d−D) for some constant a ∈ F and some D ≥ 1. Let k = dlogp de,
so that d ≤ pk = b. Then if D < b

2 , then

NT (yn) = O(nlogb(b−D)).
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More precisely,

NT (yn) <
(b− 1)(b−D)

(
(b−D)` − 1

)
dlogb(b−D)(b− 1−D)

nlogb(b−D) +
(b− 1)

(
(b−D)` − 1

)
b−D − 1

,

where ` is the multiplicative order of b modulo d.

The proof of this theorem runs through the same argument as the proof of Theorem 5.2, via Proposition
5.12. It is technically fussy and not particularly interesting, even more so and even less so than case (3) of
Theorem 5.2, respectively. See Appendix D for the proof.
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Chapter 6

The Hecke recursion

We prove that Hecke operators acting on algebras of modular forms are always recursion operators: if T is
a Hecke operator and f is a modular form, then the sequence {T (fn)}n of forms satisfies a linear recursion
over the algebra of modular forms. The main proposition is a straightforward generalization of a theorem of
Nicolas and Serre about Hecke operators acting on modular forms modulo 2 [23, Théorème 3.1]. It belongs
to the same circle of ideas as the theory of the modular equation for j; see, for example, Cox [8, §11.C].

6.1 The general Hecke recursion

Let B be a subalgebra of C or Fp or Qp. Let Mk(B) ⊂ BJqK be the space of q-expansions of modular forms
of level one and weight k, and let M(B) :=

∑
kMk(B) ⊂ BJqK be the algebra of modular forms of level one

and all weights.

Lemma 6.1. For any f ∈Mk(B) and any prime ` 6= charB,

T`(f
m) = `−1

(
(`kf0)m + fm1 + . . .+ fm`

)
, (A)

where f0 := f(q`) and, for i > 0, fi := f
(
ζiq

1
`

)
for some primitive `th root of unity ζ in B[µ`].

Equation (A) is an equality of power series in B[µ`]Jq
1
` K, where µ` is the set of `th roots of unity.

Proof. The lemma for m = 1 follows from considering the effect of T` on q-expansions: Let f =
∑
anq

n.
Then f0 =

∑
anq

`n and fi =
∑
anζ

inqn/`, so that

f1 + . . .+ f` =
∑̀
i=1

∑
n

anζ
inqn/` =

∑
n

anq
n/`
∑̀
i=0

ζin = `
∑
n

a`nq
n,

where the last equality follows from the fact that
∑`
i=1(ζn)i = ` if ` divides n, and 0 otherwise. Since

T`(f) =
∑
n a`nq

n + `k−1
∑
n anq

`n for a form of weight k, the case m = 1 is established.

For general m, it suffices to observe that the maps f 7→ fm and f 7→ fi commute. Applying the lemma for
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m = 1 to the weight-mk modular form fm we see that

T`(f
m) = `−1

(
`km(fm)0 + (fm)i + . . .+ (fm)`

)
= `−1

(
(`kf0)m + (f1)m + . . .+ (f`)

m
)
,

as desired.

Proposition 6.2. The sequence
{
T`(f

n)
}
n
satisfies a linear recursion of order ` + 1 over M(B). More

precisely, there are modular forms g1, . . . , g`+1, with gi ∈Mik(B), so that for all n ≥ `+ 1,

T`(f
n) = g1 T`(f

n−1) + · · ·+ g`+1 T`(f
n−(`+1)) (B)

Proof. It is enough to prove the statement for B = Z, so that we can assume that f is a (classical complex-
analytic) modular form with integer coefficients.

Lemma 6.1 together with Corollary 4.4 imply that the sequence {T`(fn)}n satisfies the linear recurrence
associated to the polynomial

P`,f (X) := (X − `kf0)(X − f1) · · · (X − f`)

= X`+1 − g1X
` − g2X

`−1 − · · · − g`X − g`+1 ∈ Z[µ`]Jq
1
` K[X].

It remains to show that the gi, which are, up to sign, elementary symmetric functions in the fi, are in fact
modular forms of level one and weight ik over Z.

We use the notation of [12]. Recall that the group GL2(Q)+ acts on the space of holomorphic functions on
the upper half-plane, with the weight-k right action of γ =

(
a b
c d

)
given by(

f [γ]k
)
(z) = (det γ)

k−1
(cz + d)−k f

(
az + b

cz + d

)
.

Define matrices γi for 0, 1, . . . , ` as follows:

γi := ( 1 i
0 ` ) if i > 0, γ0 := ( ` 0

0 1 ).

These matrices are known to be a complete set of right coset representatives of SL2(Z) in the double coset
SL2(Z)( 1 0

0 ` )SL2(Z), which defines the T` operator on forms of level one. And indeed, it is easy to check that,
for each i,

fi = ` f [γi]k.

For any β in SL2(Z), the set γiβ is also a complete set of right coset representatives for SL2(Z) in the
T`-defining double coset. And since f is invariant for the weight-k action of SL2(Z), the set

f0[β]k, f1[β]k, . . . , f`[β]k

is a permutation of the fis. Therefore, each gi, which, up to sign, is the ith elementary symmetric function
in the fis, is invariant for the weight-ik action of SL2(Z). The holomorphy of gi comes from the fact that
it visibly has a q-expansion. (A priori the expansion is in q

1
` , but we have already shown that gi is of level

one.) Finally, I claim that the gi are defined over Z, since a priori the q-expansion has coefficients in Z[µ`].
Indeed, the Galois group Gal(Q(µ`)/Q) also visibly permutes the fi, so that the gis are again invariant, and
hence in Mik(Z).

The linear recursion associated to polynomial P`,f is precisely equation (B).

From equation (A), it is clear that the recursion is separable.
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Instead of considering M(B) =
∑
kM(B), we may consider the algebra of forms whose weight is a multiple

of some particular m. That is, let Mm(B) =
∑
kMkm(B). This is still an algebra, and, for f ∈ Mkm(B)

for some k and m, the sequences {fn} and {T`(fn)} are both in Mm(B), and the recursion polynomial P`,f
from Proposition 6.2 will be in Mm(B)[X].

For example, if B = Fp and m = p−1, thenMm(B) = M0, the 0-graded part of the space of mod-p modular
forms. This is a filtered Fp-algebra (see Example in section 4.4) and the recursion polynomial of T` acting
on powers of f respects that filtration. We restate this in the terminology of Chapter 4:

Proposition 6.3. For any prime p, the Hecke operator T` acting on M0 is a proper filtered separable
recursion operator with weights in Fp.

In the next section, we show that for p = 2, 3, 5, 7, 13, this recursion is also full.

6.2 Examples of the Hecke recursion
Example 1. Let B = Z. Then M(Z) = Z[E4,∆] ⊕ E6 Z[E4,∆], and

P2,∆ = X3 + 48∆X2 + (768∆2 −∆E3
4)X + ∆3

= X3 + 48∆X2 − (960∆2 + ∆E2
6)X + ∆3 ∈M(Z)[X].

This example was computed by hand using SAGE.

Example 2. The best-known example — B = C and f = j, the modular invariant — falls outside the scope
of Proposition 6.2 as stated because j is not holomorphic at the cusp. But everything works the same way,
and P`,j is the modular equation for j of level `, known to be a two-variable symmetric polynomial (in X
and j, in our notation) with coefficients in Z. See Cox [8, §11.C].

The computations for p = 2, 3, 5, 7, 13 below rely on the data for P`,j that Andrew Sutherland has made
available online at http://math.mit.edu/~drew/ClassicalModPolys.html [6].

Example 3. For p = 2, 3, 5, 7, and 13 and B = Fp, it is easy to compute that M0 = Fp[∆] (see Chapter 8
for details), so that P`,∆ is automatically in Fp[∆, X]. Moreover, using Sutherland’s data, P`,∆ is very easy
to compute: in each case ∆ is a rational function of j, so that P`,∆ can be deduced from P`,j . Specifically,
over Fp for these small p,

∆ =
1

j + cp
, with c2 = 0, c3 = 0, c5 = 0, c7 = 1, and c13 = 8.

Therefore
P`,∆ = X`+1Y `+1 P`,j

(
1

X
− cp,

1

Y
− cp

)
∈ Fp[X,Y ],

where we’re interpreting both P`,j and P`,∆ as polynomials in Fp[X,Y ]. As a corollary, P`,∆ is always a
symmetric two-variable polynomial.

Example (p = 2).

P3,∆ = X4 + ∆X + ∆4 and P5,∆ = X6 + ∆2X4 + ∆4X2 + ∆X + ∆6
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Example (p = 3).

P2,∆ = X3 −∆X + ∆3

P7,∆ = (X −∆)8 −∆X4 + ∆2X3 + ∆3X2 − (∆4 −∆)X

Example (p = 5).

P2,∆ = X3 + 3∆X2 + (3∆2 −∆)X + ∆3

P11,∆ = X12 + 3∆X11 + ∆2X10 + (3∆5 + 2∆)X7 + (4∆6 + 2∆2 + 2∆)X6 + 3∆7X5

+ (3∆4 + 2∆3 + ∆2 + ∆)X4 + (2∆4 + 3∆3 + 4∆2 + 4∆)X3

+ (∆10 + 2∆6 + ∆4 + 4∆3 + 3∆2 + 4∆)X2

+ (3∆11 + 2∆7 + 2∆6 + ∆4 + 4∆3 + 4∆2 + 4∆)X + ∆12

Example (p = 7).

P2,∆ = X3 + 6∆X2 + (6∆2 + 6∆)X + ∆3

P3,∆ = X4 + (2∆2 + 2∆)X2 + (2∆2 + 6∆)X + ∆4

Example (p = 13).
P2,∆ = X3 + 9∆X2 + (9∆2 −∆)X + ∆3.

Paul Monsky has a number of conjectures about the shape of the polynomial P`,∆ modulo these small primes p.
The conjectures, as well as a proof for p = 2, are posted in MathOverflow questions 52781∗ and 153787†

Corollary 6.4. If p = 2, 3, 5, 7, 13, then the recursion operator T` acting on M0 = Fp[∆] is full in the sense
of section 5.5.‡

Proof. The polynomial P`,∆ ∈ Fp[∆][X] is symmetric and monic in X, so the ∆`+1 term is present.

Corollary 6.5. Let p = 2, 3, 5, 7, or 13. Any operator T ∈ Ã0 ⊂ A is a proper and full filtered recursion
operator on M0 = Fp[∆].

Here Ã0 is the naïve Hecke algebra on M0: the algebra of all the polynomials in the T`. See section 2.2.3
for an extended discussion of this object and its relation to A0.

Proof. Proposition 6.3, Corollary 6.4, and Proposition 4.24.§

Example 4. Let B = F11. The space of modular forms modulo 11 is

M = F11[E4, E6]/(E4E6 − 1) = F11[E±1
4 ].

The space is weight-graded M =
⊕

k mod 5M
2k, with M0 = F11[E±5

4 ] and M2k = E3k
4 M0. Finally,

P2,E4 = X3 + 4E4X
2 + 6E−2

4 ∈M [X].

Note that this recursion is full : E−2
4 = E2

6 , so that w(E−2
4 ) must be 12 since p − 1 = 10 and there are no

forms of filtration 2.
∗http://mathoverflow.net/questions/52781: “What’s known about the mod 2 reduction of the level ` Jacobi modular

equation?"
†http://mathoverflow.net/questions/153787: “The ‘Level N modular equation for delta’ in characteristics 3, 5, 7 and 13"
‡I expect T` to be full in this sense for every p.
§In fact, the operators in Ã0 are also separable with weights in Fp, but we do not need this for applications.
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Chapter 6. Hecke recursion 6.3. Hecke operators as NROs

6.3 Hecke operators as NROs
In light of Theorem 5.1, we will use the abbreviation NRO for “nilpotent recursion operator” for a degree-
lowering proper and filtered recursion operator T : Fp[y] → Fp[y]. Then Theorem 5.1 states that if
T : Fp[y]→ Fp[y] is a full NRO, then NT (f)� deg(f)α for f ∈ Fp[y]. For p = 2, 3, 5, 7, 13, we will want to
apply Theorem 5.1 to Hecke operators acting on M0 = Fp[∆]. By Corollary 6.5 and Lemma 3.1, a Hecke
operator T ∈ Ã0 is a full NRO as soon as T is in every maximal ideal of A0.

Recall that, if τ is a modular Galois pseudocharacter appearing in M corresponding to system of Hecke
eigenvalues {λ(`)} = {τ(Frob`)}, then the operator T` − λ(`) is in mτ . In general λ(`) depends on τ , but in
two special cases, T` − λ(`) looks the same on all reducible components:

Lemma 6.6. Suppose that τ is reducible.

1. If ` ≡ 1 mod p, then τ(Frob`) = 2, so that T ′` = T` − 2.
2. If ` ≡ −1 mod p, then τ(Frob`) = 0, so that T ′` = T`.

Proof. Direct computation for τ = ωa(1 + ωb), noting that b is odd modulo p− 1.

Finding Hecke NROs

In light of Lemma 6.6 and Corollary 6.5, we can list some ways of finding Hecke NROs.

1. If every τ appearing in M is reducible (p = 2, 3, 5, 7), then T` is a full NRO whenever ` ≡ −1 mod p.
This is the case for every T` for p = 2.

2. If every τ appearing in M is reducible (p = 2, 3, 5, 7), then T`− 2 is a full NRO whenever ` ≡ 1 mod p.
This is again the case for every T` mod 2.

3. Let λ1, . . . , λk be a complete list of systems of eigenvalues appearing in M0. For every `, the operator
T ′` =

∏
i(T` − λi(`)) is a full NRO.

4. Let λ1, . . . , λk be a complete list of systems of eigenvalues appearing in M0. For every `, the operator
T ′′` =

∏
i
′
(T` − λi(`)), where we restrict the product to a subset of 1, . . . , i, . . . k with λi(`) distinct, is

a full NRO. Moreover, T ′′ is never in m2
τ .

5. More conceptually, let λ1, . . . , λk again be a complete system of eigenvalues appearing inM0. For each
i, let mi be the ideal corresponding to λi, and find generators T i1, . . . , T imi for mi so that each T ij is in
Ã0. (This can always be done because Ã0 is dense in A0.) Moreover, for each i, find an “approximate
idempotent” Ei ∈ Ã0 with the property that Ei ∈ mj for j 6= i and Ei ≡ 1 in Ami/mi. (Again, this
can always be done by lifting true idempotents of

∏
Amj/mj .) Then the set

{EiT ij : 1 ≤ j ≤ mi}

consists of full NROs with the additional property that they generate each mi.

We will use full NROs of type (1), (2), and (5) in Chapter 8.
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Chapter 7

Generators of reducible local
components of the Hecke algebra

In this chapter, we assume that τ is reducible and describe an algorithm to find modified Hecke operators
T ′` that generate the maximal ideal mτ of the local component of the Hecke algebra. We are particularly
interested in the question of finding generators for multiple Aτ simultaneously.

We will prove the following theorem:

Theorem 7.1. Suppose Vandiver’s conjecture holds for p. Then there exist infinitely many pairs of primes
(`+, `−) with `± ≡ ±1 mod p so that for every reducible modular pseudocharacter τ : GQ,p → Fp, the ideal
mτ of Aτ is generated by T`+ − 2 and T`− .

Without assuming Vandiver’s conjecture, we can only guarantee that T`+−2 and T`− are linearly independent
in mτ/m

2
τ , so part of a generating set of mτ .

The theorem is proved in section 7.4.

Notation review

We use the notation of Chapter 2, and especially Section 2.5. The most important notation is recalled below.

• Aτ is a local component of the shallow Hecke algebra acting on modular forms modulo p. Its maximal
ideal mτ corresponds to a modular Galois pseudocharacter τ of the Galois group G = GQ,p defined
over F, a finite extension of Fp.

• Dτ is the functor that takes F-algebras B to the set of odd, constant-determinant deformations
τ̃ : G → B of the pseudocharacter τ . That is, the constraints are τ̃(c) = 0 for complex conjuga-
tion c ∈ G (automatic for p > 2 since τ itself is odd) and det τ̃ = det τ .

• (Rτ ,mRτ ) is the complete local noetherian F-algebra representing Dτ , equipped with universal defor-
mation τ̃τ : G→ Rτ .

• ` always refers to a prime different from p. It parametrizes Hecke operators T` ∈ Aτ and modified
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Hecke operators T ′` = T` − τ(Frob`) ∈ mτ . It also parametrizes elements t` = τ̃(Frob`) ∈ Rτ and
t′` = t` − τ(Frob`) ∈ mRτ of the universal deformation ring that map to T` and T ′` , respectively.

A word of warming: the symbol ∆ will, in this chapter only, refer not to the modular form or its residual
q-series, but to the Galois group Gal(Q(µp)/Q).

7.1 The algorithm for p > 2

The algorithm presented below is inspired by Bellaïche’s treatment of the case p = 3 in [5, appendix]. It
uses his prior work on pseudodeformations in [3] as well as mild extensions in [5, Section 10]. We assume
that p > 2 and that Vandiver’s conjecture holds for p. For p = 2, see section 7.5 below.

Any reducible pseudocharacter has the form ωa(1 + ωb) for some a and b defined modulo p − 1. Note that
F = Fp in this case.

Recall that we have a surjection Rτ � Aτ (described in section 2.5.2). By Nakayama’s lemma, computing
generators for mτ is equivalent to finding a basis for the cotangent space mτ/m2

τ . Fortunately we have access
to its dual, the tangent space(

mRτ /m
2
Rτ̄

)∗
= Hom(mRτ /m

2
Rτ ,Fp) = Dτ (Fp[ε]).

We will find τ̃+ and τ̃− in Dτ (Fp[ε]), with τ̃− reducible and τ̃2 irreducible lifts of τ to Fp[ε], thus necessarily
linearly independent (Theorem 2 and Proposition 2 in [3], but clear in our case from analysis below).
Vandiver’s conjecture allows us to assume that dimFp Dτ = 2, so that the two deformations that we find will
form a basis (Proposition 2.15).

Once we have a basis for the tangent space, we can find a basis for the cotangent space mRτ /m
2
Rτ

. More
precisely, we will show that it is possible to find primes `− and `+ satisfying

Basis conditions

• τ̃−(Frob`−) nonconstant, so f−(t′`−) nonzero
• τ̃+(Frob`+) nonconstant, so f+(t′`+) nonzero
• τ̃−(Frob`+) constant, so f−(t′`+) = 0

Here f− and f+ are the maps mRτ /m
2
Rτ
→ Fp induced by maps R → Fp[ε] corresponding to deformations

τ̃− and τ̃+, respectively.

It is now clear that the images of t′`− and t′`+ will form a basis for mRτ /m2
Rτ

. By Nakayama’s lemma, they
generate mRτ . Finally, the surjection Rτ̄ � Aτ̄ will imply that T ′`− and T ′`+ generate mτ as an ideal, and
hence all of Aτ topologically as an algebra.

We now describe how to find τ̃− and τ̃+ for τ = 1 + ωb. Once we find these, we can use them to deform
ωa(1 + ωb): namely, ωa τ̃− and ωa τ̃+ will be the corresponding deformations for ωa(1 + ωb). However, since
we are mainly concerned with whether τ̃±(g) is nonconstant, the particular deformations are irrelevant. If
we find `± so that T ′`± generate mτ , the same `± will work for mωa τ (and the Hecke algebras are isomorphic:
Proposition 2.41).
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7.2 The reducible deformation τ̃−

The group Gal(Q(µp2)/Q) is isomorphic to (Z/p2Z)×, which sits in an exact sequence

1→ (1 + pZ)/p2Z→ (Z/p2Z)× → (Z/pZ)× → 1.

This sequence splits via a mod-p2 Teichmüller lift, so that (Z/p2Z)× projects onto (1 + pZ)/p2Z, which we
can identify with Z/pZ. This gives an additive character α : Gal(Q(µp2)/Q)→ Fp.

Then χα := 1 + αε is a deformation of the trivial character GQ,p → Fp[ε]×, and

τ̃α := χα + ωb χ−α

is a reducible deformation of τ with determinant det τ . Let τ̃− := τα.

It remains to understand the primes ` so that τ̃−(Frob`) is nonconstant, that is, has a nonzero ε-part. For
any g,

τ̃−(g) = 1 + εα(g) + ωb(g)(1− εα(g))

=
(
1 + ωb(g)

)
+ ε α(g)

(
1− ωb(g)

)
.

We are looking for elements g = Frob` so that both α(g) 6= 0 and ωb(g) 6= 1. The kernel of α is those g ∈ G
whose order in Gal(Q(µp2)/Q) is prime to p. In other words, α(Frob`) 6= 0 if and only if `p−1 6= 1 mod p2.

Corollary 7.2. With τ̃− as above, τ̃−(Frob`) is nonconstant if and only if both

`b 6= 1 mod p and `p−1 6= 1 mod p2.

Note that any ` ≡ −1 mod p but not congruent to −1 modulo p2 will satisfy these requirements. Indeed, if
` ≡ −1+ap mod p2 then `p−1 ≡ 1+ap mod p2, which is congruent to −1 modulo p2 if and only if p divides a.

7.3 The irreducible deformation τ̃+

This construction is a little more involved. In the first two sections, we discuss some cohomological prelimi-
naries; τ̃+ is constructed in section 7.3.2.

7.3.1 The cohomology of ωk

Reflection principle preliminaries

Recall that G = GQ,p = Gal(Qp/Q), where Qp is the maximal extension of Q unramified outside p and
∞. Let K = Q(µp) and ∆ = Gal(K/Q), and H ⊂ G be the kernel of the quotient map G � ∆ so that
H = Gal(Qp/K). Finally, let p be the prime of K above (p), and E ⊂ K× the group of elements that are
units away from p.

For any Fp[∆]-module A, we write A[ωk] for the subspace on which ∆ acts through ωk. Since the order of
∆ is prime to p, there is always a decomposition A =

⊕p−2
k=0A[ωk].

Let K̃ be the maximal abelian exponent-p extension of K inside Qp, and Γ̃ = Gal(K̃/K), an elementary
p-group. By Kummer theory, abelian exponent-p extensions of K are obtained by adjoining pth roots of
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representatives in K×/(K×)p. Restricting to extensions unramified outside p forces K̃ to be obtained by
adjoining representatives of E/Ep. By a refinement of the Dirichlet unit theorem (for example, Washington
[31, Proposition 8.10]),

dimFp E/E
p[ωk] =

1 if k ≡ 1 or k is even modulo (p− 1)

0 otherwise.
.

Since K̃ is a Kummer extension of Q(µp), it is Galois over Q and ∆ acts on Γ̃ by conjugation:

1→ Γ̃→ Gal(K̃/Q)→ ∆→ 1

Therefore Γ̃ also breaks up into ∆-eigenspaces: Γ̃ =
⊕

k Γ̃[ωk]. This decomposition is closely connected to
the decomposition of E/Ep. For k = 1 or k even, choose α ∈ K representing E/Ep[ωk]. Then K(α

1
p ) is

contained in K̃ and is Galois over Q. Therefore Γα := Gal(K(α
1
p )/K) is a ∆-eigenspace inside Γ̃.

Proposition 7.3. Γα = Γ̃[ω1−k]

Proof. Washington, [31, section 10.2]. This is a special case of the reflection principle. There is a ∆-
equivariant perfect pairing

Γ̃× E/Ep → µp

〈γ, u〉 7→
γ
(
u

1
p

)
u

1
p

.

The pairing restricts to a perfect pairing of ∆-eigenspaces

Γ̃[ωj ]× E/Ep[ωk]→ µp

if and only if j + k ≡ 1 mod (p− 1). Since Γα permutes the pth roots of α, we are forced to conclude that
Γα = Γ̃[ω1−k].

Explicit cocycle for ωk

Switch of notation. Suppose k is odd modulo p − 1. Choose α ∈ E representing E/Ep[ω1−k]. Recall that
we let Γα = Gal(K(α

1
p )/K), and ∆ acts on Γ through ωk. Let Gα = Gal(K(α

1
p )/Q).

Proposition 7.4. The map ck : Gα → Fp defined by, for g ∈ Γα,

ck(g) =
g(α

1
p )

α
1
p

extends uniquely to a nonzero element of H1(Gα, ω
k)

inf−→∼ H1(G, ωk).

Vandiver’s conjecture for p implies that dimH1(G, ωk) = 1, so that this cocycle generates (Proposition
2.15).

Proof. By inflation-restriction we have an exact sequence

0→ H1
(
∆, (ωk)H

)
→ H1(G,ωk)

res→ H1(H,ωk)∆ → H2
(
∆, (ωk)H

)
.

The second and last term are both 0, since ∆ has order p− 1, so that all of its cohomology groups over Fp
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are trivial. Moreover, since H acts trivially on ω, we know that H1(H,ωk)∆ = Hom∆(H,ωk), so that

H1(G, ωk)
res−→∼ Hom∆(H, ωk) = Hom∆(Γ̃, ωk) = Hom(Γα, Fp).

Here the first equality is from the exact sequence, the second is Fp(ωk) is an abelian group of exponent p,
and the third is due to the fact that Γ̃[ωk] = Γα.

Therefore H1(G, ωk) factors through Gα = Gal(K(α
1
p )/Q), and the definition of ck on the subgroup

Γα ⊂ Gα is exactly as claimed. From the cohomological exact sequence we already know that ck must
extend uniquely to Γα.

Corollary 7.5. Suppose c is a cocycle representing an element of H1(G, ωk) in the same line as ck, defined
in Proposition 7.4. If g ∈ G is an element whose image in Gα is a nontrivial element of Γα, then c(g) 6= 0.

Proof. Since H1(G, ωk) factors through Gα, we may as well assume that 1 6= g ∈ Γα. It’s clear that
ck(g) 6= 0. Changing ck by a coboundary means adding a(ωk(g) − 1) for some a ∈ Fp. But ωk

∣∣
Γα

= 1, so
that c(g) is still nonzero.

7.3.2 Constructing τ̃+

We now construct τ̃+ for τ = ωb + 1. We make a guess and prove that our guess is a constant-determinant
pseudocharacter deforming τ . In fact, τ̃+ is the trace of an irreducible representation of GQ,p over Fp[ε]; this
more conceptual construction is given in Appendix E. In either case, we use the ideas of [3] and [5, section
10], but both constructions are self-contained.

We use the notation of the previous section. Let α and β be nonzero representatives in E/Ep[ω1−b] and
E/Ep[ω1+b], respectively. These exist because b is odd mod p−1, but note that they may coincide if b = p+1

2

(so only if p ≡ 3 mod 4). Using Proposition 7.3.1, we obtain cocycles cb ∈ H1(G, ωb), factoring through
K(α

1
p ), and c−b ∈ H1(G, ω−b), factoring through K(β

1
p ).

Recall that Dτ is the functor that takes profinite F-algebras B to the set of deformations τ̃ : G → B with
constant determinant det τ̃ = det τ (the oddness condition is automatic for p > 2). Also let Dred

τ ⊂ Dτ be
the subfunctor of reducible deformations τ̃ . Then there is an exact sequence (see [3, Theorem 2] and [5,
Proof of Proposition 20] and Proposition 2.15)

0→ Dred
t (F [ε])→ Dt(F [ε])→ Ext1

G(1, ωb)⊗ Ext1
G(ωb, 1)→ Ext2

G(ωb, ωb)⊕ Ext2
G(1, 1) = 0.

Here the last arrow is the Yoneda product in both directions. The space Dred
t (F [ε]) is one-dimensional,

generated by τ̃− (see section 7.2). Assuming Vandiver’s conjecture, both Ext1
G(1, ωb) and Ext1

G(ωb, 1) are
one-dimensional as well, generated by cocycles cb and ωb c−b, respectively. These satisfy cocycle conditions

cb(gh) = cb(g) + ωbcb(h) (A)

c−b(gh) = c−b(g) + ω−bc−b(h). (B)

Moreover, since Ext2
G(ωb, ωb) = 0, we can find a 1-cochain X : G→ F whose boundary is cb ∪ ωbc−b:

cb(g)ωb(h)c−b(h) = ωb(g)X(h) +X(g)ωb(h)−X(gh). (C)
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Similarly, we can find Y : G→ F whose boundary is ωbc−b ∪ cb ∈ Ext2
G(1, 1) = 0:

ωb(g)c−b(g)cb(h) = Y (g) + Y (h)− Y (gh). (D)

The X and Y that we have found are not unique: for example, it’s clear that Y may be altered by adding
an additive character of G, and X by adding an additive character twisted by ωb.

Proposition 7.6.
1. The map α : G→ Fp given by

α = ω−bX + Y + cbc−b : G→ Fp

is an additive character of G to Fp.
2. The two maps t : G→ Fp[ε] given by

t = 1 + ωb + ε(X + Y )

t0 = t
(

1− ε

2
α
)
,

are both pseudocharacter lifts of τ to Fp[ε]. Moreover det t0 = det τ .

See section 2.4.1 for definitions.

Proof. α is an additive character: This is a many-term identity that uses all of the identities (A), (B),
(C), and (D).

α(gh)− α(g)− α(h)

= ω−b(gh)X(gh) + Y (gh) + cb(gh)c−b(gh)− ω−b(g)X(g)− Y (g)

− cb(g)c−b(g)− ω−b(h)X(h)− Y (h)− cb(h)c−b(h)

= · · · = 0

Since the defining identity (D) for Y is unchanged if Y is altered by an additive character, and the defining
identity for X is unchanged if we add ωb times an additive character, we see that t0 is just t for another
choice of X and Y :

t0 = t
(
1− ε

2 α
)

= t− ε
2α−

ε
2ω

bα

= τ + ε
(
Y − α

2

)
+ ε

(
X − ωbα

2

)
.

Therefore anything that is true for t that follows formally from the identities (A), (B), (C), and (D) is also
true for t0, and vice versa.

Now we prove that t and t0 are pseudocharcter lifts of τ to Fp[ε]. They are certainly lifts of τ .

Identity maps to 2: From equations (C) and (D) we see that X and Y restricted to either Gal(Qp/K(α
1
p ))

or Gal(Qp/K(β
1
p )) become homomorphism from either group to Fp. Therefore both X and Y factor through

some exponent-p extension of K(α
1
p , β

1
p ); in particular X(1) = Y (1) = 0, so that t(1) = 2. Similarly, 1-

cocycles always satisfy c(1) = 0, so that t0(1) = 2.

Centrality: The sum of the identities (C) and (D) show that X + Y is central. Therefore t, and hence t0

is central as well.
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Constant determinant for t0: We compute det t:

(det t)(g) =
t(g)2 − t(g2)

2
=

1

2

((
1 + ωb(g) + εX(g) + εY (g))2 − 1− ωb(g2)− εX(g2)− εY (g2)

)
= ωb(g) +

ε

2

(
2X(g) + 2Y (g) + 2ωb(g)X(g) + 2ωb(g)Y (g)−X(g2)− Y (g2)

)
= ωb(g) + ε

(
X(g) + ωb(g)Y (g) + ωb(g) cb(g)c−b(g)

)
= (det τ)(g)

(
1 + εα(g)

)
,

where we’ve used both identities (C) and (D) with (g, h) = (g, g). It follows that d is multiplicative, since α
is an additive character. Moreover, is easy to check using the definition of det that, if t is any map and χ is
a (multiplicative) character, then det(χt) = χ2 det t. Therefore

det(t0) = det(t)
(

1− ε

2
α
)2

= (det τ)(1 + εα)(1− εα) = det τ

as desired.

Trace-determinant identity: It is also easy to check that, if χ is a multiplicative character, then the
trace-determinant identity for t holds if and only if the trace-determinant identity holds for χt.

So it suffices to see that t(gh) + d(g)t(g−1h) = t(g)t(h) for all g, h. This is a completely straightforward but
even longer computation using identities (C) and (D) with (g, h) = (g−1, h).

Set τ̃+ := t0, and make the change Y 7→ Y − α
2 and X 7→ X − ωb α2 so that τ̃+ is still of the form

τ̃+ = τ + ε(X + Y ) where X and Y satisfy identities (C) and (D), but now additionally the ε-component of
the determinant is zero, so that

ωbY +X = −ωbcb c−b. (E)
In other words, the new α = 0.

7.3.3 Analyzing τ̃+

If g ∈ G = GQ,p fixes either K(α
1
p ) or K(β

1
p ), then at least one of cb or c−b must be zero, and certainly

ωb(g) = 1. From equation E we see that

X + Y = 0 on Gal
(
Qp/K(α

1
p )
)
∪Gal

(
Qp/K(β

1
p )
)

(that’s a union of two subgroups). Conversely, if ωb(g) = 1 and g moves both α
1
p and β

1
p , then both cb(g)

and c−b(g) are nonzero, so that, by equation E again,

X + Y 6= 0 on Gal(Qp/K)−
(

Gal
(
Qp/K(α

1
p )
)
∪Gal

(
Qp/K(β

1
p )
))
. (F)

We have proved

Proposition 7.7. There is an irreducible constant-determinant deformation τ̃+ : G → Fp[ε] of τ = ωb + 1

that satisfies the following:

If g generates both Γα = Gal(K(α
1
p )/K) and Γβ = Gal(K(β

1
p )/K), then τ̃+(g) is nonconstant.

Here α and β are two p-units whose images in E/Ep are in the ω1−b- and ω1+b-eigenspace, respectively.
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Corollary 7.8. If ` ≡ 1 mod p is a prime so that neither α nor β are pth powers in F`, then τ̃+(Frob`) is
nonconstant.

We justify the statement of the corollary: ` ≡ 1 mod p, then ` splits completely in K, so that the residue field
of a prime λ lying over ` in OK is F`. Therefore we can view elements α and β of K in F`. For ` ≡ 1 mod p,
there are `−1

p perfect pth powers in F`.

Proof of Corollary 7.8. We translate the condition that g = Frob` generates Gal(K(α
1
p )/K) into a statement

about `. First of all, we must have ` ≡ 1 mod p; otherwise, Frob` won’t be in Gal(Qp/K). If λ is a prime of
K lying over `, then the action of Frob` = Frobλ on α

1
p is uniquely defined by the congruence

Frobλ(α
1
p ) ≡

(
α

1
p
)`

mod λ.

An element of F` is in F` if and only if it is fixed by the `th power map. And Frobenius elements modulo
unramified primes of an extension lift to characteristic zero uniquely. The claim follows.

If α and β are obviously elements of F` (if they are represented by integers, for example), then the condition
that ` ≡ 1 mod p in Corollary 7.8 is superfluous: if ` 6≡ 1 mod 5 then every element of F` is a perfect pth

power.

Finally, we note that the Chebotarev density theorem guarantees that we can always find such `. Their
density is p−1

p2 if α 6= β and 1
p otherwise.

7.4 The takeaway for p > 2

We have now constructed two deformations τ̃− and τ̃+ of τ = 1 + ωb and proved that they satisfy the
following:

• τ̃−(Frob`) is nonconstant if and only if `b 6= 1 mod p and `p−1 6= 1 mod p2

• If ` ≡ 1 and α and β are not pth powers in F`, then τ̃+(Frob`) is nonconstant.
Here α and β are two elements of Q(µp) depending on b.

It is clear that if we choose `− ≡ −1 modulo p but not modulo p2, and `+ ≡ 1 modulo p satisfying the
additional condition on α and β, then `− and `+ satisfy the basis conditions from p. 76. Therefore T ′`− and
T ′`+ will generate mτ and hence Aτ .

7.4.1 Examples
Example (p = 3). The case p = 3 is done in [5, appendix], but we repeat it here for completeness. For
p = 3, the only possible reducible τ is 1 + ω, so that b = 1. Therefore,

`− ∈ {` : ` 6≡ 1 mod 3, `2 6≡ 1 mod 9} = {` : ` ≡ 2 mod 3, ` 6≡ −1 mod 9}

= {2, 5, 11, 23, 29, 41, 47, 59, 83, 101, 113, 131 . . .}.
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To find `+ we need 3-units of Q(µ3) on which Gal(Q(µ3)/Q) acts through ω1±b = 1 mod third powers. So
we can take α = β = 3. Therefore

`− ∈ {` : ` ≡ 1 mod 3, 3 is not a perfect cube mod `}

= {7, 13, 19, 31, 37, 43, 79, 97, 109, 127, . . .}

The smallest pair is (`− = 2, `+ = 7).

Example (p = 5). For p = 5, there are a priori two τs, 1 + ω and 1 + ω3, but they are ω-twists of each
other. So b = ±1. (And indeed, the construction of both `− and `+ the same for ±b.) Therefore,

`− ∈ {` : ` 6≡ 1 mod 5, `4 6≡ 1 mod 25} = {` : ` 6≡ 1 mod 5, ` 6≡ ±1,±7 mod 25}

= {2, 3, 13, 17, 19, 23, 29, 37, 47, 53, 59, 67, 73, 79 . . .}

For `+, we need 5-units of K = Q(µ5) on which Gal(Q(µ5)/Q) acts through ω1±b = {ω0, ω2} mod fifth
powers. One of these is the trivial action, so we can take α = 5 again. The other one must be in O×K .
Moreover, from [31, Chapter 8], we know that this unit β can be taken from K+, which is the real quadratic
field Q(

√
5) in this case, whose unit group has rank 1. And because the roots of unity are in their own

separate ω-eigenspace, any unit of infinite order in Q(
√

5) will work — for example, β = 2 +
√

5.

We verify: for a ∈ (Z/5)×, let σa ∈ Gal(Q(µ5)/Q) that acts on ζ5 ∈ µ5 via σa(ζ) = ζa. Then, on one hand,
a ≡ ±1 mod 5 =⇒ σa(2 +

√
5) = 2 +

√
5 and a ≡ ±2 mod 5 =⇒ σa(2 +

√
5) = 2−

√
5: that’s the only way

to get an order-2 quotient of (Z/5)×. On the other hand,

(2 +
√

5)ω
2(σa) = (2 +

√
5)a

2

=

2 +
√

5 if a ≡ ±1

−(2−
√

5) if a ≡ ±2.

Since −1 is a fifth power, these two actions coincide modulo fifth powers. (We get the ω2-action on the nose
if we start with a unit of norm 1, such as β2 = 9 + 4

√
5.) In any case,

`+ ∈
{
` ≡ 1 mod 5 : 5 and 2 +

√
5 are not 5th powers modulo `

}
= {11, 41, 61, 71, 101, 131, 151, 181, . . .}.

Note that, by quadratic reciprocity
(

5
`

)
=
(
`
5

)
= 1, so that

√
5 ∈ F`. (Of course we already knew that since

` splits completely in Q(µ5).)

The least pair that will work is (`− = 2, `+ = 11). But it can be handy to have `− ≡ −1 mod p for reasons
explained in Lemma 6.6, so we record (`− = 19, `+ = 11) as well.

7.4.2 Proof of Theorem 7.1
Recall that Lemma 6.6 explain why it is convenient to choose primes congruent to ±1 modulo p: in this
cases, modified Hecke operators look the same on all reducible components.

Proof of Theorem 7.1. See Section 7.5 below for p = 2, so assume that p ≥ 3.

For each reducible τ mod p, we have constructed τ̃+ and τ̃− and used them to find two primes whose
associated modified Hecke operators generate mτ/m2

τ . It remains to show that we can do this simultaneously
for all reducible τ mod p.
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For `−, this is easy: we have already noted that any ` ≡ −1 modulo p but not modulo p2 will do. We just
have to check that the requirements on `+ can be met over all components simultaneously. The group Γ̃

defined in section 7.3.1 is isomorphic to Fp
p+1

2 , one Fp-dimension for every ωk-eigenspace for k even modulo
p − 1 and for k = 1. Of these, all the even ones are of the form 1 − b for some odd b corresponding to a
pseudocharacter of the form 1 + ωb, so that there are p−1

2 distinct useful-for-tangent-computations p-units.
(The extra one that we never use comes from the torsion part of the unit group, generated by ζp. The action
of Gal(Q(µp)/Q) on ζp is through ω, which reflects to b = 0, which never appears since our pseudocharacter
is odd.) In any case, the requirements on `+ over all reducible components amounts to requiring Frob`+ to
project to a basis for each of the p−1

2 special lines (the Gal(Q(µp)/Q)-eigenlines) in the group Fp
p−1

2 . This
is clearly possible: (p− 1)

p−1
2 of the p

p−1
2 elements do it.

By the Chebotarev density theorem, there are infinitely many primes `+ that move every useful eigenunit in
E/Ep. Their density is

1

p

(
p− 1

p

)p−3
2

7.5 The case p = 2

Recall that for p = 2 we use Chenevier pseudorepresentations and keep track of the determinant along with
the trace. In [30], Tate proves that there is only one modular pseudorepresentation of G = GQ,2, namely
(τ = 1 + 1, d = 1). The infinitesimal pseudodeformations of τ factor through Γ = Gal(Q(i,

√
2)/Q) (see [7,

Lemma 5.3]), which is isomorphic to the Klein-4 group. Write Γ = {1, g, h, c}, where g fixes
√
−2, h fixes i,

and c fixes
√

2. A basis for those with determinant 1 and τ̃(c) = 0 is given by τ̃g, τ̃h, where τ̃g(g) = τ̃h(h) = ε,
and all the other τ̃ -values are 0. These are visibly a basis for Dτ .

A curious note: While both τ̃g and τ̃h are reducible as pseudorepresentations of G = GQ,2, both are traces of
irreducible true representations of G factoring through two different D4-extensions of Q, the former through
Q(i, (−2)

1
4 ) and the latter through Q(i, 2

1
4 ).

In any case, the maximal ideal of Aτ is generated by (T`h , T`g ) where `h ≡ 3 mod 8 and `g ≡ 5 mod 8. This
happily matches Nicolas and Serre’s discoveries in [23].
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Chapter 8

Applications to p = 2, 3, 5, 7, 13

We apply the nilpotence method to small primes with M0 = Fp[∆]. The results are summarized below. The
isomorphism Θ : Aτ −→∼ Aωτ is induced from the θ-map on modular forms modulo p; see section 2.8.

Theorem 8.1.
• For p = 2, the Hecke algebra is A = F2JT3, T5K = F2JT`3 , T`5K for any pair of primes `3 and `5 with
`i ≡ i mod 8.

• For p = 3, the Hecke algebra is A = F3JT2, T7 − 2K = F3JT`− , T`+ − 2K for any pair of primes `− and
`+ satisfying `− congruent to 2 or 5 modulo 9,

3 is not a perfect cube modulo `+.

• For p = 5, there are four twist-isomorphic reducible local components. In each case,

Aτ = F5JT11 − 2, T19K = F5JT`+− 2, T` − 1− `−1K

for any pair of primes satisfying` 6≡ 1 mod 5 and ` 6≡ ±1,±7 mod 25,

neither 5 nor 2 +
√

5 are perfect fifth powers modulo `+.

• For p = 7, there are nine local components, all reducible, in two isomorphism classes up to twist. In
each case,

Aτ = F7JT`+ − 2, T`−K,
where `− is any prime congruent to −1 modulo 7 but not modulo 49; and `+ is congruent to 1 modulo
7 with additional conditions described in Corollary 7.8.

• For p = 13, there are 48 local components: 36 are reducible in three different isomorphism classes up
to twist, and 12 irreducible and twist-isomorphic. If τ is reducible, then

Aτ = F13JT`+ − 2, T`−K,
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where `± satisfy similar conditions as above. Moreover, Aτ ' F13Jx, yK for every τ .

The case p = 2 recovers a theorem of Nicolas-Serre [24, Théorème 4.1]. The case p = 3 is new. The case
p ≥ 5 recovers and slightly refines results of Bellaïche-Khare [5, Theorem III, Theorem 22].

The rest of this chapter is devoted to the proofs of all these statements, prime by prime. We will again use
the shorthand NRO for a proper degree-lowering recursion operator in the sense of section 5.5.
Recall that full NROs are precisely what Theorem 5.1 applies to.

Proposition 8.2. Let p = 2, 3, 5, 7 or 13. Let T ∈ Ã0 is in every maximal ideal of A0. Then T is a full
NRO on M0 and hence NT (f)� (deg f)α for some α < 1.

Proof. Lemma 3.1, Corollary 6.5, and Theorem 5.1.

Corollary 8.3. Let p = 2, 3, 5 or 7.

1. If ` ≡ 1 mod p, then T = T` − 2 is a full NRO on M0.
2. If ` ≡ −1 mod p, then T = T` is a full NRO on M0.

In each case, NT (f)� (deg f)α for some α < 1.

Proof. Lemma 6.6, plus the fact that none of these primes have irreducible components, which follows from
Theorem 2.42. And then Proposition 8.3.

8.2 p = 2

There is only one modular τ , namely, (tr = 0,det = 1), coming from ρ = 1⊕1, which is the unique semisimple
representation GQ,2 → GLs(F2). This uniqueness is a theorem of Tate from the 70s [30] using discriminant
bounds, but see also the elementary observation of Serre described in [5, footnote in section 1.2].

Moreover, M = Mτ = F2[∆], and maximal ideal m of A = Aτ̄ is generated by T3 and T5 (Section 7.5). The
corresponding Hecke polynomials (computed in Section 6.2) and tuple of initial values (easy to compute by
hand) are:

P3,∆ = (X + ∆)4 + ∆X initial values = [0, 0, 0,∆];

P5,∆ = X6 + ∆2X4 + ∆4X2 + ∆X + ∆6 = (X + ∆)6 + ∆X initial values = [0, 0, 0, 0, 0,∆].

Theorem 5.3 applies to T3 acting on M with pk = 4 and D = 2, and to T5 acting on M with pk = 8 and
D = 4. Therefore,

N3(∆n) ≤ c4,2(n)/2 < 3
√
n N5(∆n) ≤ c8,4(n)/4 < 7

3n
2
3 .

The nilpotence index N(∆n) := N3(∆n) + N5(∆n) for n odd (i.e., ∆n in K) has been studied in depth
by Nicolas and Serre in [23, 24]. They give a surprising exact formula for the minimum k for which mk

annihilates ∆n, which implies that 1
2

√
n < N(∆n) < 3

2

√
n for n odd. Their proof that A = F2JT3, T5K

proceeds more or less immediately from the formula for N(∆n) by duality. The upper bound for N5(∆n)

that we get from Theorem 5.3 leaves something to be desired in comparison.

Since 2
3 is less than 1, Theorem 3.3 applies for T3, T5 and f = ∆. Since τ is unobstructed, A = F2JT3, T5K.
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Alternatively, we can use generators T`3 and T`5 for any primes `3 and `5 with `i congruent to i modulo 8.
Use Corollary 8.3, and then Theorem 3.3 applies for T`3 , T`5 and f = ∆.

8.3 p = 3

For p = 3, there is again only one τ = 1 + ω (Serre [28]), so that A = Aτ . Again M = F3[∆].

Generators for the Hecke algebra are computed carefully in section 7.4.2. The generators using the smallest
primes are T2 and T ′7 = T7 − 2. Again, we see P`,∆, P ′`,∆ and the initial values for each relevant `.

P2,∆ = X3 −∆X + ∆3 initial values = [0, 0,∆]

P7,∆ = X8 + ∆X7 + ∆2X6

+ ∆3X5 + (X4 −∆2)X4 + (∆5 + ∆2)X3 + (∆6 + ∆3)X2 + (∆7 −∆4 −∆)X + ∆8

= (X −∆)8 −∆X4 + ∆2X3 + ∆3X2 − (∆4 + ∆)X

initial values = [−1, −∆, −∆2, −∆3, −∆4 + ∆, −∆5 −∆2, −∆6, −∆7 −∆4 + ∆]

P ′7,∆ = (X −∆)P7,∆ = X9 −∆X5 −∆2X4 + (∆4 −∆)X2 + (∆5 + ∆2)X −∆9

initial values = [0, 0, 0, 0, ∆, −∆2, 0, −∆4 + ∆, ∆5 −∆2].

Clearly, T2 and T ′7 are full NROs, so that Theorem 5.3 applies to T2 with pk = 2 and D = 1, and to T ′7 with
pk = 9 and D = 3:

N2(n) < 4nlog3 2 ≈ 4n0.63 N7(n) < 16
5 n

log9 6 ≈ 3.2n0.82.

Computationally, one sees that both N2(n) and N7(n) grow like
√
n on K.

Finally, Theorem 3.3 applies for T2, T
′
7 and f = ∆. Since τ is unobstructed, A = F3JT2, T7 − 2K. Use

Corollary 8.3 and Theorem 3.3 for other generators.

8.5 p = 5

Because E4 = 1, we know that M = F5[E6], which we decompose first into weight-mod-4 components:
M0 = F5[E2

6 ] and M2 = E6 F5[E2
6 ], and then we can take advantage of the fact that ∆ = 2− 2E2

6 to arrange
things in more convenient form:

M0 = F5[∆], M2 = E6 F5[∆].

We also have four modular pseudocharacters, all twists of one other: ω3 + 1, 1 + ω, ω + ω2, and ω2 + ω3.
Let τk = ωk−1 + ωk for i = 0, 1, 2, 3. Moreover M0 = Mτ0 ⊕Mτ2 .

The algorithms in Chapter 7 tell us that mτk =
(
T ′`− , T

′
`+

)
, where

{`− 6≡ 1 mod 5, `− 6≡ ±1,±7 mod 25} =⇒ `− ∈ {2, 3, 13, 17, 19, 23, 29, 37, 47, . . .}{
`+ ≡ 1 mod 5, 5 and 2 +

√
5 are not 5th powers in F`+

}
=⇒ `+ ∈ {11, 41, 61, 71, 101, 131, 151, 181, . . .},

so that mτk =
(
T2 + 2k, T11 − 2

)
=
(
T19, T11 − 2

)
, depending on whether we want the smallest `− or the

one that has a unified modified form in every component.
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The Hecke polynomials for T ′11 = T11 − 2 and T19 acting on M0 = F5[∆] are long to write out, but their
general shape is

P ′11,∆ = (X −∆) P11,∆(X) = (X −∆)13 + [terms of total degree ≤ 9]

P19,∆ = (X −∆)20 + [terms of total degree ≤ 18].

so that the descent D is 4 and 2, respectively. Moreover, the operators lower degrees by 4 and 2, respectively.
Theorem 5.3 applies with (pk, D,E) equal to (25, 4, 4) and (25, 2, 2), respectively, so that

N11(∆n) < 6.3nlog25 21 ≈ 6.3n0.946 and N19(∆n) < 138
11 nlog25 23 ≈ 12.6n0.974.

Finally, Corollary 8.3 applies, and then Theorem 3.3 with T ′11, T19 and f = ∆, so that at least one of
Aτ0 , Aτ2 has dimension at least two, and hence is power series ring in two variables because these τs are
unobstructed. But Aτ0 and Aτ2 are twist-isomorphic, so that both are isomorphic to F5JT ′11, T19K. Same for
the other generators.

Remark. Results of Jochnowitz in [18, Theorem 6.3] can be used to show that M0 = F5[∆] has a basis
{g0, g1, g2, . . .}, with gn of ∆-degree n, satisfying

gn ∈Mτ0 iff n is even and gn ∈Mτ2 iff n is odd.

Such a basis is a priori not unique: gn is only well-defined modulo 〈gn−2, gn−4, . . .〉 and up to scaling.
We can force uniqueness in various ways; here is one: let g0 = 1 and gn for n ≥ 1 be of the shape
∆n +

∑bn/2c
i=0 ai∆

n−1−2i for scalars ai ∈ Fp. Then we can compute:

g0 = 1, g1 = ∆, g2 = ∆2 + 2∆, g3 = ∆3 + 4∆2, g4 = ∆4 + 4∆3 + 3∆, g5 = ∆5, etc.

It’s worth noting that 3g2 = θ2(∆) is in the kernel of U5 and a true Hecke eigenform, the reduction of a
normalized cuspidal eigenform in S24(1,Q(

√
144169)). But g5 = ∆5 is just an A-eigenform, not in K.

8.7 p = 7

For p = 7, we know that E6 = 1, so that M = F7[E4]. The weight grading is modulo 6, so that we have
M = M0 ⊕M2 ⊕M4 = F7[E3

4 ]⊕ E2
4M

0 ⊕ E4M
0. Finally

∆ =
E3

4 − E2
6

1728
= 1− E3

4 ,

so that M0 = F7[∆].

Every τ is reducible (Theorem 2.42) so that there are three of them inM0: namely, τ̄ ∈ {1+ω5, ω+ω4, ω2+ω3}.
Let τi = ωi + ω5−i. Then τ0 and τ2 are twists of each other.

By Theorem 7.1, we can find two primes `± so that T`+ − 2 and T`− generate each maximal ideal. Then
Theorem 3.3 applied to these operators and f = ∆ guarantees that at least one of the eigencomponents has
dimension at least 2, and hence is isomorphic to F7JT`+ − 2, T`−K because it is unobstructed.

Using Jochnowitz’s results from section 2.8.1, we can do more. Corollary 2.45 guarantees that, for each i,
we can find an sequence of eigenforms {f0, f1, f2, . . .} in Kτi with w(fn) depending linearly on n. And now
Corollary 3.6 with generators T`+ − 2 and T`− implies that dimAτi ≥ 2 for each i, which, in turn, implies
that Aτi is a power series ring in the two generators.
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Remark. Again, [18, Theorem 6.3] implies that M0 = F7[∆] has a basis {g0, g1, g2, . . .}, with gn of ∆-degree
n, satisfying

gn ∈Mτ0 ⇐⇒ n ≡ 0 mod 4; gn ∈Mτ1 ⇐⇒ n ≡ ±1 mod 4; gn ∈Mτ2 ⇐⇒ n ≡ ±2 mod 4.

Normalizing in a similar manner to the case p = 5 above, so that g0 = 1, we can compute:

g1 = ∆, g2 = ∆2 + ∆, g3 = ∆3 + 2∆2, g4 = ∆4 + 4∆3 + 5∆2 + 5∆, g5 = ∆5 + 2∆4 + 2∆2.

Here g1, g2, and g4 are reductions of true cuspidal eigenforms of weight 12, 24, and 48, respectively.

8.13 p = 13

Express E12 as a polynomial in E3
4 and E2

6 :

691E12 = 441E3
4 + 250E2

6 .

That means that the algebra of modular forms is

M = F13[E4, E6]/(3E2
6 − E3

4 − 2).

The 0-graded piece is M0 = F13[E3
4 , E

2
6 ]/(3E2

6 − E3
4 − 2) = F13[E2

6 ] with E3
4 = 3E2

6 − 2. At the same time,

∆ =
E3

4 − E2
6

1728
= E2

6 − E3
4 = 2− 2E2

6 ,

so that once againM0 = F13[∆]. Note that E3
4 = 3E2−2 = 3(1+6∆)−2 = 1+5∆, so that j =

E3
4

∆ = 1+5∆
∆ ,

whence ∆ = 1
j+8 .

There are six reducible τs in M0, namely,

τ̄ ∈ {1 + ω11, ω + ω10, ω2 + ω9, ω3 + ω8, ω4 + ω7, ω5 + ω6}.

The first and last are twist-isomorphic, as are the second and the second-to-last, as are the middle two. As
before, let τi = ωi + ω11−i for i = 0, 1, . . . , 5.

Plus there are two irreducible τs, namely τ∆ and τθ6(∆).∗

There are no more τs inM0: any τ inM has a twist coming from an eigenform of filtration k with 4 ≤ k ≤ 14

(Theorem 2.42). We have accounted for all the ones from Eisenstein series (there are always p−1
2 reducible

components in M0) and the only cuspidal eigenform appearing in weight bounded by 14 is ∆.

Theorem 7.1 guarantees infinitely many pairs of Hecke operators T+ = T`+ − 2 and T− = T`− that generate
all of the maximal ideals mτi .

Claim. We can find a T+ and a T− that are also contained in mτ∆ .

Proof of claim. It suffices to find `± with a`−(∆) = 0 and a`+(∆) = 2. Since the `− is defined by congruences,

∗That τ∆ is irreducible at 13 is well known ([29], for example) but also very easy to see: if τ∆ were reducible, then
τ(Frob`) = a`(∆) would depend only on ` modulo 13. But

∆ = q + 2q2 + 5q3 + 10q4 + 7q5 + 10q6 + 6q8 + 3q9 + q10 + 11q12 + 8q13 + 9q15

+ 7q16 + 4q17 + 6q18 + 3q19 + 5q20 + 11q23 + 4q24 + 2q25 + 3q26 + 9q27 + q29 +O(q30),

and, for example, 5 = a3(∆) 6= a29(∆) = 1.
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is easy to find one: `− = 1741 satisfies a1741(∆) = 0.

For `+, we use the notation of section 7.3. Consider the (irreducible) representation ρ∆ : GQ,13 → GL2(F13)

whose trace is τ∆. We want to find an element g of H = Gal
(
Q13/Q(µ13)

)
so that both tr ρ∆(g) = 2 and the

image of g in Γ̃ is in some list of allowable elements. Then the Chebotarev density theorem will guarantee
that we can find an `+ so that g = Frob`+ satisfies the same conditions, since the conditions factor through
a finite extension of Q.

The representation ρ∆ restricted to H lands in SL2(F13) since det ρ∆ = ω−1, which is trivial on H. Moreover,
by [26, 3.3 (Exemple f = ∆)] the prime 13 is not exceptional for ∆, so that the restriction of ρ∆ to H surjects
onto SL2(F13).

Consider the map H ρ∆×proj−−−−−→ GL2(F3)× Γ̃. It would suffice to know that this map is surjective. The image
R ⊂ SL2(F13)× Γ̃ surjects onto both components. By Goursat’s lemma, R is a fiber product over a groups
that is a quotient of both SL2(F13) and Γ̃. But Γ̃ is abelian and SL2(F13) doesn’t have any nontrivial abelian
quotients, so in that that common quotient is the trivial group, and R = SL2(F13) × Γ̃. Therefore we can
pick an element g of H that is, for example, simultaneously in the kernel of ρ∆ (so its trace is 2) that lands
anywhere we like Γ̃, as desired.

As for p = 7 above, Corollary 2.45 guarantees that, for each reducible τi, we can find an sequence of
eigenforms {f0, f1, f2, . . .} in Kτi with w(fn) depending linearly on n; and Corollary 3.6 with generators T+

and T− together with the fact that τi is unobstructed implies that Aτi = F7JT+, T−K.

We cannot a priori make the same deduction for the irreducible τ because we have not been able to guarantee
that T+ and T− are linearly independent in the cotangent space of the irreducible components — either may
well be in m2

τ , for example.

Better results
Consider the irreducible components, mτ∆ up to twist. We can find finitely many† Hecke operators S1, . . . , Sm

that generate mτ∆ . (As always, we choose them in Ã0.)

Next, for each τ appearing in A0, we find elements Eτ in Ã0 with the property that Eτ is a unit in Aτ and
in mτ ′ for all τ ′ 6= τ . These can always be found: we know that A0 is a direct product of local rings Aτ , so
that any lift of the idempotents of

∏
τ Aτ/mτ =

∏
τ F will do. Since Ã0 is dense in A0 and

∏
τ F is finite,

we can always find Eτ in Ã0.

Finally, consider the finite set
{E∆S1, . . . , E∆Sm}.

These operators are all in Ã0, so that they are proper and full recursion operators by Corollary 6.5. Moreover,
each one is in every maximal ideal by construction, so they are all NROs by Proposition 8.2. Finally, their
images in Aτ∆ generate mτ∆ , again by construction. Therefore Corollary 3.6 applies, using a sequence
guaranteed by Corollary 2.45 for τ∆.
†In Appendix F we give Weston’s argument that τ∆ is unobstructed at 13, so that in fact we need only two operators to

generate mτ∆. Prior to this argument, it was known to the literature that the representation attached to ∆ is unobstructed for
all p with the possible exception of 11 and 13 [33, Theorem 5.6].
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Remark. As for p = 5 and p = 7, [18, Theorem 6.3] implies that the ∆-degree of a generalized eigenform is
controlled by its eigencomponent. Specifically, we can find a basis {gn} for M0 = F13[∆] so that

n ≡ 0 mod 14 ⇐⇒ gn ∈Mτ0 E12 = 1 and 7∆14 + 4∆12 + 5∆11 + 12∆10 + 4∆9+

+ 12∆7 + 11∆6 + 10∆5 + 12∆4 + 7∆3 + 6∆2 + ∆

n ≡ ±1 mod 14 ⇐⇒ gn ∈Mτ∆ ∆ and θ12(∆) = 5∆13 + ∆

n ≡ ±2 mod 14 ⇐⇒ gn ∈Mτ1 10∆2 + ∆

n ≡ ±3 mod 14 ⇐⇒ gn ∈Mτ2 3∆3 + 7∆2 + ∆

n ≡ ±4 mod 14 ⇐⇒ gn ∈Mτ3 2∆4 + 10∆3 + 2∆2 + ∆

n ≡ ±5 mod 14 ⇐⇒ gn ∈Mτ4 7∆5 + 7∆4 + 5∆3 + 12∆2 + ∆

n ≡ ±6 mod 14 ⇐⇒ gn ∈Mτθ6(∆)
θ6(∆) = 5∆6 + 8∆5 + 12∆4 + 3∆3 + 9∆2 + ∆

n ≡ 7 mod 14 ⇐⇒ gn ∈Mτ5 ∆7 + 2∆5 + 8∆4 + 6∆3 + 3∆2 + ∆.

The polynomials above are all the corresponding true eigenforms (for U13 as well as for A) — reductions of
eigenforms appearing in characteristic zero, in this case normalized if cuspidal.

8.100 The nilpotence method
We restate the core part of Theorem 8.1 in a more uniform way. The proof is the nilpotence method for
obtaining lower bounds on dimensions of mod-p Hecke algebras.

Theorem 8.4.
If p = 2, 3, 5, 7 or 13, and τ : GQ,p → Fp is a modular pseudocharacter, then dimAτ ≥ 2.

Since τ is always unobstructed for these primes (Proposition 2.16), in fact Aτ ' FpJx, yK.

Proof using the nilpotence method.

Reduce to A0: By Proposition 2.41, Aτ is isomorphic to a local component of A0, so it suffices to prove the
theorem for τ with k(τ) = 0. Let τ1, . . . , τs be a complete list of modular Galois pseudocharacters appearing
in A0. Let m1, . . . ,ms be the corresponding maximal ideal and A1, . . . , As the corresponding localization.
That is Ai = Ami and A0 = A1 × · · · ×As. Fix i; we will show that dimAi ≥ 2.

Find generators for each mi: Each Ai is noetherian (Proposition 2.19), so that for each i we can find
finitely many Hecke operators T i1, . . . , T imi in Ã

0, each of the form T` − τi(Frob`), to generate mi. These are
simultaneously ideal generators of mi and topological algebra generators of Ai. Their image in Aj for j 6= i

is not controlled.

Find “approximate idempotents” for each Ai: For each i, we find elements Ei ∈ Ã0 ⊂ A0 with the
property that Ei ≡ 1 modmi and Ei ∈ mj for each i 6= j. One way to find these is to lift idempotents of

A1/m1 ×A2/m2 × · · · ×As/ms = Fp × Fp × · · · × Fp.

The set
{EiT ij : 1 ≤ i ≤ s, 1 ≤ j ≤ mi}
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consists of elements of Ã0 that are, by construction, both in
⋂
imi and generate each mi. Therefore, each

EiT
i
j is a full NRO on M0 (Proposition 8.2). Since there are finitely many of them, we can find α < 1 so

that NEiT ij (f)� deg(f)α for all f ∈M0 = Fp[∆] and all i, j (ibid.).

Find a sequence of witnesses for the fullness of Ai: Corollary 2.45 of Jochnowitz’s results on filtrations
of generalized eigenforms gives us, for each i, a sequence {fn} with fn ∈ Kτi and w(n) ∼ (p3 − p)n.

Use the Hilbert-Samuel trick to conclude that dimAi ≥ 2: Apply Corollary 3.6 to the set of operators
{EiT ij}i,j and the sequence of forms {fn} to conclude that the Hilbert-Samuel function of Ai grows faster
than linearly, and hence dimAi ≥ 2.

8.101 Blueprint for generalizations
I believe that the nilpotence method can be generalized to work for all primes, and all levels. To do this we
must

1. Generalize the Nilpotence Growth Theorem to filtered algebras. Ideal statement:

If T : B → B is a full NRO on a filtered algebra B, then there is an α < 1 so that
NT (f)� w(f)α.

Here w(f) is of course the minimum filtration of f . Other terminology (proper, full) has already been
developed in section 4.4. Most probably we would need to assume that filtered algebra B has the
property that w(fn) = nw(f).

2. Prove that Hecke recursions are always full. This just entails proving that, for f ∈Mk,

w(f0f1 . . . f`) = (`+ 1)w(f),

where f0, . . . , f` are the translates of f defined in Lemma 6.1. If true, this should not be difficult.‡

3. Generalize the results of Chapter 4, especially Proposition 4.22, to filtered algebras. This would imply
that Ã0 is always an algebra of proper and full filtered separable recursion operators (possibly with
additional conditions satisfied by Hecke operators).

The proof would then proceed just as the proof of Theorem 8.4 above.

8.102 A question of Khare
We end with a few remarks on a question of Khare [20]. Let τ a modular Galois pseudocharacter modulo p,
and assume that k(τ) = 0 for simplicity. Recall that Mτ has its weight filtration

{0} ⊂Mτ,p−1 ⊂Mτ,2(p−1) ⊂Mτ,3(p−1) ⊂ · · · ⊂Mτ

‡(October 2015) In fact, this is false, and there are many counterexamples. For p = 11, we have M0 = F11[y, y−1] with
y = E5

4 and y−1 = E5
6 , so that w(y) = 20 and w(y−1) = 30. The recursion polynomial for the action of T` on M0 for ` = 3 is

P3,y = X4 + (9y + 9)X3 + (y2 + 9y + 9 + 9y−1)X2 + (9 + 8y−1 + y−2)X + y−1.

Evidently, a`+1 = y−1 has filtration 30 rather that (`+ 1)w(y) = 80. It now seems likely that a different condition will have to
be used to carve out those NROs whose nilpotence index grows slower than linearly.
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In [20, Section 3], Khare defines the nilpotence filtration on Mτ :

{0} ⊂Mτ [mτ ] ⊂Mτ [m2
τ ] ⊂Mτ [m3

τ ] ⊂ · · · ⊂Mτ ,

and asks how the nilpotence filtration compares with the weight filtration when restricted to K = kerU :
“Does there exist a nice function f(n) such that Kτ [mnτ ] ↪→ Kτ,f(n)?”§ He also notes that there is “a strong
connection” between the function f(n) and the dimension of Aτ . With the Hilbert-Samuel trick and (a
hypothetical but plausible strengthening of) Jochnowitz’s results, we can make that connection precise: if
f(n) is O(nk), then dimAτ ≤ k.

The nilpotence method naturally answers the inverse comparison question: if p = 2, 3, 5, 7 or 13, then we
have shown that there is a function g(n)� nα for some α < 1 so that Mτ,n ↪→Mτ [m

g(n)
τ ], which gives lower

bound for the dimension of Aτ . But for p = 2, Nicolas and Serre have found a Khare-type function: they
find that f(n) is quadratic in n. It would be very interesting to see if this other side of Nicolas-Serre can be
generalized as well.

§We have substituted our notation — but note that Khare states his question for forms of level Γ1(N).
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Appendix A

Pseudocharacters and
pseudorepresentations of dimension 2

A pseudocharacter of a group G to a ring A is a function G→ A that mimics the properties of the trace of a
representation of G. We’ll briefly discuss two related notions of pseudocharacters of dimension 2: Rouquier’s
pseudocharacters and Chenevier’s pseudorepresentations, and prove that they are equivalent if 1

2 ∈ A. The
arguments don’t appear to be written down anywhere, though the equivalence is well known. The main
references are [25] and [7].

A.1 Rouquier pseudocharacters of dimension 2
Definition. A pseudocharacter of dimension 2 of a group G over a ring A is a map t : G→ A satisfying

• t is central : For all x, y in G we have t(xy) = t(yx).
• t is not multiplicative: There exist x, y in G with t(x)t(y) 6= t(xy).
• t satisfies the Frobenius identity of order 3: For all x, y, z in G,

t(x)t(y)t(z)− t(x)t(yz)− t(y)t(xz)− t(z)t(xy) + t(xyz) + t(xzy) = 0.

To explain the second requirement: if t : G → A× is a multiplicative character, then t is central and also
satisfies the Frobenius identity of order 3, but of course we prefer to call this a pseudocharacter of dimension 1.
A proper pseudocharacter of dimension 2 is not multiplicative.

Remark (Digression on the Frobenius identity). The Frobenius identity of order 3 is a special case of a more
general construction. If t : G→ A is any central map, n is any positive integer, and σ ∈ §n is a permutation,
define tσ : Gn → A as—well, this is a one case where an example is clearer than a formula:

t(164)(23)(x1, . . . , x6) = t(x1x6x4)t(x2x3)t(x5).

Finally, let Sn(t) : Gn → A be defined as Sn(t) =
∑
σ∈§n sgn(σ)tσ.

Then the Frobenius identity of order 3 defined above is exactly the condition S3(t) = 0 as a map G3 → A.
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The Frobenius identity of order 2 is S2(t)(x, y) = t(x)t(y)− t(xy) = 0 forces t to be multiplicative—that is,
a pseudocharacter of dimension 1. More generally, a map t : G→ A is a pseudocharacter of dimension ≤ d

if it is central and Sd+1(t) = 0.

The inequality appearing in that definition is inconvenient but necessary: If t : G → A is central and
Sn(t) ≡ 0 (as a map Gn → A), then Sn+1(t) ≡ 0 as well. Indeed, it’s not hard to convince oneself that

Sn+1(t)(x1, . . . , xn, y) = t(y)Sn(t)(x1, . . . xn)−
n∑
i=1

Sn(t)(x1, . . . , xiy, . . . , xn).

In other words, a central map t : G→ A is a pseudocharacter of dimension d if Sd+1(t) = 0 but Sd(t) 6= 0.

By playing around with 2× 2 matrices, it’s not difficult to verify that ρ : G → GL2(A) is a representation,
then tr ρ is a pseudocharacter of dimension ≤ 2. Unfortunately, the trace of a representation of dimension
2 in characteristic 2 may be identically 0, and hence accidentally multiplicative. Consider, for example,
the trivial two-dimensional representation of any group over A = F2: its trace is identically 0 and hence
satisfies the Frobenius identity of order 1. Should it be considered a pseudocharacter of dimension 0? (The
answer is that one should keep track of the determinant as well as the trace and work with Chenevier
pseudorepresentations instead.)

Lemma A.1. If A is a domain and t : G→ A is a dimension-2 pseudocharacter, then t(1) = 2.

In particular, if A is a domain with 1
2 ∈ A and ρ : G → GL2(A) is any representation, then tr ρ is a

pseudocharacter of dimension exactly 2.

Proof. Let a = t(1) ∈ A. The Frobenius identity with z = 1 gives

0 = a t(x)t(y)− t(x)(y)− t(y)t(x)− a t(xy) + t(xy) + t(xy) = (a− 2)
(
t(x)t(y)− t(xy)

)
.

Since we assumed that t is not multiplicative, there exist x and y in G with t(xy) 6= t(x)t(y). If A is a
domain, this forces a = 2.

A.2 Chenevier pseudorepresentations of dimension 2
Definition. A (Chenevier) pseudorepresentation of dimension 2 of a group G over a ring A is a pair (t, d)

of functions from G to A satisfying

• t : G→ A is central: for all x and y in G, we have t(xy) = t(yx)

• t(1) = 2

• d : G→ A× is a group homomorphism
• (Trace-determinant identity) For all x and y in G, we have

t(xy) + d(x)t(x−1y) = t(x)t(y).

It’s trivial to verify that (tr ρ, det ρ) is a pseudorepresentation of dimension 2 is if ρ : G → GL2(A) is a
representation.

Do we need to assume t(1) = 2 in the definition? The trace-determinant identity for the pair (1, 1) gives
t(1) + d(1)t(1) = t(1)2, so that t(1) is a root of X(X − 2), and it’s likely possible to set up situations with
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t(1) = 2 forced. In any case, it’s desirable.

Lemma A.2. Suppose (t, d) : G→ A is a pseudorepresentation of dimension 2. Then 2 d(x) = t(x)2− t(x2)

for all x ∈ G.

Proof. Trace-determinant identity for the pair (x, x) and t(1) = 2.

Proposition A.3. If 1
2 ∈ A, then we have a natural bijection

{dim-2 Rouquier pseudochars t : G→ A with t(1) = 2} ↔ {dim-2 Chenevier pseudoreps (t, d) : G→ A}

t 7→ (t, d), where d(x) :=
t(x)2 − t(x2)

2

t← [ (t, d)

Proof. Rouquier implies Chenevier: First, suppose t : G→ A is a Rouquier pseudocharacter of dimen-
sion 2. Define d : G → A as above: d(x) = t(x)2−t(x2)

2 for x ∈ G. We will show that (t, d) satisfy the
trace-determinant identity (easy) and that d is multiplicative (less easy).

Lemma A.4. For any a, b in G,

1. S3(t)(a, a, b) = 2
(
d(a)t(b) + t(a2b)− t(a)t(ab)

)
2. S3(t)(a, b, ab) = t(a)t(b)t(ab) + t(a2b2)− t(a)t(a2b)− t(b)t(ab2)− 2d(ab)

R-to-C: Trace-determinant identity: Let x and y in G be arbitrary. By the first part of the lemma
above with a = x and b = x−1y,

S3(t)(x, x, x−1y) = 2
(
d(x)t(x−1y) + t(xy)− t(x)t(y)

)
.

Since S3(t)(x, x, x−1y) = 0 and 2 is invertible, the trace-determinant identity holds for x and y.

R-to-C: d is a group homomorphism: Again, let x and y in G be arbitrary. I claim that

S4(t)(x, y, x, y) + 4S3(t)(x, y, xy) = t(y)S3(t)(x, x, y) + 2S3(t)(x, y, xy)− S3(t)(x, x, y2)

= 4
(
d(x)d(y)− d(xy)

)
.

Indeed, the general identity from the remark above for n = 3 reduces to

S4(t)(a, b, c, d) = t(d)S3(t)(a, b, c)− S3(t)(ad, b, c) = S3(t)(a, bd, c)− S3(t)(a, b, cd)

for any a, b, c, d in G, which essentially immediately implies the equality of the two expressions on the first
line. The first part of the lemma above applied twice, the first time for a = x and b = y, and the second for
a = x and b = y2, along with the second part of the lemma applied for a = x and b = y, combined with the
definition of d(y), establishes the rest of the identity.

Since S3(t) ≡ 0, the middle expression is identically 0; since 4 is invertible, this forces d(x)d(y) = d(xy).
Finally, d(1) = t(1)2−t(12)

2 = 1, which means that d really is a group homomorphism.

Chenevier implies Rouquier Suppose (t, d) : G→ A is a Chenevier pseudorepresentation of dimension 2.
Note that, since 2 is invertible in A, this automatically implies that d(x) = 1

2

(
t(x)2 − t(x2)

)
(Lemma A.2).

Since we’re assuming that t(1) = 2 and 2 invertible in A, it’s also easy to see that t is not multiplicative: if
t were multiplicative, then 2 = t(1) = t(12) = t(1)2 = 4 in A, which isn’t true since 2 is a unit.
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Appendix A. Pseudocharacters vs. -representations A.2. Chenevier pseudorepresentations

In other words, the only thing to prove is the Frobenius identity. We simplify the computations slightly
with a trick. Let R = A[G], and extend t to R by linearity. Then S3(t) is a symmetric and multilinear
function from R3 to A. In the case where 3 is also invertible in A (in addition to 2), inclusion-exclusion-type
expressions show that such a function is always determined by its values on the diagonal R ↪→ R3. Indeed,
if f : R3 → A is symmetric and multilinear, and g : R→ A is defined by g(x) = f(x, x, x), then

g(x+ y + z)− g(x+ y)− g(x+ z)− g(y + z) + g(x) + g(y) + g(z) = 6f(x, y, z).

So if g is identically zero, and 6 is invertible, then f is identically zero as well.

However, we definitely want to establish this for rings of characteristic 3, so we can’t assume that 3 is
invertible. So we adapt this argument very slightly. We show instead that for any x, y ∈ R, we have
S3(t)(x, x, y) = 0. This is enough: again, if f : R3 → A is symmetric multilinear, then

f(x+ y, x+ y, z) = 2f(x, y, z) + f(x, x, z) + f(y, y, z).

Since 2 is a unit in A, if f evaluates to zero whenever two of the arguments are the same, it is in fact
identically zero on R3.

It remains to establish that S3(t)(x, x, y) is always zero. But we already computed in the first part of
Lemma A.4 that

S3(t)(x, x, y)

2
= d(x)t(y) + t(x2y)− t(x)t(xy)

—and the latter expression is exactly the trace-determinant identity for the pair (x, xy), so known to be
identically zero for a Chenevier pseudorepresentation of dimension 2.
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Appendix B

Solutions to linear recurrences
over a field

The purpose of this chapter to give a proof of Proposition 4.5, restated below:

Recall that K is a field. If P ∈ K[X] is monic, then P is the companion polynomial of a unique linear
recurrence, so the two notions are conflated below.

Proposition B.1 (Repeat of Proposition 4.5). Suppose that P ∈ K[X] factors as

P (X) = (X − α1)e1 · · · (X − αr)er

with α1, . . . , αr ∈ K distinct. Then every solution to the recursion P in K
N
is a linear combination of the

following e1 + · · ·+ er solutions:{(
n

j

)
αn−ji

}
n

, with 1 ≤ i ≤ r and 0 ≤ j < ei.

Here
(
n

j

)
is the integer-valued binomial coefficient function

n 7→ n(n− 1)(n− 2) · · · (n− j + 1)

j!
.

We continue to use the convention that α0 = 1 for all α; here we additionally insist that
(
n
j

)
αn−j = 0 if

j < n for all α as well.

In this section, we resort to the following notational trick: if A is a ring and f : N → A is a function, then
we will identify f with its sequence of values (f(n))n ∈ AN. In particular, we’ll always assume that n is the
function variable.
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Appendix B. Solutions to linear recurrences B.1. Polynomial functions

B.1 Background on polynomial functions

For k ≥ 1, let x(k) ∈ Q[x] be the kth binomial coefficient function:

x(k) =

(
x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

Also set x(0) = 1 and x(k) = 0 for k < 0. Even though a priori the coefficients of x(k) as a polynomial are not
integral, as a polynomial function, x(k) takes integers to integers. So x(k) is an integer-valued polynomial : a
polynomial f ∈ Q[x] that takes Z to Z.

Theorem B.2. The functions {x(k)}k are a Z-basis for the space of all integer-valued polynomials.

This theorem is attributed to Pólya, but the proof, which is given at the end of section B.2 below, uses
only very simple calculus of finite differences, so the statement may well have been known to Newton much
earlier.

For all k, the sequence n(k) = (n(k))n is an element of ZN and hence of KN regardless of the characteristic
of K. The first few sequences of binomial coefficient function values:

n(0) = (1, 1, 1, 1, 1, 1, 1, 1, . . .)

n(1) = (0, 1, 2, 3, 4, 5, 6, 7, . . .)

n(2) = (0, 0, 1, 3, 6, 10, 15, 21, . . .)

n(3) = (0, 0, 0, 1, 4, 10, 20, 35, . . .)

n(4) = (0, 0, 0, 0, 1, 5, 15, 35, . . .)

Lemma B.3. The sequences n(0), n(1), n(2), . . . form a linearly independent set in KN.

Proof. For n < k, we have n(k) = 0; and k(k) = 1. Linear independence follows.

Note that the same is not true for the polynomial xk: the set {1, n, n2, n3, . . .} of sequences in KN is not
linearly independent if charK = p. Indeed, n and np define the same function from N to K. Binomial
coefficient functions fix this exact problem.

Lemma B.4. If charK = 0 or if charK > k, then the span of the sequences

{1, n, n(2), n(3), . . . n(k)}

is the same as the span of
{1, n, n2, n3, . . . , nk}.

Proof. The sets {1, x, x2, . . . , xk} and {1, x, x(2), . . . , x(k)} both span the space of polynomials of degree
bounded by k inside Z[ 1

k! ][x].
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Appendix B. Solutions to linear recurrences B.2. General form

B.2 General form of a recurrence sequence
Proposition B.5. Let P (X) ∈ K[X] be a polynomial defining a linear recurrence of order d. Suppose that
P (X) factors over K as

P (X) = (X − α1)e1 (X − α2)e2 · · · (X − αr)er

with the αi ∈ K distinct.

Then s ∈ KN
is a solution to the recurrence defined by P if and only if s is a K-linear combination of the d

linearly independent solutions

n(0)αni , n(1)αn−1
i , . . . , n(ei−1)αn−ei+1

i as i runs over 1, 2, . . . , r.

Proof. As before, we have to show that n(k)αn−ki is a solution for k < ei, and that the d solutions given are
linearly independent. For the first, see Lemma B.6 below combined with Proposition 4.7. For the second,
we need the invertibility of a generalized Vandermonde matrix; see section B.3.

In other words, the space of recurrence sequences contains the algebraic span of all polynomial functions and
all geometric sequences.

Lemma B.6. Let α be any element of K, and consider the recurrence equation with polynomial P (X) = (X−α)d.
Then the sequence n(k)αn−k is a solution to the recursion for any k < d.

Proof. We continue the methods of the proof of Proposition 4.7: let E be the shift-left operator on KN; then
f ∈ KN is a solution to the recursion defined by P ∈ K[X] if and only if P (E) f = 0

Let ∆ = E − 1 be the finite difference operator, a discrete analog of differentiation. We first show that

∆n(k) = n(k−1).

Indeed,

∆n(k) = ∆

(
n

k

)
=

(
n+ 1

k

)
−
(
n

k

)
=

(
n

k − 1

)
= n(k−1).

By induction, ∆dn(k) = n(k−d), so that ∆dn(k) = 0 if an only if k < d. This proves the lemma for α = 1.
The general case is analogous:

(E − α)
(
n(k)αn−k

)
=

(
n+ 1

k

)
αn−k+1 − α

(
n

k

)
αn−k = n(k−1)αn−k+1

so that (E − α)d
(
n(k)αn

)
= n(k−d)αn−d.

In other words, n(k)αn is a solution to the recursion if and only if k < d.

The finite difference operator gives a way to prove Theorem B.2:

Proof of Theorem B.2. By Lemma B.4, any integer-valued polynomial f ∈ Q[x] of degree d can be written
as
∑
k≤d akn

(k), with the ak ∈ Q. (Recall that we’re identifying polynomial functions like x(k) with their
sequence of values on integers, a perfectly reasonable thing to do over Q.) Moreover, a0 = f(0) ∈ Z.

It is clear that the discrete difference operator ∆ takes polynomials to polynomials, and it certainly preserves

100



Appendix B. Solutions to linear recurrences B.3. Generalized Vandermonde determinant

the space of integer-valued polynomials. Therefore ∆f = ∆
∑
k≤d akn

(k) =
∑
k≤d akn

(k−1) is an integer-
valued polynomial, and hence a1 = (∆f)(0) ∈ Z. By induction ak = (∆kf)(0) ∈ Z for every k.

B.3 Invertibility of the generalized Vandermonde matrix
In this section, we prove a lemma necessary for Proposition B.5. We will show that a certain type of
generalized Vandermonde matrix is invertible.

We first define the matrix. Fix a positive integer r and positive integers e1, . . . , er; the matrix will have
dimension d = e1 + · · ·+er. For any ordered r-tuple (α1, . . . , αr) of elements of K we define the d×d matrix
Ve1,...,er (α1, . . . , αr) by listing d functions f : N→ K; the entries of the each column will be the value f(n)

for 0 ≤ n ≤ d. The first e1 functions are

n(0)αn1 , n(1)αn−1
1 , . . . , n(e1−1)αn−e1+1

1 .

Then next e2 functions are

n(0)αn2 , n(1)αn−1
2 , . . . , n(e2−1)αn−e2+1

2 .

And so on; the last er functions are, of course,

n(0)αnr , n(1)αn−1
r , . . . , n(er−1)αn−er+1

r .

For example,

V3,2,1(a, b, c) =



1 0 0 1 0 1

a 1 0 b 1 c

a2 2a 1 b2 2b c2

a3 3a2 3b b3 3b2 c3

a4 4a3 6b2 b4 4b3 c4

a5 5a4 10b3 b4 5b4 c5


.

If ei = 1 for all i, we get the usual Vandermonde matrix.

Proposition B.7. If α1, . . . , αr are distinct, then the generalized Vandermonde matrix Ve1,...,er (α1, . . . , αr)

is invertible.

The proposition establishes the linear independence of the solutions given in Proposition B.5, whose first
d entries are scalar multiples of the columns in the generalized Vandermonde matrix. The argument be-
low is adapted from the elegant one given by user Taar on Math.stackexchange∗ to the case of arbitrary
characteristic.

To prove the lemma, we first define a variation on formal derivative operators on polynomials. For a
nonnegative integer k, define the operator dk on K[x] by setting dk(xn) =

(
n
k

)
xn−k and extending by

linearity. For comparison to the usual formal derivative d defined by d(xn) = nxn−1, we have k!dk = dk.

Lemma B.8 (Leibniz rule). For any k ≥ 0 and any f, g ∈ K[x],

dk(fg) =
∑
i+j=k

di(f)dj(g).

∗http://math.stackexchange.com/questions/654324, “Determinant (and invertibility) of generalized Vandermonde matrix.”
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Appendix B. Solutions to linear recurrences B.3. Generalized Vandermonde determinant

For comparison, the usual Leibniz rule for dk is dk(fg) =
∑
i+j=k

(
k
i

)
di(f)dj(g).

Proof. By linearity, it suffices to prove the formula for f = xn and g = xm. The left-hand side gives(
n+m
k

)
xn+m−k; the right-hand side is ∑

i+j=k

(
n

i

)(
m

j

)
xn+m−k.

Equality follows: for example, one can think combinatorially about choosing a k-subset from the (disjoint)
union of an n-set and an m-set.

Lemma B.9 (Raison d’être of dk). Let f be a polynomial in K[x], and suppose for some α ∈ K we have

f(α) = d1f(α) = d2f(α) = · · · = dn−1f(α) = 0.

Then (x− α)n divides f(x).

Proof. Write f(x) = (x−α)mg(x) with g(α) 6= 0. First use induction with the Leibniz rule to conclude that
dk(x− α)m =

(
m
k

)
(x− α)m−k. Next, the Leibniz rule again gives

dkf(x) =
∑
i+j=k

di(x− α)m djg(x) =
∑
i+j=k

(
m

i

)
(x− α)m−i djg(x)

Evaluate at α successively for k = 0, 1, . . . , n− 1 to conclude that m > k.

Finally, we are ready to prove the invertibility of the generalized Vandermonde matrix.

Proof of Lemma B.7. Write V = Ve1,...,er (α1, . . . , αr). Let c = (c0, . . . cd−1) ∈ Kd be a row vector so that
c · V = (0, . . . , 0). Define the polynomial

f(x) = c0 + c1x+ · · ·+ cd−1x
d−1 ∈ K[x].

Then the condition c · V = 0 considered column by column exactly says that, for all i,

f(αi) = d1f(αi) = · · · = dei−1f(αi) = 0.

By Lemma B.9, (x−αi)ei divides f for each i. Since the αi are distinct, we in fact have
∏
i(x−αi)ei dividing

f as well. But
∏
i(x−αi)ei has degree d, and deg f is explicitly less than d. This means that f = 0, so that

c = 0 and the rows of V are linearly independent.

In fact, one can also show that

detVe1,...,er (α1, . . . , αr) =
∏
i<j

(αi − αj)eiej .

For a proof of this determinant formula in the case where charK = 0, see http://www.garretstar.com/
secciones/publications/docs/generalized_Vandermonde.pdf. The general case follows since the deter-
minant is is a polynomial function in the α1, . . . , αr and the formula is true over Z.
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Appendix C

Notes on α

Here we discuss some computational aspects of the special-shape Nilpotence Growth Theorem. The form we
will discuss is stated below.

Theorem C.1 (cf. Theorem 5.2 and sections 5.2 and 5.4). Suppose T is a degree-lowering linear operator
on F[y] so that the sequence {T (yn)}n satisfies a linear recursion whose companion polynomial has the shape

Xd + ayd + (terms of total degree ≤ d−D)

for some D ≥ 1 and some constant a ∈ F. Suppose also that either d = b or d = b− 1 for some p-power b,
and D < b− 1. Then

NT (yn) ≤ cT (n) � nlogb(b−D),

where cT (n) = cb,D(n) if d = b and cT = (b−D − 1)cb,D
(
n
d

)
if d = b− 1.

For T satisfying the conditions of the theorem, let α(T ) = min{α : NT (yn)� nα}. Also, let

α(d,D) := max{α(T ) : T satisfies the conditions of Theorem C.1 with d, D}.

If d is a power of p or d is less than a power of p, then clearly α(d,D) ≤ logb(b−D). The question we briefly
computationally investigate here is whether α(d,D) = logb(b−D).

C.1 Case d = p

Computationally, it appears that α(p,D) = logp(p−D). More surprisingly, it appears that one can always
find a T so that NT (yn) = cT (yn) on the nose, if not always then infinitely often. Here are some of these
maximal examples. In each case, we use the initial values [0, 1, y, y2, . . . , yp−2]. We will focus on D = 1.

• p = 2: This is outside the purview of the theorem since b−D = 1, but c2,1(n) is the sum of the digits
of n base 2, so that c2,1(n) � log2(n). The recursion operator T with

PT = X2 +X + y2

and initial values [0, 1] appears to achieve NT (yn) = cT (n) infinitely often.
• p = 3: The recursion operator T with PT = X3 + yX − y3 and initial values [0, 1, y] appears to achieve
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NT (yn) = cT (n) infinitely often. For n < 10000, I compute that NT (yn) is equal to cT (n) over 60% of
the time, and never differs by more than 7.

• p = 5: The recursion operator T with PT = X5 + 3yX3 + y2X2 + 3y3X + 4y5 and initial values
[0, 1, y, y2, y3] appears to achieve NT (yn) = cT (n) for “most” n: every counterexample n has 0s in its
base-5 expansion, and cT (n)−NT (yn) ≤ 2 for all n < 1000.

• p = 7: The recursion operator T with PT = X7 + 3y2X4 + 6y3X3 + 5y4X2 + 3y5X + 6y7 appears
to achieve NT (yn) = cT (n) for most n. For n < 1000, there are only 36 counterexamples, and
cT (n)−NT (yn) ≤ 3 for each one.

• p = 11. The recursion operator T with

PT = X11 + 6yX9 + 2y2X8 + 3y3X7 + 6y4X6 + 8y6X4 + y8X2 + 9y9X + 10y11

appears to achieve NT (yn) = cT (n) for most n. For n < 1000, there are only 8 counterexamples, and
NT (yn) = cT (n)− 1 for each one.

C.2 Other cases

If d = p2, it is less clear what is happening. One guess is that as p grows, it becomes easier to find examples
with NT (yn) a lot like cT (n), but it’s not clear if that is just for small n. A few examples that look maximal.

• p = 2: The recursion operator T with PT = X4 + y4 + y3 and initial values [0, 1, y, y2] appears to have
α(T ) ≈ 0.71, whereas logb(b− 1) = 0.792.

• p = 3. The recursion operator T with PT = X9 + 2y2X6 + y3X5 + 2y5X3 + y6X2 + 2y7X + 2y9 and
initial valuess [0, 1, y, . . . , y7] appears to have α(T ) < 0.92, whereas logb(b− 1) = 0.946.

• p = 5 The recursion operator with

PT = X25 + 2yX23 + y2X22 + 2y3X21 + 2y5X19 + y6X18 + 4y7X17 + 2y8X16

+ 4y9X15 + y10X14 + 3y11X13 + 4y12X12 + 3y16X8 + 4y18X6 + y19X5

+ 4y21X3 + y22X2 + 4y23X + 4y25

has NT (yn) = cT (n) for n < 125. For 125 ≤ n < 1000, the difference cT (n) − NT (yn) is bounded by
31: compare to cT (1000) = 936. Unclear if this is a small-n noise or not.

For d = pk − 1, I simply record a few examples that seem to have high growth (though probably not as high
as cT ) for further investigation later.

• p = 3, d = 2: PT = X2 +X + y2 + 2y

• p = 2, d = 3: PT = X3 +X2 + yX + y3 + y.
• p = 2, d = 7: PT = X7 +X6 +X5 +X4 + (y3 + y2)X3 + y4X2 + y4X + y7
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Proof of Theorem 5.21

We prove Theorem 5.21, restated below, using Proposition 5.12.

D.1 Statement of the theorem
Theorem D.1 (Theorem 5.21). Let T : F[y] → F[y] be a degree-lowering recursion operator so that the
sequence {T (yn)} satisfies a linear recursion of order d where d is prime to p and such that the companion
polynomial has the shape

Xd + ayd + (terms of total degree ≤ d−D)

for some constant a ∈ F and some D ≥ 1. Let k = dlogp de, so that d ≤ pk = b. Then if D < b
2 , then

NT (yn) = O(nlogb(b−D)).

More precisely,

NT (yn) <
(b− 1)(b−D)

(
(b−D)` − 1

)
dlogb(b−D)(b− 1−D)

nlogb(b−D) +
(b− 1)

(
(b−D)` − 1

)
b−D − 1

,

where ` is the multiplicative order of b modulo d.

Why is this theorem necessary? It isn’t, but it gives a somewhat better upper bound for the nilpotence
growth.

How much better? Suppose ` 6= p is prime, and we have a polynomial

P (X) = X` − y` + (terms of total degree < `).

Since x` − 1 divides xp
f−1 − 1 in Fp[x] if and only if ` divides pf − 1, we will find that the α < 1 guaranteed

by Theorem 5.19 is log(pf−1)
log(pf )

, where f is the multiplicative order of p modulo `, and may be as high as `− 1

if p happens to be a generator in (Z/`Z)×. On the other hand, the α guaranteed by Theorem D.1 is log(pk−1)
log(pk)

where pk merely has to be greater than `.

For an example of this phenomenon, take p = 3 and ` = 7. Since 3 is a generator mod 7, we are comparing
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α = log729 728 = 0.9998 from Theorem 5.19 with α = log9(8) = 0.9464 from Theorem 5.21. Is this dramatic
enough to warrant several more pages of technical lemmas? A question only the dedicated reader who has
made it this far can answer. The ultimate goal would be to get a better bound still, and Theorem 5.21 is
a small step in the right direction. For example, let P (X) = X7 + yX5 + yX − y7, and let T (yn) = yn−1

for 1 ≤ n < 7. Computations with SAGE suggest that NT (yn) is multiplied by about 2.6 every time that n
is multiplied by 7, which gives an α ≈ 0.88. The real coup would be to approach this bound.

D.2 Proof of the theorem
The proof proceeds exactly the same as before. We set b be the smallest power of p not less than d. We will
assume that D ≤ b−1

2 . Let M = (b −D)` − 1, where ` is the multiplicative order of b modulo d. Finally,
we set

cT (n) := Mcb,D

(n
d

)
as usual. We will eventually show that cT satisfies all the properties of Proposition 5.12.

D.2.1 Preliminaries
We begin with a general and very satisfying lemma about comparing how the content function changes when
you add or subtract arguments.

The question of how (b,D)-content changes when we add or subtract integers can be answered completely.
Write two nonnegative integers m and n base b as m = [m` m`−1 · · · m1 m0] and n = [n` n`−1 · · · n1 n0],
possibly padding one of the expressions with initial zeros so that they have the same number of digits. Define
rb(m,n) = [r` r`−1 · · · r1 r0] as the number whose base-b expansion is the tuple of carry digits when m is
added to n base b. That is, let s = [s`+1 s` · · · s0] be the base-b expansion of s = m+n, and define ri ∈ {0, 1}
implicitly and inductively via m0 + n0 = s0 + r0 b and mi + ni + ri−1 = si + ri b for i ≥ 1. Finally, for any
tuple r = [r` · · · r0], we will write cb,D(r) =

∑`
i=0(b−D)iri, so that cb,D(n) = c(base-b expansion of n).

Lemma D.2. With rb(m,n) as above,

cb,D(m+ n) = cb,D(m) + cb,D(n)−D cb,D
(
rb(m,n)

)
.

Proof. A clean computation. Let s = m+ n and r = rb(m,n). Recall that we have

m0 + n0 = s0 + r0b = s0 +D r0 + r0(b−D)

and mi + ni + ri−1 = si + rib = si +D ri + ri(b−D) for i ≥ 1.

Multiplying the ith equation by (b−D)i and adding up the sides of the equalities, we get

cb,D(m) + cb,D(n) +
∑
i≥1

ri−1(b−D)i = cb,D(s) +D cb,D(r) + r0(b−D) +
∑
i≥1

ri(b−D)i+1.

The extraneous terms on each side cancel to finish the proof.

Next, a simple lemma about the base-b expansion of fractions with denominator d.

Lemma D.3. Let b be a base and d a denominator prime to and less than b.
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1. Any fraction i
d with 0 < i < d, has no zeros in its base-b expansion.

2. Write i
d with 0 < i < d as i

d = m
b`−1

with ` minimal. Then all the digits of m base b are distinct.

Proof.
1. The first digit of i

d after the radix (i.e., “decimal”) point is b ibd c, which is at least 1 since d < b. This
division ib ÷ d has a remainder r, which is at least 1 since d is prime to b. The second digit is b rbd c,
which is again at least 1, and the remainder is again at least 1, for the same reasons. And so on.

2. Write i
d = [0.a0a1a2 · · · ]b, so that m = [a0 · · · a`−1]b. The digits ai are obtained by Euclid’s algorithm:

ib = a0d + r0 with and then for n > 0, we have rn−1b = and + rn; at each step, rn < d and an < b.
Suppose aj = ak for some j, k. I claim that this forces rj = rk, so that j and k are a multiple of ` apart.
Indeed, we know that ajd is rj less than a multiple of b for some rj < d < b. This defines rj uniquely,
and since akd has the same relationship to rk, we must have rk = rj . By induction aj+n = ak+n for all
integer n ≥ −j,−n, both positive and negative. Since ` is the length of the period, the claim follows.

D.2.2 The properties of Proposition 5.12
Throughout, base b > 2 is a power of p, descent D is an integer, and d is a denominator prime to and less
than b. We also let ` be the multiplicative order of b modulo d, and m be the integer defined by 1

d = m
b`−1

.
Moreover, for i, j integers between 0 and d, let ri,j = r = rb

(
im, jm

)
, the carry digits when im and jm are

added together. Finally, write c = cb,D.

Lemma D.4 (Property (4)). If D ≤ b
2 , then

0 = c(0) < c

(
1

d

)
< c

(
2

d

)
< · · · < c

(
d− 2

d

)
< c

(
d− 1

d

)
.

The lemma is not generally true if D > b
2 . Here is the simplest counterexample: for (b,D) = (7, 5), we have

1
5 = 480

74−1 = [0.1254]7. It’s easy to check that c7,5
(

2
5

)
= c7,5

(
3
5

)
= 3. Worse yet,

c11,9

(
3

7

)
=

39

7
>

31

7
= c11,9

(
4

7

)
.

Proof. We show that for integers j and i with 0 ≤ j < i < d, we have c
(
j
d

)
< c
(
i
d

)
.

Since d is prime to b, we know that 1
d is purely periodic, say, of period ` ≤ 1. This means that there exists

an integer m with exactly ` digits in its base-b expansion (because 1
d >

1
b ), so that 1

d = m
b`−1

. Moreover,

c
(

1
d

)
=

c(m)

(b−D)` − 1
,

and
c
(
i
d

)
=

c(im)

(b−D)` − 1
;

observe that, for i in the range 1 ≤ i < d, the integer im still has exactly ` digits in its base-b expansion.

It therefore remains to show that, for integers 1 ≤ j < i ≤ d − 1, we have c(j m) < c(im). Of course, it’s
enough to do this for i = j+1. Here we use Lemma D.2: we know that c

(
(j+1)m

)
−c(j m) = c(m)−D c(r),

107



Appendix D. Proof of Theorem 5.21 D.2. Proof

where r = rj,1 is the number whose base-b expansion keeps track of the carry digits when jm and m are
added together base b. So the statement is proved as soon as we establish that c(m) > D c(r).

As observed above, m, jm, and im = jm+m all have exactly ` digits base b. This means that the topmost
carry digit of the addition problem jm+m is r`−1 = 0. The rest of the ris are all 0s and 1s, so that

D c(r) ≤ D
`−2∑
i=0

(b−D)i =
D

b−D − 1

(
(b−D)`−1 − 1

)
.

On the other hand, since d < b, we know that the first digit of m is at least 1, so that c(m) ≥ (b −D)`−1.

Since we’re assuming that D
b−D−1 ≤ 1, the desired inequality follows.

To extend the inequality to all D ≤ b
2 , we use part (1): since every digit of m is nonzero, we know that

actually

c(m) ≥
`−1∑
i=0

(b−D)i =
1

b−D − 1

(
(b−D)` − 1

)
.

So this sequence of inequalities also holds if (b−D)`−1 > D
(
(b−D)`−1−1

)
: for example if 1 < D ≤ b−D,

or, equivalently, 1 < D ≤ b
2 . But since b−1

2 < D < 1 implies that b < 3, and we’re assuming that b > 2, we
don’t have to worry about the condition D > 1 in the region b−1

2 < D ≤ b
2 .

Lemma D.5. For all descents D, we have c
(
d−D
d

)
≤ 1, with equality if and only if d = b− 1.

Proof. We want to prove that c
(
d−D
d

)
=
c
(
(d−D)m

)
(b−D)` − 1

≤ 1. Since dm = b` − 1 = [b− 1 · · · b− 1] and m

has no zero digits, we know that

c
(
(d−D)m

)
≤ (b−D − 1)

`−1∑
i=0

(b−D)i =
(
(b−D)` − 1

)
,

with equality if and only if m = [1 · · · 1]: that is, if d = b − 1. Indeed, if d < b − 1, then Lemma D.3
guarantees that one of the first two base-b digits of m is at least a 2, which will leave (d−D)m with either
its first or second digit strictly less than b−D − 1, either of which is enough.∗

Lemma D.6 (Property (1)). Let b be a base, D ≤ b− 3 a descent, and denominator d < b and prime to b.
Moreover, we have two integers 0 ≤ j ≤ i −D < i < d and two nonnegative integers A and B so that both
∗Lemma D.3 guarantees that 1

d
≥ [0.1 2 3 · · · `]b. This is a relatively crude estimate. In fact, if 1

d
= [0.12 . . .]b, then d = b− 2

and each digit after the decimal point is at least double the previous one (unless of course this doubling exceeds b). But this
estimate 1

d
≥ [0.1 2 3 · · · `]b easy to work with because we know that ` is a digit base b: since ` is the multiplicative order of b

mod d, we know that ` ≤ ϕ(d) < d < b. Alternatively, Lemma D.3 implies ` < b as well. In any case, c(m) ≤
∑`
i=1 i(b−D)`−i.

We derive how to compute this type of sum:

N∑
n=1

nxn−1 =
∞∑
n=1

nxn−1 −
∞∑

n=N+1

nxn−1 =
∞∑
n=1

nxn−1 − xN
∞∑
n=1

nxn−1 −NxN
∞∑
n=0

xn

=
1

(1− x)2
−

xN

(1− x)2
−
NxN

1− x
=

1− (N + 1)xN +NxN+1

(1− x)2
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A+ i and B + j are strictly less than d. Then

cb,D

(
A+ i

d

)
− cb,D

(
A

d

)
> cb,D

(
B + j

d

)
− cb,D

(
B

d

)
.

That is, not only is cb,D increasing on
{

0, 1
d ,

2
d , . . . ,

d−1
d

}
, but this increasing is “uniform" over the interval:

what matters are relative jumps i
d and j

d , not the starting points A
d and B

d . The case A = B = 0 is Lemma
D.4.

Proof. Write c for cb,D. Let ` and m be as the proof of the previous lemma, and recall that, for 0 ≤ s < d,
we know that

c
( s
d

)
=

c(sm)

(b−D)` − 1
.

The desired inequality is therefore equivalent to the integer-content inequality

c
(
(A+ i)m

)
− c
(
Am

) ?
> c
(
(B + j)m

)
− c
(
Bm

)
.

Recall that, for integers s and t, we write rs,t for rb(sm, tm). By Lemma D.2, the left-hand side of the
inequality above is equal to c(im)−D c(rA,i), and the right-hand side to c(jm)−D c(rB,j). In other words,
the inequality above is equivalent to the inequality

c(im)− c(jm)
?
> D c(rA,i)−D c(rB,j).

Using Lemma D.2 again, we replace c(im)−c(jm) by c
(
(i−j)m

)
−D c(rj,i−j). By Lemma D.4, c

(
(i−j)m) ≥ c(Dm),

and certainly D c(rB,j) is nonnegative. It therefore suffices to prove that

c(Dm)
?
> D c(rA,i) +D c(rj,i−j).

Using the crude estimates at the end of the proof of Lemma D.4, we know that c(Dm) ≥ D(b−D)`−1 and
that each of the terms on the right-hand side is bounded by D

b−D−1

(
(b−D)`−1−1

)
. The condition D ≤ b−3

guarantees that 2
b−D−1 ≤ 1, which proves the last inequality.

For the next two lemmas, let A,B, I, and J be integers satisfying 0 ≤ A,B, I, J,A+ I,B + J < d.

Lemma D.7. If I + J ≤ d−D and D ≤ b− 2, then

1. c
(
I

d

)
+ c

(
J

d

)
≤ 1

2. Property (2): c
(
A+ I

d

)
− c
(
A

d

)
+ c

(
B + J

d

)
− c
(
B

d

)
≤ 1

Proof. 1. If d = b− 1, then

c

(
I

d

)
+ c

(
J

d

)
=

I + J

b−D − 1
≤ d−D
b−D − 1

= 1.

Otherwise, we need to look more carefully. We know that

Therefore, we know that

c(m) ≤ (b−D)`−1
∑̀
i=1

i

(b−D)i−1
= (b−D)`−1

1− `+1
(b−D)`

+ `
(b−D)`+1(

1− 1
b−D

)2
=

(b−D)2 − (`+ 1)(b−D) + `

(b−D − 1)2

Perhaps one can get even better bounds from this.
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c

(
I

d

)
+ c

(
J

d

)
=
c
(
(I + J)m

)
+D c(rI,J)

(b−D)` − 1
≤
c
(
(d−D)m

)
+D c(rI,J)

(b−D)` − 1
.

Since dm = [b− 1 · · · b− 1], we know further that c
(
(d−D)m

)
= c(dm)− c(Dm). And on the other

hand, D c(rI,J) ≤ D
b−D−1

(
(b−D)` − 1

)
. Therefore, the numerator of c

(
I
d

)
+ c
(
J
d

)
is no more than

c
(
(d−D)m

)
+D c(rI,J) ≤ c(dm)− c(Dm) +

D

b−D − 1

(
(b−D)` − 1

)
= (b− 1)

(b−D)` − 1

b−D − 1
−D(b−D)`−1 +

D

b−D − 1

(
(b−D)` − 1

)
= (b−D)`−1

(
1 +

2D

b−D − 1
−D(b−D)`−1

)
.

Therefore, our claim is established as soon as we know that D(b−D)`−1 ≥ 2D

b−D − 1
. This is easily

seen to be true provided that ` > 1 (the case ` = 1 was dispatched earlier) and D ≤ b − 2, which we
gladly assume.

2. As in the proof of Lemma D.6, we know that

c

(
A+ I

d

)
− c
(
A

d

)
+ c

(
B + J

d

)
− c
(
B

d

)
= c

(
I

d

)
+ c

(
J

d

)
− D c(rA,I) +D c(rB,J)

(b−D)` − 1

If I + J ≤ d−D, then by the observation above and Lemma D.7,

c

(
A+ I

d

)
− c
(
A

d

)
+ c

(
B + J

d

)
− c
(
B

d

)
≤ c
(
I

d

)
+ c

(
J

d

)
≤ 1.

Lemma D.8 (Property (3)). If I + J ≥ d+D and D ≤ b−1
2 , then

c

(
A+ I

d

)
− c
(
A

d

)
+ c

(
B + J

d

)
− c
(
B

d

)
> 1.

Proof. We know that

c

(
I

d

)
+ c

(
J

d

)
=
c
(
(I + J)m

)
+D c(rI,J)

(b−D)` − 1
.

If I + J ≥ d+D, then (I + J)m = dm+ im = b` − 1 + im for some i ≥ D. Since im has ` base-b digits, we
know that c

(
(I + J)m

)
= (b−D)` + c(im− 1); since im not divisible by b, this is further equal to

c(Im+ Jm) = c(b`) + c(im)− 1

≥ c(b`) + c(Dm)− 1 ≥ (b−D)` +D(b−D)`−1 − 1

On the other hand, c(rI,J) is certainly bounded below by (b−D)`−1, so that the numerator of c
(
I
d

)
+ c
(
J
d

)
is at least

c(Im+ Jm) +Dc(rI,J) ≥ (b−D)` − 1 + (D + 1)(b−D)`−1.

We also have

c

(
A+ I

d

)
− c
(
A

d

)
+ c

(
B + J

d

)
− c
(
B

d

)
= c

(
I

d

)
+ c

(
J

d

)
− D c(rA,I) +D c(rB,J)

(b−D)` − 1
.
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Analyzing the extra terms as before, we have

D c(rA,I) +D c(rB,J) ≤ 2D

b−D − 1
·
(
(b−D)`−1 − 1

)
,

so that, if I + J ≥ d,

c

(
A+ I

d

)
− c
(
A

d

)
+ c

(
B + J

d

)
− c
(
B

d

)
≥

(b−D)` − 1 + (D + 1)(b−D)`−1 − 2D
b−D−1

(b−D)` − 1
.

In short, the claim is established provided that (D + 1)(b−D)`−1 ≥ 2D
b−D−1 . Certainly the left-hand side is

at least 2, and under the assumption D ≤ b−1
2 , the right-hand side is no more than 2. So we are done.

This completes the Theorem-5.2-style part of Theorem 5.21. For the precise bounds, note that

cT (n) =
(
(b−D)` − 1

)
cb,D

(n
d

)
<
(
(b−D)` − 1

)( (b− 1)(b−D)

b− 1−D

(n
d

)logb(b−D)

+
b− 1

b−D − 1

)
,

which proves the claim.
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Appendix E

Irreducible representation deforming a
reducible pseudocharacter

Let G be a group, F a field with charF 6= 2 and χ1, χ2 : G→ F× two characters. Suppose that there exist
cocycles c12 ∈ Ext1

G(χ2, χ1) and c21 ∈ Ext1
G(χ1, χ2) with the property that both Yoneda cup products c12c21

and c21c12 are nullhomologous in Ext2
G(χ1, χ1) and Ext2

G(χ2, χ2), respectively. We construct a representation
ρ : G→ GL2(F [ε]) whose trace is an irreducible pseudocharacter tr ρ : G→ F [ε] deforming τ = χ1 + χ2.

E.1 Cohomological computations

E.1.1 Ext-groups via cochains
For i ≥ 0, let Ci be the space of i-cochains (that is, set maps) Gi → F , and let C :=

⊕
i Ci. This is a graded

algebra with C0 = F whose multiplication is defined as follows: if a ∈ Ci and b ∈ Cj then ab is in Ci+j with

ab(g1, . . . , gi+j) = a(g1, . . . , gi)b(gi+1, . . . , gi+j).

Given two characters χ1, χ2 : G→ F×, we endow C with a differential operator d : C → C, graded of degree
1, with di : Ci → Ci+1 defined by

(dic)(g1, . . . , gi+1) = χ1(g1)c(g2, . . . , gi+1) +

i∑
j=1

(−1)jc(g1, . . . , gjgj+1, . . . , gi+1)

+ (−1)i+1c(g1, . . . , gi)χ2(gi+1).

One can check that di+1di = 0, so that C is a complex with differential d, and we can consider its cohomology.
For i = 0, 1, 2, the ith cohomology group gives us an explicit realization of Ext1

G(χ2, χ1), described below.∗

∗I expect this is true for all i, but have not checked the details.
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The first few graded pieces of C as a complex are

0→ C0 d0

−→ C1 d1

−→ C2 d2

−→ C3 → · · · ,

where the maps can be described explicitly:

(d0c)(g) = χ1(g)c− cχ2(g),

(d1c)(g, h) = χ1(g)c(h)− c(gh) + c(g)χ2(h),

(d2c)(g, h, k) = χ1(g)c(h, k)− c(gh, k) + c(g, hk)− c(g, h)χ2(k).

Whence the first few cohomology groups:

Ext0
G(χ2, χ1) = ker d0 =

F if χ1 = χ2

0 else

 ,

Ext1
G(χ2, χ1) =

ker d1

im d0
=

{c ∈ C1 : c(gh) = χ1(g)c(h) + c(g)χ2(h)}
{c ∈ C1 : c(g) = χ1(g) b− b χ2(g) for some b in F}

,

Ext2
G(χ2, χ1) =

ker d2

im d1
=
{c ∈ C2 : χ1(g)c(h, f)− c(gh, f) + c(g, hf)− c(g, h)χ2(f) = 0}
{c ∈ C2 : c(g, h) = χ1(g)b(h)− b(gh) + b(g)χ2(h) for some b ∈ C1}

.

If χ1 and χ2 are understood, then, for a 1-cochain c ∈ ker d1 ⊂ C1, write [c] for the corresponding element
of Ext1

G(χ2, χ1).

Ext1 and representations

A 1-cochain c represents an element of Ext1
G(χ2, χ1) if and only if

g 7→

(
χ1(g) c(g)

0 χ2(g)

)
is a representation G → GL2(F ). The isomorphism class of this representation depends only on the image
of [c] in the projectivization PExt1

G(χ2, χ1).

E.1.2 Yoneda product via cochains
Let χ1, χ2, χ3 be three characters G→ F×. From now on, we specify by writing dij for the differential giving
Ext•G(χj , χi) in cohomology.

Cochain multiplication satisfies a kind of graded Leibniz rule:

Lemma E.1. If a ∈ Ci and b ∈ Cj are two cochains, then

di+j13 (ab) = di12(a)b+ (−1)ia dj23(b).

Proof. Computation, completely straightforward.

In particular, if i = j = 1, then d2
13(ab) = d1

12(a)b− a d1
23(b): this the main form we will use.

Now if c12 ∈ C1 represents an element of Ext1
G(χ2, χ1) and c23 ∈ C1 represents an element of Ext1

G(χ3, χ2)

are two 1-cocycles, then the 2-cochain c12c23 ∈ C2 represents an element of Ext1
G(χ3, χ1) that depends only
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on [c12] and [c23]. Indeed, by Lemma E.1,

d13(c12c23) = d12(c12)c23 − c12 d23(c23) = 0,

so that c12c23 is in ker d13. Moreover, if c12 + d0
12a is another representative of [c12] for some a ∈ C0, then(

c12 + d0
12(a)

)
c23 = c12c23 + d0

12(a)c23 = c12c23 + d0
12(a)c23 − a d1

23(c23) (A)

= c12c23 + d1
13(a c23), (B)

where we’ve used Lemma E.1 again along with the fact that d1
23(c23) = 0 by definition. Adjusting the

representative of [c23] works the same way.

Therefore multiplication of cochains descends to a map

Ext1
G(χ2, χ1)⊗ Ext1

G(χ3, χ2)→ Ext2
G(χ3, χ1),

corresponding to the Yoneda product of extension classes.

Nullhomologous Yoneda products

Suppose again that c12 and c23 are 1-cocycles in ker d12 and ker d23, respectively. Further suppose that we
know that the product 2-cocycle c12 c23 is nullhomologous in Ext2

G(χ3, χ1) Then there exists a 1-cochain b
trivializing this 2-cocycle, so that c12 c23 = d13b. That is, for all g, h ∈ G,

c12(g)c23(h) = χ1(g)b(h)− b(gh) + b(g)χ3(h).

The choice of b is not unique, but any two 1-cochains b and b′ trivializing c12c23 differ by a 1-cocycle in
ker d1

13.

Finally, if c12 is replaced by another representative of [c12] ∈ Ext1
G(χ2, χ1), then the trivializing cochain b

adjusts by an element of C0 c23 ⊂ C1, that is, an F -scalar multiple of c23 (same reasoning as in equations
(A)-(B) above). Similarly, replacing c23 by a cohomologous cocycle moves b by c12C0 ⊂ C1. Therefore, if
we only know [c12] and [c23], the trivializing cochain b is well-defined in C1 modulo c12 C0 + C0 c23, that is,
modulo linear combinations of c12 and c23.

We record a lemma about the trivializing cochain in the case that χ1 = χ3.

Lemma E.2. Let c12 represent an element of Ext1
G(χ2, χ1) and c21 represent an element of Ext1

G(χ1, χ2)

so that c12c21 is nullhomologous in Ext2
G(χ1, χ1), with b in C1 a trivializing 1-cochain. Then b′ ∈ C1 also

trivializes c12c21 if and only if (b− b′)χ−1
1 is an additive character of G.

Proof. We know b − b′ is a 1-cocycle representing an element in Ext1
G(χ1, χ1), which exactly means that

(b− b′)χ−1
1 is an additive character of G.

E.1.3 A triple product computation
Now suppose [c12] ∈ Ext1

G(χ2, χ1) and [c21] ∈ Ext1
G(χ1, χ2) are such that both c12 c21 and c21 c21 are

nullhomologous in Ext2
G(χ1, χ1) and Ext2

G(χ2, χ2), respectively. (This happens, for example, if both Ext2s,
which are isomorphic via twist by χ−1

1 χ2, vanish.) Choose trivializing 1-cochains f11 and f22, respectively.
That is,

c12c21 = d1
11f11 and c21c12 = d1

22f22.
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I claim that the 2-cochain
e = f11c12 + c12f22

is in the kernel of d2
12. To see this, apply Lemma E.1 twice:

d12(e) = d12(f11c12) + d12(c12f22) = d11(f11) c12 − f11 d12(c12) + d12(c12)f22 − c12 d22(f22)

= c12c21c12 − 0 + 0− c12c21c12 = 0.

Therefore e represents an element of Ext2(χ2, χ1). When we pass to cohomology, both f11 and f22 are
defined up to a linear combination of c12 and c21 only, so that this element need not be well-defined.† But
in our application, we will have Ext2

G(χ2, χ1) = 0, so this ambiguity doesn’t matter.

E.2 Application to a tangent pseudodeformation

As before G is a group, F a field with charF 6= 2, and χ1, χ2 : G → F× two characters. Suppose that
Ext1

G(χ2, χ1) 6= 0 and Ext1
G(χ1, χ2) 6= 0, but Ext2

G(χ1, χ1) = Ext2
G(χ2, χ1) = 0.

Proposition E.3. Under the assumptions above, there exist irreducible representations

ρ : G→ GL2(F [ε])

whose trace tr ρ is a deformation of t = χ1 + χ2 to F [ε] as a pseudocharacter, and whose determinant
det ρ = χ1χ2.

Proof. We use the ideas of [3], though the construction of ρ is completely self-contained based on section E.1
above.

Find 2-cocycles c12 and c21 representing elements of Ext1
G(χ2, χ1) and Ext1

G(χ1, χ2), respectively. Since we
are assuming that Ext2

G(χ1, χ1) = Ext2
G(χ2, χ2) = 0, we can find 1-cochains f11 and f22 with the property

that
d11(f11) = c12c21 and d22(f22) = c21c12.

Further, since we assume Ext2
G(χ2, χ1) = 0, we can find a 1-cochain Z12 with the property that

d12(Z12) = f11c12 + c12f22.

I claim that

ρ =

(
χ1 − εf11 c12 + εZ12

εc21 χ2 − εf22

)
is a representation of G over F [ε]‡. Since the image is in GL2(F [ε]), it suffices to check that ρ(gh) = ρ(g)ρ(h).
We compute, using the fact that c12 ∈ ker d12,
†It is an element of the Massey triple product 〈c12, c21, c12〉.
‡Thanks to Carl Wang Erickson for suggesting the shape of ρ and a conceptual interpretation of Z12.
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ρ(g)ρ(h) =

(
χ1(gh) c12(gh)

0 χ2(gh)

)

+ ε

(
−χ1(g)f11(h)− f11(g)χ1(h) + c12(g)c21(h) χ1(g)Z12(h)− f11(g)c12(h)− c12(g)f22(h) + Z12(g)χ2(h)

c21(g)χ1(h) + χ2(g)c21(h) c21(g)c12(h)− χ2(g)f22(h)− f22(g)χ2(h)

)

To prove that ρ(gh) = ρ(g)ρ(h), we verify equality in each coordinate:

( • ◦◦ ◦ ) Because d11f11 = c12c21,

−f11(gh) = −χ1(g)f11(h)− f11(g)χ1(h) + c12(g)c21(h).

( ◦ ◦◦ • ) Similarly, because d22f22 = c21c12,

−f22(gh) = c21(g)c12(h)− χ2(g)f22(h)− f22(g)χ2(h).

( ◦ ◦• ◦ ) True because c21 ∈ ker d21.
( ◦ •◦ ◦ ) Because d12Z12 = f11c12 + c12f22, we have

Z12(gh) = χ1(g)Z12(h)− f11(g)c12(h)− c12(g)f22(h) + Z12(g)χ2(h).

Therefore ρ is a representation whose trace visibly deforms χ1 + χ2, as claimed. It remains to see that we
can adjust ρ to force the determinant to be χ1χ2. We compute

det ρ = χ1χ2 − ε(χ1f22 + f11χ2 + c12c21).

Since ρ is a representation, its determinant is a character of G, which means that its ε-component scaled by
χ−1

1 χ−1
2 , namely

α = f22χ
−1
2 + χ−1

1 f11 + χ−1
1 c12c21χ

−1
2 ,

is an additive character of G. By Lemma E.2 we can replace f11 by f11 − χ1α = −χ1f22χ
−1
2 − c12c21χ

−1
2 in

the construction of ρ above. This adjustment affects only Z12, which does not affect the determinant. It is
clear that the adjusted representation by construction has determinant χ1χ2, as desired.

Of course several such ρ may be possible: most obviously, if χ1 6= χ2, then we can swap the roles of χ1 and
χ2 to get a deformation that residually has χ2 as a subrepresentation instead of χ1. But as far as the trace,
from [3] we know that, if χ1 6= χ2 and both Ext1

G(χ2, χ1) and Ext1
G(χ1, χ2) are one-dimensional, then the

tangent space to the pseudodeformation functor modulo reducible deformations is one-dimensional as well.

E.3 Applications to reducible modular pseudocharacters
We check the cohomological conditions for applying Proposition E.3 in the case that G = GQ,p, the field is
F = Fp, and all maps are additionally assumed continuous. Recall that ω is the mod-p cyclotomic character.

Proposition E.4. Assume Vandiver’s conjecture for p. If k = 0 or k is odd modulo p− 1, then

H2(GQ,p, ω
k) = 0.

Proof. We use Tate’s global Euler characteristic formula [22, Theorem 5.1]: if M is a finite Fp-vector space,
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then
#H0(GQ,p,M) #H2(GQ,p,M)

#H1(GQ,p,M)
=

#H0(Gal(C/R),M)

#M
.

In our case with M = Fp(ωk), we have

#H0(GQ,p, ω
k) =

p if k = 0

1 otherwise;

#H1(GQ,p, ω
k) = p if k = 0 or k is odd (here assuming Vandiver’s conjecture for k odd);

#H0(Gal(C/R), ωk) =

p if k is even

1 if k is odd;

#M = p.

Therefore if k = 0 or k is odd, #H2(GQ,p, ω
k) = 1, as claimed.

Therefore, if τ = ωb + 1 is a reducible modular pseudocharacter of GQ,p, then b is odd, and we have
Ext2

GQ,p
(Fp,Fp) = Ext2

GQ,p
(Fp, ωb) = 0, and Proposition E.3 applies.
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The representation attached to ∆ is
unobstructed mod 13

We give an argument of Tom Weston showing that for p = 13, the residual representation

ρ∆ : GQ,p → GL2(Fp)

attached to ∆ is unobstructed.

The representation ρ = ρ∆ is unobstructed if and only if H2(GQ,p, ad ρ) vanishes (this is the original defintion
of unobstructed, which coincides with the one given here in section 2.5 for absolutely irreducible ρ). ByWeston
[32, Lemma 6] and its Poitou-Tate source [22, Theorem 4.10],

dimH2(GQ,p, ad ρ) = dimFp X
1(GQ,p, ω ⊗ ad0ρ) +H0(Gp, ω ⊗ ad ρ) + Ĥ0(G∞, ω ⊗ ad ρ).

Here ω is the mod-13 cyclotomic character; Gp ⊂ GQ,p is an image of Gal(Qp/Q) inside GQ,p and G∞ is an
image of Gal(C/R). Moreover, Ĥ0(G∞,M) is reduced H0 modulo norms, and

X1(GQ,p, ω ⊗ ad0ρ) = ker
(
H1(GQ,p, ω ⊗ ad0ρ) −→ H1(Gp, ω ⊗ ad0ρ)⊕H1(G∞, ω ⊗ ad0ρ)

)
.

TheX1-term vanishes by the analysis in Weston [32, section 4], which relies on results of Diamond-Flach-Guo
[11]. The infinite local Ĥ0-term also vanishes because p 6= 2.

For the remaining Gp-invariants, we use the fact (see, for example, Gross [15, Equation (0.1)]) that

ρ|Gp ∼

(
ω−1χ−1 ∗

0 χ

)
,

where χ : Gp → F×13 is the unramified character taking Frobp to a13(∆) = 8. (In fact, in [15, Theorem 13.10
and chart on p. 513], Gross proves that this extension is nonsplit, but the only thing that actually appears
to matter here is that a13 6≡ ±1 mod 13.)

118



Appendix F. The representation attached to ∆ is unobstructed mod 13

In general, if the eigenvalues of some representation ρ′ are α and β, then the eigenvalues of ad ρ′ are 1, 1,
αβ−1, α−1β. In our case, the eigenvalues of ad ρ are 1, 1, ωχ2 and ω−1χ−2, so that the eigenvalues of
ω ⊗ ad ρ are

ω, ω, ω2χ2, and χ−2.

Since χ is unramified and χ−2 6= 1, there are no Gp-invariants, and this term vanishes as well.
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