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We prove that the killing rate of certain degree-lowering “recursion operators” on a polynomial algebra
over a finite field grows slower than linearly in the degree of the polynomial attacked. We also explain the
motivating application: obtaining a lower bound for the Krull dimension of a local component of a big
mod p Hecke algebra in the genus-zero case. We sketch the application for p D 2 and p D 3 in level one.
The case p D 2 was first established in by Nicolas and Serre in 2012 using different methods.
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1. Introduction

The main goal of this document is to prove the following nilpotence growth theorem, about the killing
rate of a recursion operator on a polynomial algebra over a finite field under repeated application:

Theorem A (nilpotence growth theorem; see also Theorem 1). Let F be a finite field of characteristic p,
and suppose that T W FŒy�! FŒy� is a degree-lowering F-linear operator satisfying the following condition:

The sequence fT .yn/gn of polynomials in FŒy� satisfies a linear recursion over FŒy� whose com-
panion polynomial X dCa1X d�1C� � �Cad 2FŒy�ŒX � has both total degree d and y-degree d ..i/

MSC2010: primary 11T55; secondary 11B85, 11F03, 11F33.
Keywords: linear recurrences in characteristic p, modular forms modulo p, congruences between modular forms, mod p Hecke

algebras, p-regular sequences, base representation of numbers.
.i/The companion polynomial of a linear recurrence sn D a1sn�1C� � �Cad sn�d satisfied by a sequence fsngn for all n� d

is X d � a1X d�1 � � � � � ad . See Section 2D.
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Then there exists a constant ˛ < 1 so that the minimum power of T that kills yn is O.n˛/.

To prove this theorem, we reduce to the case where the companion polynomial of the recursion has
an “empty middle” in its degree-d homogeneous part: that is, when for some a 2 F it has the form
X d C ayd C .terms of total degree< d/. Then we prove this empty-middle case (see Theorem 4 below)
by constructing a function c W FŒy�!N[f�1g that grows like .degf /˛ and whose value is lowered by
every application of T . In the special case where d is a power of p, the function c takes yn to the integer
obtained by writing n in base d and then reading the expansion in some smaller base, so that the sequence
fc.yn/gn is p-regular in the sense of Allouche and Shallit [1992]. The proof that c.T .yn// < c.yn/, by
strong induction, uses higher-order recurrences depending on n, so that n is compared to numbers whose
base-d expansion is not too different.

It is the author’s hope that ideas from p-automata theory can eventually be used to sharpen and
generalize the nilpotence growth theorem.

Motivating application of the nilpotence growth theorem. The motivating application for the nilpotence
growth theorem (Theorem A above) is the nilpotence method for establishing lower bounds on dimensions
of local components of Hecke algebras acting on mod p modular forms of tame level N . These Hecke
algebra components were first studied by Jochnowitz [1982] in the 1970s, but the first full structure
theorem did not appear until over thirty years later. In 2012 Nicolas and Serre used recurrences satisfied by
Hecke operators (see (5-1)) to describe the Hecke action on modular forms modulo 2 completely explicitly
[Nicolas and Serre 2012a], leading to a Hecke algebra structure result for p D 2 and N D 1 [Nicolas and
Serre 2012b]. Unfortunately their explicit formulas appear not to generalize beyond p D 2. The structure
of mod p Hecke algebras for p� 5 was subsequently established by very different techniques by Bellaïche
and Khare [2015] for N D 1 and later generalized by Deo [2017] to all N . The Bellaïche–Khare method
deduces information about mod p Hecke algebra components from corresponding characteristic-zero
Hecke algebra components, which are known to be big by the Gouvêa–Mazur “infinite fern” construction
([Gouvêa and Mazur 1998]; see also [Emerton 2011, Corollary 2.28]). The nilpotence method is yet a
third technique, coming out of an idea of Bellaïche for tackling the case p D 3 and N D 1 as outlined in
[Bellaïche and Khare 2015, Appendix], and implemented and developed in level one for pD 2; 3; 5; 7; 13

in the present author’s Ph.D. dissertation [Medvedovsky 2015]. Like the Nicolas–Serre approach, the
nilpotence method stays entirely in characteristic p and makes use of Hecke recurrences; but instead of
explicit Hecke action formulas, the nilpotence growth theorem now plays the crucial dimension-bounding
role. See Section 5 below for a taste of this method for p D 2; 3, which completes the determination
of the structure of the Hecke algebra for p D 3 begun in [Bellaïche and Khare 2015, Appendix] and
recovers the Nicolas–Serre result for p D 2. In fact, the nilpotence method via the nilpotence growth
theorem in its current form gives lower bounds on dimensions of mod p Hecke algebras of level N so
long as the genus of the modular curve X0.Np/ is zero; see [Medvedovsky 2015] and the forthcoming
[Medvedovsky � 2018] for details.
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Structure of this document. After a few preliminary definitions in Section 2, we state and discuss a more
general version of the nilpotence growth theorem (NGT); see Theorem 1 in Section 3. In Section 4, we
prove a toy version of the NGT (Theorem 2). In Section 5, we use the toy version of NGT to prove
that the mod p level-one Hecke algebra for p D 2; 3 has the form Fp ŒŒx;y��. This section illustrates the
motivating application of the nilpotence growth theorem and is not required for the rest of the document.
This is a reasonable stopping point for a first reading.

In Section 6 the proof of the NGT begins in earnest. There is a short overview of the structure of the
proof in Section 6A. In Section 6B, we reduce to working over a finite field. In Section 6C, we reduce to
the empty-middle NGT (Theorem 4). In Section 6D, we give the inductive argument that reduces the
proof of the empty-middle NGT to finding a nilgrowth witness function satisfying certain properties. The
next three sections are combinatorial in nature, as we construct a nilgrowth witness. In Section 7, we
discuss base-b representation of numbers and introduce the content function. In Section 8, we prove a
number of technical inequalities about the content function. In Section 9 we finally construct a nilgrowth
witness out of the content function, finishing the proof of the empty-middle NGT, and hence of the NGT
in full. Finally in Section 10, we state a more precise version of the toy NGT and speculate on the
optimality of some bounds.

2. Preliminaries

This section contains a brief review of a few unconnected algebraic notions. All rings and algebras are
assumed to be commutative, with unity. We use the convention that the set of natural numbers starts with
zero: ND f0; 1; 2; : : :g. Below, R is always a ring.

2A. Structure of finite rings. If R is finite, then R is artinian, hence a finite product of finite local
rings. If R is a finite local ring with maximal ideal m, then the residue field R=m is a finite field of
characteristic p. Moreover, the graded pieces mn=mnC1 are finite R=m-vector spaces, so that R has
cardinality a power of p. Basic examples of finite local rings include Fp Œt �=.t

k/ and Z=pkZ.

2B. Degree filtration on a polynomial algebra. If 0¤ f D
P

n�0 cnyn is a polynomial in RŒy�, then its
y-degree, or just degree, is as usual defined to be degf WDmaxfn W cn¤ 0g. For f D 0, set degf WD�1.

The degree function gives RŒy� the structure of a filtered algebra. Let RŒy�n WD ff 2RŒy� W degf � ng,
and then RŒy�D

S
n�0 RŒy�n and multiplication preserves the filtration as required.

2C. Local nilpotence and the nilpotence index. Let M be any R-module and T 2EndR.M / an R-linear
endomorphism. (In applications to Hecke algebras, R will be a finite field, M an infinite-dimensional
R-algebra of modular forms, and T a Hecke operator.)

The operator T WM !M is locally nilpotent on M if every element of M is annihilated by some
power of T . If T is locally nilpotent and f in M is nonzero, we define the nilpotence index of f with
respect to T as

NT .f / WDmaxfk � 0 W T kf ¤ 0g:
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Also set NT .0/ WD �1.
Suppose R D K is a field, M D KŒy�, and T W M ! M preserves the degree filtration; that is,

T .KŒy�n/�KŒy�n. Then T is locally nilpotent if and only if T strictly lowers degrees, in which case
we also have NT .f /� degf .

For example, T D d
dy

is locally nilpotent on KŒy�. If K has characteristic zero, then NT .f /D degf ;
otherwise NT .f /� char K� 1.

2D. Linear recurrences and companion polynomials. Now suppose that M is an R-algebra, and M 0

is an M -module (we will usually take M 0 DM ). A sequence s D fsng 2M 0N satisfies an M -linear
recurrence of order d if there exist elements a0; a1; : : : ; ad 2M so that

a0sn D a1sn�1C � � �C adsn�d for all n� d : (2-1)

Unlike some authors, we do not assume that ad is nonzero or not a zero divisor, but we do insist
that the recursion already hold for n D d . The companion polynomial of this linear recurrence is
P .X /D a0X d �a1X d�1�� � ��ad 2M ŒX �. If a0D 1, then the recurrence is said to be monic; we will
always assume below that our linear recurrences are monic unless stated otherwise.

Example. The sequence s D f0; 1;y;y2;y3;y4; : : :g 2RŒy�N satisfies an RŒy�-linear recursion of min-
imal order 2; we have sn D ysn�1 for all n � 2, but not for nD 1. The companion polynomial of the
recurrence is therefore X 2�yX .

Given any sequence s in M 0N, the set of companion polynomials of (not necessarily monic) M -linear
recurrences satisfied by s forms an ideal of M ŒX �. We record this observation in the following form:

Fact. If a sequence s 2M 0N satisfies the recurrence defined by some monic P 2M ŒX �, then it also
satisfies the recurrence defined by PQ for any other monic Q 2M ŒX �.

In characteristic p we get the following corollary, of which we will make crucial use:

Corollary 2.1. If R has characteristic p and s 2M 0N satisfies the order-d recurrence

sn D a1sn�1C a2sn�2C � � �C adsn�d for all n� d;

then for every k � 0 the sequence s also satisfies the order-dpk deeper recurrence

sn D a
pk

1
sn�pk C a

pk

2
sn�2pk C � � �C a

pk

d
sn�dpk for all n� dpk : (2-2)

Proof. Let P DX d � a1X d�1� � � � � ad be the companion polynomial of a recursion satisfied by s. By
the fact above, the sequence s also satisfies the recurrence whose companion polynomial is

Ppk

DX dpk

� a
pk

1
X dpk�pk

� a
pk

2
X dpk�2pk

� � � � � a
pk

d
;

which is exactly what is expressed in (2-2). �

If M is a domain embedded into a field K, we have the following well-known characterization of
power sequences in KN satisfying a fixed M -linear recurrence:
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Fact. An element ˛ in K is a root of monic P 2M ŒX � if and only if the sequence f˛ngnDf1; ˛; ˛
2; : : :g

satisfies the linear recurrence with companion polynomial P .

If the companion polynomial of such an M -linear recurrence has no repeated roots in K, it follows
from the proposition that every solution to the recurrence is a linear combination of such power sequences
on the roots of the companion polynomial. One can further describe all K-sequences satisfying a general
M -linear recursion — see, for example, [Conrad 2016], particularly the historical references on page 2 —
but we will not need this below.

3. The nilpotence growth theorem (NGT)

3A. Statement of the NGT. We are now ready to state the most general version of the nilpotence growth
theorem (NGT). From now on, we will assume R to be a finite ring, and M DRŒy�.

Theorem 1 (nilpotence growth theorem). Let R be a finite ring, and suppose that T WRŒy�!RŒy� is an
R-linear operator satisfying the following two conditions:

(1) T lowers degrees: deg T .f / < degf for every nonzero f in RŒy�.

(2) The sequence fT .yn/gn satisfies a filtered linear recursion over RŒy�: there exist a1; : : : ; ad 2RŒy�,
with deg ai � i for each i , so that for all n� d ,

T .yn/D a1T .yn�1/C � � �C adT .yn�d /:

Suppose further that

(3) the coefficient of yd in ad is invertible in R.

Then there exists a constant ˛ < 1 so that NT .y
n/� n˛.

In other words, Theorem 1 implies that, under a mild technical assumption (condition (3)), the nilpotence
index of a degree-lowering operator defined by a filtered linear recursion grows slower than linearly in
the degree. The mild technical assumption is necessary in the theorem as stated; see the discussion in (4)
in Section 3B below.

3B. Discussion of the NGT. (1) Connection with Theorem A: If T WRŒy�!RŒy� satisfies the conditions
of Theorem 1, then the companion polynomial of the recursion satisfied by the sequence fT .yn/gn is

PT DX d
� a1X d�1

� � � � � ad 2RŒy;X �:

The condition deg ai � i from (2) guarantees that the total degree of PT is exactly d . In particular, in
the case where RD F is a finite field, condition (3) implies that degy PT D deg ad D d . In other words,
Theorem 1 over a finite field reduces to Theorem A.

(2) Condition (1) guarantees that T is locally nilpotent: Moreover, NT .y
n/ � n, so that the function

n 7!NT .y
n/ a priori grows no faster than linearly.
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(3) Condition (2) and connection to recursion operators: The condition that the sequence fT .yn/gn

satisfies a linear recurrence is the definition of a recursion operator, a notion that will be explored in a
future paper. A natural source of filtered recursion operators (that is, satisfying additional degree bounds
as in condition (2) above) comes from the action of Hecke operators on algebras of modular forms of a
fixed level. Namely, if f is a modular form of weight k and level N and T is a Hecke operator acting
on the algebra M of forms of level N , then the sequence fT .f n/gn satisfies an M -linear recursion with
companion polynomial X d C a1X d�1C � � �C ad , where ai comes from weight ki .

See (5-1) and (5-2) below for examples over Fp, [Medvedovsky 2015, chapter 6] for a proof in level
one when T is a prime Hecke operator, or [Medvedovsky � 2018] for more details.

The history of Hecke recurrences appears to be relatively brief. Hecke recurrences over F2 were
crucially used by Nicolas and Serre to obtain the structure of the mod 2 Hecke algebra in level one
[Nicolas and Serre 2012a; 2012b]. Earlier, Al Hajj Shehadeh, Jaafar, and Khuri-Makdisi [2009] had
investigated two-dimensional Hecke recurrences over Q satisfied by the array fT`.En

4
Em

6
/gn;m; Buzzard

and Calegari [2005, p. 594] had used Hecke recurrences for U2 acting on a power basis of overconvergent
2-adic modular functions in their study of slopes.

(4) Condition (3) is necessary as stated: Consider the operator T WRŒy�!RŒy� defined by T .yn/D sn,
where fsng is the sequence f0; 1;y;y2; : : :g with companion polynomial X 2�yX from the example on
page 696. All conditions except (3) are satisfied, and it is easy to see that NT .y

n/D n in this case.
For an example with ad ¤ 0, consider the operator T with the defining companion polynomial

PT DX 2CyX Cy and initial values ŒT .1/;T .y/�D Œ0; 1�. By induction, deg T .yn/D n�1. Therefore
NT .y

n/D n.
Computationally, it appears that if RD Fp and deg ad < d but there exists an i with 0< i < d so that

deg ai D i , then either NT grows logarithmically or else it grows linearly. In that sense, it appears that
“fullness” of degree at the end of PT (that is, the presence of a yd term) appears to be, at least generically,
necessary to compensate for “fullness” of degree in the middle (that is, the presence of a yiX d�i term for
some 0< i < d ), if one wants the growth of NT to be sublinear but not degenerate. But the phenomenon
is not well understood.

(5) The constant ˛: The power ˛ depends on R and d only, and tends to 1 as d !1. More precisely,
the dependence on R is only through its maximal residue characteristic; the length of R as a module over
itself affects only the implicit constant of the growth condition NT .y

n/� n˛ . If the inequality deg ai < i

is strict for every i < d (“empty middle” case) we can take ˛ to be logpk .pk�1/ for k satisfying d � pk .
See Theorems 2 or 4 below.

(6) Finite characteristic is necessary — a counterexample in characteristic zero: Consider the operator T

on QŒy� with PT DX 2�yX �y2 and degree-lowering initial terms ŒT .1/;T .y/�D Œ0; 1�. This satisfies
all three conditions of the NGT. It is easy to see that T .yn/D Fnyn�1, where Fn is the n-th Fibonacci
number; the recursion is sn D ysn�1Cy2sn�2. Therefore

T k.yn/D FnFn�1 � � �Fn�kC1yn�k ;
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so that NT .y
n/D n. (Compare to characteristic p, where the operator defined by T .yn/D Fnyn�1 on

Fp Œy� satisfies T pC1 � 0.) See also Proposition 10.1 for a family of examples in any degree.
Computationally, it appears that generic characteristic-zero examples that do not degenerate (to

log n growth) all exhibit linear growth. In contrast, over a finite field, one observes O.n˛/ growth for
various ˛ < 1.

(7) Finiteness of R is necessary as stated — a counterexample over Fp.t/, due to Paul Monsky: Let
PT DX 2� tyX �y2 and start with Œ0; 1� again. Then T .yn/D Fn.t/y

n�1 with Fn.t/ 2 Fp Œt � monic of
degree n� 1, so that NT .y

n/D n again. However, see the empty-middle case (Theorem 4) for a special
case that does hold for infinite rings of characteristic p.

4. A toy case of the NGT

Fix a prime p and take R D Fp for simplicity (in fact any ring of characteristic p works here). We
prove the following special case of the NGT for recurrences with empty middle (i.e., whose companion
polynomials have no maximal-degree cross terms) and whose order is a power of p.

Theorem 2 (toy case of NGT). Let q D pk for some k � 1. Suppose T W Fp Œy�! Fp Œy� is a degree-
lowering linear operator so that the sequence fT .yn/gn satisfies an Fp Œy�-linear recursion with companion
polynomial

P DX q
C .terms of total degree< q/C ayq

2 Fp Œy�ŒX �

for some a 2 Fp. Then NT .y
n/� nlog.q�1/= log q .

Most of the main features of the proof of the NGT (Theorem 1) are already present in the proof of this
toy case. We include the toy case here because the proof is technically much simpler; understanding it
may suffice for all but the most curious readers.

4A. The content function. For q D 3, following Bellaïche (see the appendix of [Bellaïche and Khare
2015]), we define a function c W N! N depending on q as follows. Given an integer n, we write it in
base q as nD

P
i niq

i with 0� ni < q, only finitely many of which are nonzero, and define the q-content
of n as c.n/ WD cq.n/ WD

P
i ni.q� 1/i . For example, since 71D Œ2 4 1�5 in base 5, the 5-content of 71 is

2 � 42C 4 � 4C 1D 49.
The following properties of the content function are easy to check. See also Section 7A, where the

content function and variations are discussed in detail.

Proposition 4.1. (1) c.n/� nlogq.q�1/.

(2) c.qkn/D .q� 1/kc.n/ for all k � 0.

(3) If 0� n< q, then c.n/D n.

(4) If i is a digit base q and n � i has no more than 2 digits base q, then c.n/� c.n� i/ is either i

or i � 1.

(5) If q � n< q2, then c.n� q/D c.n/� qC 1.
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4B. Setup of the proof. We now define the q-content of a polynomial f 2 Fp Œy� through the q-content
of its degree. More precisely, if 0¤ f D

P
anyn, let Qc.f / WDmaxfc.n/ W an¤ 0g. Also set Qc.0/ WD �1.

For example, the 3-content of 2y9Cy7Cy2 is maxfc.9/; c.7/; c.2/g D 5.
Now let T W Fp Œy�! Fp Œy� be a degree-lowering recursion operator whose companion polynomial

P DX q
C a1.y/X

q�1
C � � �C aq.y/ 2 Fp Œy�ŒX �

satisfies deg ai.y/ < i for 1� i < q and deg aq.y/� q.
To prove Theorem 2, we will show that T lowers the q-content of any f 2 Fp Œy�; that is, that
Qc.Tf /< Qc.f /. Since Qc.f /< 0 only if f D 0, the fact that T lowers q-content implies that NT .f /� c.f /.
Proposition 4.1(1) will then imply NT .f /� .degf /log.q�1/= log q , as desired.

It suffices to prove that Qc.Tf /< Qc.f / for f D yn. We will proceed by strong induction on n, each time
using a deeper recursion of order qkC1 corresponding to Pqk

, with k chosen so that qkC1 � n< qkC2.
We learned this technique from Gerbelli-Gauthier’s proof [2016] of the key technical lemmas of Nicolas
and Serre [2012a]. Using deeper recurrences with induction allows us to compare n to n� iqk , which
has the same last k digits base q, rather than to n� i , whose base-q expansion may look very different.

4C. The induction. The base case is n< q, in which case being q-content-lowering is the same thing as
being degree-lowering (Proposition 4.1(3)).

For n � q, we must show that Qc.T .yn// < c.n/ assuming that Qc.T .ym// < c.m/ for all m < n. As
above, choose k � 0 with qkC1 � n < qkC2. By Corollary 2.1, the sequence fT .yn/g satisfies the
order-qkC1 recurrence

T .yn/D a1.y/
qk

T .yn�qk

/C a2.y/
qk

T .yn�2qk

/C � � �C aq.y/
qk

T .yn�qkC1

/:

Pick a term ym appearing in T .yn/ with nonzero coefficient; we want to show that c.m/ < c.n/. From
the recursion, ym appears with nonzero coefficient in ai.y/

qk

T .yn�iqk

/ for some i . More precisely,
ym appears in yjqk

T .yn�iqk

/ for some yj appearing in ai.y/, so that either j < i or i D j D q. Then
ym�jqk

appears in T .yn�iqk

/, and by induction we know that c.m� j qk/ < c.n� iqk/. To conclude
that c.m/ < c.n/, it would suffice to show that

c.n/� c.m/� c.n� iqk/� c.m� j qk/;

or, equivalently, that

c.n/� c.n� iqk/� c.m/� c.m� j qk/:

Since subtracting multiples of qk leaves the last k digits of n base q untouched, we may replace n

and m by qk
�

n
qk

˘
and qk

�
m
qk

˘
, respectively, and then use Proposition 4.1(2) to cancel out a factor of

.q� 1/k . In other words, we must show that

c.n/� c.n� i/� c.m/� c.m� j /
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for n, m, i and j satisfying i � n < q2 and j � m < n and either j < i or i D j D q. But this is an
easy consequence of Proposition 4.1(4)–(5): For j < i , we know that c.n/� c.n� i/ is at least i � 1 and
c.m/� c.m� j / is at most j � i � 1. And for i D j D q both sides equal q� 1.

This completes the proof of Theorem 2.

4D. Toy case versus general case. The proof of the full NGT (Theorem 1) proceeds by first reducing
to the empty-middle case over a finite field (Theorem 4 below), of which Theorem 2 is a special case
where the order of the recursion is a power of p. Apart from the reduction step, most of the difficulty
in generalizing from Theorem 2 to Theorem 4 comes from working with more general versions of the
content function to accommodate any recursion order. Namely, we will extend the content function to
rational numbers and prove sufficiently strong analogues of Proposition 4.1 for the induction to proceed,
see Sections 7–9.

5. Applications to mod p Hecke algebras

This section gives an indication of how the NGT can give information about lower bounds of mod p

Hecke algebras, the author’s main motivation for proving the theorem. More precisely, in this section
we will use Theorem 2 to complete the proof of Theorem 24 of [Bellaïche and Khare 2015, Appendix],
which establishes the structure of the mod 3 Hecke algebra of level one..ii/ Simultaneously and using
the same methods, we will give an alternate proof of the main result of Nicolas and Serre [2012b], the
structure of the mod 2 Hecke algebra in level one. See Theorem 3 below.

More generally, the NGT can be used to obtain lower bounds on Krull dimensions of local components
of big mod p Hecke algebras acting on forms of level N in the case where X0.Np/ has genus zero, for
this is precisely the condition for the algebra of modular forms of level N mod p to be a polynomial
algebra over Fp. For more details, see [Medvedovsky 2015] (for level one) or [Medvedovsky � 2018].
To generalize the nilpotence method to all .p;N /, one must generalize the NGT to all rings of S -integers
in characteristic-p global fields, with the max-pole-order filtration generalizing degree.

We work in level one with p 2 f2; 3g. Let M DM.1; Fp/� Fp ŒŒq�� be the space of modular forms of
level one modulo p in the sense of Swinnerton-Dyer and Serre (that is, reductions of integral q-expansions).
For p D 2; 3 Swinnerton-Dyer observes [1973] that M D Fp Œ��, where �D

Qn
iD1.1� qn/24 2 Fp ŒŒq��.

Standard dimension formulas show that Mk WD Fp Œ��k , the polynomials in � of degree bounded by k,
coincides with the space of mod p reductions of q-expansions of forms of weight 12k, and hence is
Hecke invariant. Further, one can show that K WD h�n W p − niFp

�M is the kernel of the operator Up,
which implies that K and the finite-dimensional subspaces Kk WDMk \K are all Hecke invariant.

Let Ak � EndFp
.Kk/ be the algebra generated by the action of the Hecke operators T` with ` prime

and `¤ p. Since Kk ,!KkC1, we have AkC1� Ak . Let A WD lim
 ��k

Ak . Then A is a profinite ring

.ii/More precisely, we prove a weaker version of [Bellaïche and Khare 2015, Proposition 35]. In the notation of Section 7B
here, we show for f 2 F3Œ�� that c3;2.T2f /� c3;2.f /�1 and c9;6.T

0
7
f /� c9;6.f /�3. This suffices to complete the proof of

[loc. cit., Theorem 24], but we do not prove the stronger claim that c3;2.T
0
7
f /� c3;2.f /� 2.
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embedding into End.K/; it is the shallow Hecke algebra acting on forms of level one mod p. The standard
pairing A�K! Fp given by hT; f i 7! a1.Tf / is nondegenerate on both sides and continuous in the
profinite topology on A. Therefore A is in continuous duality with K. By work of Tate [1994] and Serre
[1986, p. 710, Note 229.2] we know that � is the only Hecke eigenform in K˝ Fp..iii/ This implies
that A is a local Fp-algebra with maximal ideal m and residue field Fp generated by the modified Hecke
operators T 0

`
WD T` � a`.�/, acting locally nilpotently on M D Fp Œ��. Using deformation theory of

Chenevier pseudorepresentations, one can deduce:

Proposition 5.1. There is a surjection Fp ŒŒx;y���A given by
�

x 7! T3; y 7! T5 if p D 2,
x 7! T2; y 7! T 0

7
if p D 3.

For p D 2, the fact that A is generated by T3 and T5 was first proved without deformation theory
in [Nicolas and Serre 2012a]. For p D 3, Proposition 5.1 is stated [Bellaïche and Khare 2015, Appendix],
using deformation theory of reducible Rouquier pseudocharacters developed in [Bellaïche 2012]. See
[Medvedovsky 2015, Chapter 7] for detailed computations of tangent spaces to reducible local components
of mod p Hecke algebras in level one.

The main result of this section is the following:

Theorem 3. The surjection Fp ŒŒx;y���A of Proposition 5.1 is an isomorphism.

The key input will be Theorem 2, as well as the following observation: if T is any Hecke operator and f
is a modular form in a Hecke invariant algebra M , then the sequence fT .f n/gn satisfies an M -linear re-
cursion. For more details on the Hecke recursion, see [Medvedovsky 2015, Chapter 6] or [Medvedovsky�
2018], but here we will only need some special cases for f D� already given in [Nicolas and Serre 2012a;
Bellaïche and Khare 2015, Appendix]. For p D 2, we have, as in [Nicolas and Serre 2012a, (13)–(14)],

T3.�
n/D�T3.�

n�3/C�4 T3.�
n�4/; n� 3;

T5.�
n/D�2 T5.�

n�2/C�4 T5.�
n�4/C�T5.�

n�5/C�6 T5.�
n�6/; n� 6;

(5-1)

with companion polynomials P3 DX 4C�X C�4 and P5 DX 6C�2X 4C�4X 2C�X C�6. Note
that fT5.�

n/gn also satisfies the recursion defined by P�
5
D P5.X

2C�2/DX 8C�X 3C�3X C�8.
And for p D 3, the recursions satisfied by fT2.�

n/g and fT 0
7
.�n/g have companion polynomials

P2 DX 3
��X C�3 and P 07 DX 9

��X 5
��2X 4

C .�4
��/X 2

C .�5
C�2/X ��9: (5-2)

See Lemma 33 in [Bellaïche and Khare 2015, Appendix]..iv/

Proof of Theorem 3. Let T and S be the generators of A from Proposition 5.1. Then T;S are filtered
and degree-lowering recursion operators on Fp Œ��, each satisfying the conditions of Theorem 2. In other
words, there exists an ˛ < 1 so that N.�n/ WDNT .�

n/CNS .�
n/� n˛.

.iii/Alternatively, one can use an observation of Serre to conclude that any Hecke eigenform in K˝ Fp is in fact defined over
Fp , reducing the eigenform search to a finite computation. See [Bellaïche and Khare 2015, Section 1.2 footnote].

.iv/Lemma 33 in [Bellaïche and Khare 2015, Appendix] gives the degree-8 recurrence satisfied by fT7.�
n/gn; the recurrence

satisfied by f�nCT7.�
n/gn has an extra factor of X ��.
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We now claim that the Hilbert–Samuel function of A grows faster than linearly, so that the Krull
dimension of A is at least 2. Indeed, the Hilbert–Samuel function of A sends a positive integer k to

dimFp
A=mk

D dimFp
KŒmk �� #fn W�n

2K; mk�n
D 0g D #fn prime to p WN.�n/� kg � k1=˛;

which is certainly faster than linear, since 1
˛
> 1. Therefore it grows at least quadratically, and the Krull

dimension of A is at least 2. By the Hauptidealsatz, the kernel of the surjection Fp ŒŒx;y��� A from
Proposition 5.1 is trivial. �

Using the more precise bounds on ˛ from Theorem 4, we can conclude that, for p D 2 we have
˛Dmaxflog4 2; log8 4gD 2

3
and for pD 3 we have ˛Dmaxflog3 2; log9 6g� 0:815. Compare to ˛D 1

2

obtained for p D 2 by Nicolas and Serre [2012a, §4.1]. Computations suggest that ˛ D 1
2

also holds for
p D 3, but we have not been able to prove this.

6. The proof of the NGT begins

We now begin the proof of Theorem 1.

6A. Overview of the proof. The proof proceeds as follows.

(1) Reduce the NGT to the case where R is a finite field: See Section 6B below.

(2) Reduce to the empty-middle case: The NGT over a finite field is implied by a special empty-middle
case (Theorem 4), where the companion polynomial has no terms of maximal total degree except for X d

and yd (i.e., the highest-degree homogeneous part has an empty middle). Note that Theorem 4 holds over
any ring of characteristic p. See Section 6C below for the statement of Theorem 4 and the reduction step.

(3) Prove Theorem 4: The main idea of the proof is as follows. Given an operator T satisfying the
conditions of Theorem 4, we define a function cT WN!N that grows like n˛ for some ˛ < 1. We extend
this function to polynomials in RŒy� via the degree. Finally, we use strong induction to prove that applying
T strictly lowers the cT -value of any polynomial in RŒy�. Therefore, NT .y

n/ is bounded by cT .n/� n˛ .
The key features of this kind of proof are already present in the proof of Theorem 2 in Section 4.

6B. Reduction to the case where R is a finite field.

Proposition 6.1. If Theorem 1 is true whenever R is a finite field, then Theorem 1 is true.

Proof. First, suppose R is a finite artinian local ring with maximal ideal m and finite residue field F. Let `
be the least positive integer so that m` D 0.

Let T WRŒy�!RŒy� be the operator in the statement of the theorem, and write T W FŒy�! FŒy� for
the operator obtained by tensoring with the quotient map R� F. Theorem 1 for F guarantees that
NT .y

n/� n˛ for some ˛ < 1. Let

g.n/ WDmax
n0�n
fNT .y

n0

/C 1g � n˛;
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so that g is nondecreasing, integer-valued, and satisfies T
g.degf /

f D 0 for every f in FŒy�. Lifting
back to R, we get that T g.degf /f is in mŒy� for all f 2RŒy�..v/ More generally, if f is in mi Œy�, then
T g.degf / sends f to miC1Œy�. Since m` D 0, we have T `g.degf /f D 0 for every f 2 RŒy�, so that
NT .y

n/� `g.n/� 1� n˛.
In the general case, R is a finite product of finite artinian local rings Ri , and an R-linear operator

T WRŒy�!RŒy� decomposes as
P

Ti where Ti WRi Œy�!Ri Œy� is the Ri-linear restriction of T to Ri .
From the paragraph above, we can choose ˛i < 1 so that NTi

.yn/� n˛i for all n. Then ˛ Dmaxif˛ig

works for T . �

6C. Reduction to the empty-middle NGT. From now on we fix a prime p. Theorem 1 over a finite field
of characteristic p is implied by the following special case in which the shape of the recursion satisfied
by T is restricted. Note that the statement below has no finiteness restrictions on the base ring, and no
restriction on the coefficient of yd .

Theorem 4 (empty-middle NGT). Let R be a ring of characteristic p, and suppose that T is a degree-
lowering linear operator on RŒy� so that the sequence fT .yn/gn satisfies a linear recursion whose
companion polynomial has the shape

X d
C ayd

C .terms of total degree� d �D/

for some D � 1 and some constant a 2R. Let b � d be a power of p, and suppose that either b� d � 1

or that D � b
2

. Then

NT .y
n/� n˛ for ˛ D

log.b�D/

log b
:

The case d D b and DD 1 has already been established in Theorem 2; an analogous argument extends
to d D b and any D with 1�D � b� 1.

Proposition 6.2 (empty-middle NGT implies NGT). Theorem 4 implies Theorem 1.

Proof. By Proposition 6.1, we may assume that we are working over a finite field F. Let

P DX d
C a1X d�1

C � � �C ad 2 FŒy�ŒX �

be the filtered recursion satisfied by the sequence fT .yn/gn as in the setup of Theorem 1; recall that we
insist that deg ad D d . We will show that P divides a polynomial of the form

X e
�ye

C .terms of total degree< e/

for eD qm.q�1/, where q is a power of p and m� 0. Then the sequence fT .yn/gn will also satisfy the
recursion associated to a polynomial whose shape fits the requirements of Theorem 4.

Let H be the degree-d homogeneous part of P , so that P D H C .terms of total degree < d/. We
claim that there exists a homogeneous polynomial S 2 FŒy;X � so that H �S DX e�ye for some positive

.v/If a�R is an ideal, write aŒy��RŒy� for the ideal of polynomials all of whose coefficients are in a.
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integer e of required form. Once we find such an S , we know that P � S will have the desired shape
X e �yeC .terms of total degree< e/.

To find S , we dehomogenize the problem by setting y D 1. Let h.X / WDH.1;X / 2 FŒX �, a monic
polynomial of degree d and nonzero constant coefficient. Let F0 be the splitting field of h.X /; under
our assumptions on ad , all the roots of h.X / are nonzero. Let q be the cardinality of F0. Every nonzero
element ˛ 2 F0, and hence every root of h.X /, satisfies ˛q�1 D 1.

Finally, let qm be a power of q not less than any multiplicity of any root of h.X /. Since every root
of h satisfies the polynomial X q�1 � 1, we know that h.X / divides the polynomial .X q�1 � 1/q

m

D

X qm.q�1/�1. Set eD qm.q�1/, and let s.X / be the polynomial in FŒX � satisfying h.X /s.X /DX e�1.
Now we finally “rehomogenize” again; if S 2 FŒy;X � is the homogenization of s.X /, then Q �S D

X e �ye, so that S is the homogeneous scaling factor for P that we seek. �

6D. The main induction for the proof the empty-middle NGT. From now on, having already fixed p,
we will always assume that R is a ring of characteristic p, not necessarily finite.

Definition. If T WRŒy�!RŒy� an R-linear operator, we will call T a .d;D/-NRO, for nilpotent recursion
operator, if T satisfies the conditions of Theorem 4; that is, T lowers degrees, and fT .yn/g satisfies an
RŒy�-linear recursion with companion polynomial

X d
C ayd

C (terms of total degree � d �D)

for some d � 1 and some D � 1. Note that any .d;D/-NRO is a .d;D0/-NRO for any 1�D0 �D.

The proof of Proposition 6.2 shows that, if R is a finite field, then any T satisfying the conditions of
Theorem 1 is in fact a .d;D/-NRO for some d and D.

On the other hand, we make the following definition, for any triple .b; d;D/ with b � d �D � 1:

Definition. A function c W Q�0 ! Q�0 is a .b; d;D/-nilgrowth witness if it satisfies the following
properties:

(1) Discreteness: c.N/ is contained in a lattice of Q (that is, 9M 2 N with Mc.N/� N).

(2) Growth property: c.n/� nlog.b�D/=log b as n!1.

(3) Base property: 0D c.0/ < c.1/ < � � �< c.d � 1/ and c.d �D/ < c.d/.

(4) Step property: For any k � 0, and any pair .i; j / 2 f0; 1; : : : ; dg2 with either .i; j / D .d; d/ or
i � j �D, and any integers n;m satisfying dbk � n< dbkC1 and jbk �m we have

c.n/� c.n� ibk/� c.m/� c.m� jbk/:

In this section, we prove, using strong induction, that if b is a power of p, then the growth of the
nilpotence index of a .d;D/-NRO is bounded by the growth of a .b; d;D/-nilgrowth witness.

Proposition 6.3. Let T be a .d;D/-NRO, and b � d a power of p. If c is a .b; d;D/-witness, then
NT .y

n/� c.n/.
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Before proving Proposition 6.3, we record a corollary using the growth property above.

Corollary 6.4. Suppose that T is a .d;D/-NRO, and let b D pdlogp de. If there exists a .b; d;D/-witness,
then NT .y

n/� nlog.b�D/=log b .

In other words, in this section we reduce the proof of Theorem 4 to establishing the existence of a
.pdlogp de; d;D/-witness for the .d;D/-NRO T , provided that D is not too big.

Proof of Proposition 6.3. Given a .b; d;D/-witness c, we define a new function Qc WRŒy�!N[f�1g via

Qc
�X

anyn
�
WDmaxfc.n/ W an ¤ 0g and Qc.0/ WD �1:

We will show that T lowers the Qc-value of polynomials in RŒy�: that is, that for any nonzero f 2RŒy�,
we have Qc.T .f // < Qc.f /.

It suffices to show this for f D yn.
Write xn for T .yn/. We will use strong induction to show that Qc.xn/ < c.n/.
The base case is all n with 0 � n < d . Since deg xn < n, the statement Qc.xn/ < c.n/ for n < d is

implied by the statement that c is strictly increasing on f0; 1; : : : ; d � 1g. This is the base property above.
For n> d , let k � 0 be the integer so that d �bk � n< d �bkC1. Let P .X /2 FŒy�ŒX � be the companion

polynomial of the given recursion satisfied by the sequence fxng. Let

I WD f.i; j / W 0� j < j CD � i � dg[ f.d; d/g:

By assumption, P has the form

P DX d
C

X
.i;j/2I

ai;j yj X d�i

for some ai;j 2R. By Corollary 2.1, the sequence fxng also satisfies the order-dbk recursion corresponding
to Pbk

: namely, for all n� dbk , we have

xn D�

X
.i;j/2I

ai;j yjbk

xn�ibk :

We will show that, if ym appears with nonzero coefficient in one of the terms on the right-hand side
above, then c.m/ < c.n/. Since Qc.xn/ is equal to one of these c.m/s, this will imply our claim. So
suppose that ym appears with nonzero coefficient in the .i; j /-term on the right-hand side. That is, ym

appears in yjbk

xn�ibk for some .i; j / 2 I. That means that ym�jbk

appears in xn�ibk . Note that i �D,
so that n� ibk < n, and the induction assumption applies; since ym�jbk

appears in xn�ibk , we can
assume that c.m� jbk/ < c.n� ibk/.

To show that c.m/ < c.n/, it therefore suffices to show that

c.n/� c.m/� c.n� ibk/� c.m� jbk/;

since the latter is assumed to be strictly positive. But this, slightly rearranged, is just the step property
from the definition of a .b; d;D/-witness above. �
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We now aim to construct a .b; d;D/-witness if b�d � 1 or if D � b
2

. This will occupy the next three
sections. In Section 7 we investigate the properties of a content function, which writes numbers in one
base and reads them in another. In Section 8, we establish some inequalities about the content of rational
numbers. In Section 9, we use the content function to construct a .b; d;D/-nilgrowth witness, completing
the proof of Theorem 4.

7. The content function and its properties

In this section we will introduce a function c WQ�0!Q�0 that will serve as a nilgrowth witness in the
proof of Theorem 4. This type of function was first introduced in the appendix to [Bellaïche and Khare
2015], loosely inspired by the “code” of [Nicolas and Serre 2012a].

7A. Base-b representation of numbers. We fix an integer b � 2 to be the base.
Let D.b/D f0; : : : ; b� 1g be the alphabet of digits base b, and D.b/� the set of finite words on D.b/,

including the empty word �. The number-of-letters function for a word x 2 D.b/� will be denoted by
`.x/, for length.

Let R.b/ be the set of all bi-infinite pointed words

x D : : :x2x1x0:x�1x�2 : : :

on D.b/ that start with 10 (the digit 0 repeated infinitely to the left). The set of finite words D.b/�

naturally embeds into R.b/ via x 7! .10/x:.01/, where 01 is the digit 0 repeated infinitely to the right.
More generally, any pointed right-infinite word will be viewed as an element of R.b/ by appending 10

on the left. For x 2 R.b/, we can define the real number �b.x/ 2 R�0 by reading it as a sequence of
digits base b, via �b.x/ WD

P
i xib

i . Since xi D 0 for i � 0, this sum converges. The map �b is not
injective; indeed,

P
i<k.b� 1/bi D bk , so that for any finite word w and digit x ¤ b� 1, and any radix

point placement, we have �b.wx.b� 1/1/D �b.w.xC 1/01/. But we can choose a section of �b by
restricting the domain: Let R0.b/�R.b/ the subset of those that do not end with .b� 1/1. Then the
reading-base-b function �b WR0.b/! R�0 is a bijection, and the inverse map �b W R�0!R0.b/ takes a
nonnegative real number q to its normal (that is, not ending in .b�1/1) base-b representation xD �b.q/

satisfying �b.x/D q.
The base-b representation �b.q/ is eventually periodic (that is, ends with z1 for some finite word z)

if and only if q 2Q�0. For q 2Q�0, then, we know that

�b.q/D x:yz1;

where x;y; z are in D.b/. If we insist that x does not start with 0 and that first y and then z have minimal
length among such representations, then x, y, and z are defined uniquely. We will assume this minimality
from now on. Note that by construction x and y may be empty words, but z has length at least 1.
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We define, then, three constants associated to q 2Q�0:

`.q/D `b.q/ WD `.x/Dmaxf0; blogb qcC 1g;

s.q/D sb.q/ WD `.y/Dminfk � 0 W denominator of bkq is prime to bg;

t.q/D tb.q/ WD `.z/ Dminfk � 1 W denominator of bs.q/q divides bk
� 1g:

In particular, we know that, for q 2Q�0, we have

q D nC
u

bs.q/
C

m

bs.q/.bt.q/� 1/
; (7-1)

where n, u, and m are all integers with nD bqc D �b.x/, uD �b.y/, and mD �b.z/.
We will need the following very simple lemma.

Lemma 7.1. Given q 2Q�0 and a base b, if q0 2 qN, then

(1) sb.q
0/� sb.q/,

(2) tb.q
0/ divides tb.q/.

The proof follows from the fact that the denominator of q0 is a divisor of the denominator of q.
Alternatively, one can consider the effect of multiplication by integers on base-b expansions.

7B. The content function. Now let b; ˇ � 2 be bases. Define the .b; ˇ/-content of any q in R�0 to be
the result of reading the normal base-b representation of q in base ˇ,

cb;ˇ.q/ WD �ˇ.�b.q//:

Note that �ˇ makes sense as a function R.b/! R�0; the series
P

i�k xib
i always converges if the

xi are bounded.

Examples. (1) Since �5.196/D 1241, we have c5;3.196/D 1 � 33C 2 � 32C 4 � 3C 1D 58.

(2) We have �7

�
1
3

�
D 0:.2/1. Therefore c7;5.n/D 2

P
i�1 5�i D

1
2

.

(3) c8;3

�
1
6

�
D �3.0:1.25/1/D 1

3
C
�

2
32 C

5
33

�P
i�0 3�2i D

1
3
C

11
27
�

9
8
D

19
24

.

The following lemma, which will be used frequently, is an easy computation.

Lemma 7.2. For q 2 Q�0, let s D sb.q/ and t D tb.q/. Then if q D nC
u

bs
C

m

bs.bt�1/
as in (7-1)

above, we have

cb;ˇ.q/D cb;ˇ.n/C
cb;ˇ.u/

ˇs
C

cb;ˇ.m/

ˇs.ˇt � 1/
:

We will also use the following growth estimate:

Lemma 7.3. We have cb;ˇ.n/� nlogb ˇ. More precisely, for n� 1, we have

ˇ�1nlogb ˇ < cb;ˇ.n/ <
ˇ.b� 1/

ˇ� 1
nlogb ˇ:



Nilpotence order growth of recursion operators in characteristic p 709

Proof. Let `D `b.n/, so that for n� 1 we have `D 1Cblogb nc, or logb n< `� 1C logb n. Then, on
one hand, the .b; ˇ/-content of n is bounded above by �ˇ of the infinite pointed word .b� 1/`:.b� 1/1:

cb;ˇ.n/ <
X
k<`

.b� 1/ˇk
D

b� 1

ˇ� 1
ˇ` �

ˇ.b� 1/

ˇ� 1
ˇlogb n

D
ˇ.b� 1/

ˇ� 1
nlogb ˇ:

On the other hand, the .b; ˇ/-content of n is at least �ˇ of the pointed word 1.0`�1/:01:

cb;ˇ.n/� ˇ
`�1 > ˇ�1nlogb ˇ: �

In particular, if ˇ < b, then cb;ˇ grows slower than linearly in n.

Remarks. (1) If ˇ < b, then cb;ˇ is never monotonically increasing, even on the integers. Indeed,

cb;ˇ.b
k
� 1/D

b� 1

ˇ� 1
.ˇk
� 1/;

which is greater than cb;ˇ.b
k/D ˇk as soon as ˇk > ˇ�1

b�2
.

(2) The sequence fcb;ˇ.n/gn2N is b-regular in the sense of Allouche and Shallit [1992]. A sequence
fsng 2QN is said to be b-regular if there exists a Q-vector space V , endomorphisms M0; : : : ;Mb�1 of
V , a vector v 2 V , and a functional � W V !Q so that s�b.n`:::n0/ D �.Mn`

� � �Mn0
v/. For the sequence

fcb;ˇ.n/g, we can take V DQ2, Mi D
�

1
0

i
ˇ

�
, v D

�
0
1

�
and �D

�
1
0

�
. Indeed, b-regularity appears to be

lurking in many places in this theory, but we have not yet been able to make use of it..vi/

Finally, we record a trivial scaling property of cb;ˇ:

Lemma 7.4. For n 2 R�0, and any k 2 Z, we have cb;ˇ.b
kn/D ˇkcb;ˇ.n/.

7C. Content and the carry-digit word. Even though the content function is not monotonic, it behaves
well under addition. For m; n 2 R�0, we define rb.m; n/ 2R.2/ to be the word of carry digits when the
sum s DmC n is computed in base b. More precisely, let �b.m/Dm, �b.n/D n, and �b.s/D s, and
let rb.m; n/ WD r satisfying

mi C ni C ri�1 D si C bri for all i in Z. (7-2)

Since mi , ni , and si are all 0 for i > `b.s/, and since ri 2 f0; 1g, the set of equations above defines ri

uniquely, inductively down from i D `b.s/.

Examples. (1) We compute r3.77; 11/ starting with �3.77/D2212 and �3.11/D102. When the addends
have finite base-b expansions, the carry digits appear as a byproduct of the base-b addition algorithm.
Below, we read off that r3.77; 5/D 1101:

11

2
0

2
1

12

C102

10021.
.vi/For example, the Nicolas–Serre code sequence h.n/ defined in [Nicolas and Serre 2012a, §4.1] is 2-regular, as are its

constituent parts n3.n/ and n5.n/.
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Note the shift one space to the right in our indexing the conventional carry digit notation.

(2) We compute r5

�
53
60
; 23

100

�
. We have �5

�
53
60

�
D 0:4.20/1 and �5

�
23

100

�
D 0:10.3/1. Their sum is

167
150
D �5.1:02.40/1/. Comparing the base-5 expansions of the two addends with the expansion of the

sum allows us to compute the carry digits left to right.

1

0:
0

4
0

2
1

0
0

2
1

0
0

2
1

0
0

2
:::

: : :

C0:10333333 : : :

1:02404040 : : :

Therefore r5

�
53
60
; 23

100

�
D 0:10.01/1. In this case, we will get the same infinite carry-digit word if we take

the “limit” of the finite carry-digit words obtained by truncating the expansions of the two addends.

(3) Note that r10

�
1
3
; 2

3

�
D 0:11, even though any finite truncation of the decimal expansions of 1

3
and 2

3

would yield no carry digits in the sum. If the addends are not in Z
�

1
b

�
but the sum is, one computes the

expansion of the sum before computing the carry-digit word.

The carry digit word exactly keeps track of the difference between values of cb;ˇ:

Lemma 7.5. For m; n in R�0, we have

cb;ˇ.m/C cb;ˇ.n/D cb;ˇ.mC n/C .b�ˇ/�ˇ.rb.m; n//:

Proof. Let s DmC n, and let m, n, s be the corresponding base-b expansions and r the carry-digit word.
Scaling (7-2) by ˇi and summing up over all i gives usX

miˇ
i
C

X
niˇ

i
C

X
ri�1ˇ

i
D

X
siˇ

i
C b

X
riˇ

i

or, equivalently,

cb;ˇ.m/C cb;ˇ.n/Cˇ�ˇ.r/D cb;ˇ.mC n/C b�ˇ.r/: �

We will typically use Lemma 7.5 when comparing cb;ˇ.m/ and cb;ˇ.n/ by analyzing cb;ˇ.m� n/ and
rb.m� n; n/.

Examples. (1) We have c3;2.77/D �2.2212/D 28, and c3;2.88/D �2.10021/D 21. The difference is
accounted for by

c3;2.88� 77/D �2.102/D 6 and �2.r3.77; 11//D �2.1101/D 13:

Since 28C 6D 21C 13, we are consistent with Lemma 7.5.
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(2) Let .b; ˇ/D .5; 3/, and consider the 53
60
C

23
100

example from above. Using Lemma 7.2, we find that

c5;3

�
53
60

�
D �3.0:4.20/1/D

�3.4/

3
C

�3.20/

3.32� 1/
D

19

12

c5;3

�
23

100

�
D �3.0:10.3/1/D

�3.10/

32
C

�3.3/

32.3� 1/
D

1

2

c5;3

�
167
150

�
D �3.1:02.40/1/D �3.1/C

�3.02/

32
C

�3.40/

32.32� 1/
D

25

18

�3

�
r5

�
53
60
; 23

100

��
D �3.0:10.01/1/D

�3.10/

32
C

�3.01/

32.32� 1/
D

25

72
:

As expected from Lemma 7.5, we have 19
12
C

1
2
D

25
12
D

25
18
C 2 � 25

72
.

(3) Finally, let b D 10 and return to the addition equation 1
3
C

2
3
D 1. For a 2 D.9/, we have

�ˇ.0:a
1/D a

ˇ�1
. Therefore the two sides of the Lemma 7.5 equation agree:

(LHS) c10;ˇ

�
1
3

�
C c10;ˇ

�
2
3

�
D �ˇ.0:3

1/C�ˇ.0:6
1/D 9

ˇ�1

(RHS) c10;ˇ.1/C .10�ˇ/�ˇ
�
r10

�
1
3
; 2

3

��
D 1C .10�ˇ/�ˇ.0:1

1/D 9
ˇ�1

:

8. Content of some proper fractions

In this section, we will prove inequalities about .b; b�D/-content of some proper fractions that we will
use in Section 9 to produce a .b; d;D/-nilgrowth witness.

8A. Unit fractions in base b. Let b � 2 be a base, and fix a denominator d with 1< d � b. To motivate
the discussion, we note that

1

d
D

1
b

1� b�d
b

D

X
k�1

.b� d/k�1b�k :

Therefore, the base-b expansion of 1
d

“wants” to be 0:1.b� d/.b� d/2.b� d/3 : : :. Of course, unless
b � d � 1, this is not possible; .b � d/k is not a digit base b for k large enough. However, letting
�b

�
1
d

�
D 0:a1a2a3 : : :, we can say the following:

Lemma 8.1. For k � 1, we have ai D .b� d/i�1 for i D 1; : : : ; k if and only if .b� d/k < d .

Proof. We will establish this claim by induction on k. The ak can be defined recursively via

ak D

�
bk

d
�

k�1X
iD1

aib
k�i

�
D

�
bk

d

�
�

k�1X
iD1

aib
k�i : (8-1)

For k D 1, we have a1 D
�

b
d

˘
� 1. Therefore a1 D 1 if and only if b

d
< 2, which is equivalent to

.b� d/1 < d . So the claim for k D 1 is true.
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Now suppose we already know that ai D .b� d/i�1 for i < k. Then ak D .b� d/k�1 if and only if

1>

�
bk

d
�

k�1X
iD1

aib
k�i

�
� .b� d/k�1

D
bk

d
� .bk�1

C .b� d/bk�2
C � � �C .b� d/k�2bC .b� d/k�1/

D
bk

d
�

bk � .b� d/k

b� .b� d/
D
.b� d/k

d
;

as desired. �

The same argument also implies the immediate:

Corollary 8.2. If ai D .b� d/i�1 for i < k, then ak D .b� d/k�1C
�

1
d
.b� d/k

˘
.

We can now delineate what 1
d

must look like in base b.

Lemma 8.3. For d � b, the base-b expansion of 1
d

falls into one of five mutually exclusive cases.

(1) �b

�
1
d

�
D 0:2C : : : (in other words, a1 � 2) if and only if d � b

2
.

(2) �b

�
1
d

�
D 0:13C : : : (i.e., a1 D 1 and a2 � 3) if and only if b

2
< d � b2

bC3
D b� 3C 9

bC3
.

(3) �b

�
1
d

�
D 0:124C : : : (i.e., a1 D 1, a2 D 2, and a3 � 4) if and only if b > 6 and d D b� 2.

(4) �b

�
1
d

�
D 0:11 if and only if d D b� 1.

(5) �b

�
1
d

�
D 0:101 if and only if d D b.

Proof. If b � d D 0 or b � d D 1, then ai D .b � d/i�1 for all i (Lemma 8.1). Assume b � d � 2. If
d � b

2
, then 1

d
�

2
b

, so that a1 � 2, as claimed. Otherwise, we must have .b� d/1 < d , so that a1 D 1

and a2 � b�d . This means that a2 � 3 unless both b�d D 2 and .b�d/2 < d , in which case we have
d > 4 (and hence b > 6), and a2 � .b� d/2 D 4. �

8B. The carry-digit word for a proper fraction in base b. Keeping the notation b and d , we additionally
fix a D with 1�D < d and investigate �b

�
D
d

�
DW 0:e1e2e3 : : :. The ek satisfy the same type of recursion

as the ak , namely,

ek D

�
bkD

d

�
�

k�1X
iD1

eib
k�i :

In particular, e1 D
�

Db
d

˘
, and the following generalization of Lemma 8.1 and Corollary 8.2 holds:

Lemma 8.4. For k � 0, we have ei D D.b � d/i�1 for i D 1; : : : ; k if and only if D.b � d/k < d .
Moreover, if D.b� d/k < d , then ekC1 DD.b� d/k C

�
1
d

D.b� d/kC1
˘

.

In order to understand the relationship between the ak and the ek we define the carry-digit word
r D 0:r1r2r3 : : : for the addition problem

PD
iD1

1
d
D

D
d

. (See Section 7C for definitions.) In other words,
set r .i/ WD 0:r

.i/
1

r
.i/
2

r
.i/
3
� � � WD rb

�
i
d
; 1

d

�
for 1� i �D� 1, and then set rj WD

Pd�1
iD1 r

.i/
j .
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Then 0� rj �D�1 for every i ; since D
d
< 1, we have r1D 0. Putting together equations (7-2) applied

to i
d
C

1
d

for 1� i <D gives us the precise relationship between the ak , ek , and rk :

ek DDak C rkC1� brk : (8-2)

In fact, we have a closed formula for rk :

Lemma 8.5. For k � 1 we have

rk D

�
Dbk�1

d

�
�D

�
bk�1

d

�
D

�
D.b� d/k�1

d

�
�D

�
.b� d/k�1

d

�
:

Proof. The formula is true for k D 1 (in our case, all quantities are 0). For k � 1, we will establish the
formula for kC 1, starting with (8-2):

rkC1 D ek �Dak C brk D

�
Dbk

d

�
�

k�1X
iD1

eib
k�i
�D

�
bk

d

�
CD

k�1X
iD1

aib
k�i
C brk

D

�
Dbk

d

�
�D

�
bk

d

�
C

k�1X
iD1

bk�i.bri � riC1/C brk D

�
Dbk

d

�
�D

�
bk

d

�
:

Here we used (8-2) in the form �ei CDai D bri � riC1 for 1� i < k to pass from the first line to the
second, and cancellation of a telescoping sum for the final equality. Finally, we note that�

Dbk

d

�
�D

�
bk

d

�
D

�
D.b� d/k

d

�
�D

�
.b� d/k

d

�
because the intervening terms 1

d

�
D
Pk

iD1

�
k
i

�
bk�i.�d/i

�
are integers, and hence can pass through the

greatest-integer function to cancel. �

Corollary 8.6. (1) If .b�d/k<d for some k�0, then for every i �kC1, we have riD
�

1
d

D.b�d/i�1
˘

.

(2) If D.b� d/k < d for some k � 0, then for every i � kC 1, we have ri D 0.

8C. .b; ˇ/-Content of proper fractions. We fix a triple .b; d;D/ with 1 � D � d � b subject to the
conditions that b � 2, and further impose the condition that ˇ WD b�D � 2. Recall the content function
cb;ˇ from Section 7B, and let cd

b;ˇ
WQ�0!Q�0 be the function defined by

cd
b;ˇ.n/ WD cb;ˇ

�
n
d

�
:

Whenever the triple .b; d;D/ is understood, we write c D cd
b;ˇ

, and let r D 0:r1r2 : : : be the carry-digit
word for 1

d
C � � �C

1
d
D

D
d

as in Section 8B. Lemma 7.5 implies that

c.D/DDc.1/�D�ˇ.r/: (8-3)

In this section, we will establish some lower bounds on c.1/ and c.D/. First, we dispatch the cases
d D b and d D b� 1, which yield easy explicit formulas.

Lemma 8.7. Suppose that d D b or d D b� 1, and 0� i < d . Then c.i/D i
d�D

.
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Proof. Computation, see Lemma 8.3. Note that D�minfd; b�2g precludes the possibility that d DD. �

Proposition 8.8. If d � b� 2 and b > 6, then c.1/� ˇC1
ˇ.ˇ�1/

.

Remark. It is a simple exercise to check that the only exceptions for b� 6 are in fact .b; d;D/D .4; 2; 2/,
.5; 3; 3/, or .6; 4; 4/ by exhausting all cases.

Proof. We go through the first three cases of Lemma 8.3. Note that ˇD 2 implies that all of the inequalities
in 2� b�d � b�D D ˇ are equalities, so that d DD and d D b� 2. In particular, if ˇ D 2 and b > 6,
then we must be in the third case.

(1) If �b

�
1
d

�
starts with 0:2C, then c.1/ � �ˇ.0:2/ D

2
ˇ

. Since ˇ � 3, we have 2 � ˇC1
ˇ�1

, so that
c.1/� ˇC1

ˇ.ˇ�1/
, as desired.

(2) If �b

�
1
d

�
starts with 0:13C, then we have c.1/� �ˇ.0:13/D ˇC3

ˇ2 . This last is no less than ˇC1
ˇ.ˇ�1/

if
and only if ˇ2C 2ˇ � 3D .ˇC 3/.ˇ � 1/ � .ˇC 1/ˇ D ˇ2C ˇ. Therefore ˇ � 3 again implies
c.1/� ˇC1

ˇ.ˇ�1/
, as desired.

(3) If �b

�
1
d

�
starts with 0:124C, then

c.1/� �ˇ.0:124/D
ˇ2C 2ˇC 4

ˇ3
D

ˇC 1

ˇ.ˇ� 1/
C

2ˇ� 4

ˇ4�ˇ3
:

Since ˇ � 2, our claim is established. �

Corollary 8.9. If d � b� 2 and D � b
2

, then c.1/� D
ˇ.ˇ�1/

.

Proof. For D � b
2

, we have ˇ D b �D � b � b
2
D

b
2
� D. Therefore Proposition 8.8 establishes the

desired inequality, the exceptional cases .b; d;D/D .4; 2; 2/, .5; 3; 3/, or .6; 4; 4/ being easy to check
explicitly. �

In the next proposition we will show that c.D/ is not too small, provided that d is not too big relative
to b, or, failing that, that D is not too big relative to b and d .

Proposition 8.10. Suppose D < d � b� 2 and at least one of the following conditions is satisfied:

(1) d � b
2

.

(2) D < d
�
1� 1

b�d

�
.

Then c.D/� D.ˇC1/
ˇ.ˇ�1/

.

Remark. Computationally, it appears that the optimal statement is as follows. If D < d � b� 2, then
c.D/� D.ˇC1/

ˇ.ˇ�1/
if and only if at least one of the following is true: (10) .b�d/2>b�1 or (2) D<d

�
1� 1

b�d

�
.

Note that Condition (1) above implies condition (10), but this latter is strictly weaker. Here we only prove
Proposition 8.10 as stated.

Before proving Proposition 8.10, some preparatory lemmas.

Lemma 8.11. Under the assumption d > b
2

, condition (2) from Proposition 8.10 is equivalent to the
inequality r2 < b� d � 1.
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Proof. Apply Corollary 8.6 for k D 0 to deduce that r2 D
�

1
d

D.b�d/
˘

. Then r2 < b�d �1 if and only
if D.b�d/

d
< b� d � 1 if and only if D < d.b�d�1/

b�d
, which is condition (2), as desired. �

As before, let �b

�
1
d

�
D 0:a1a2 : : : and �b

�
D
d

�
D 0:e1e2 : : :, and let r D 0:r1r2 : : : be the carry digits

as in Section 8B. Using (8-2) and the partial-sum cutoffs c.D/� �ˇ.0:e1 : : : ek/D
Pk

iD1 eiˇ
�i , we get

the following partial-sum versions of (8-3):

Lemma 8.12. For any k � 1, the quantity c.D/ satisfies the following inequality:

c.D/�
D
Pk

iD1.ai � ri/ˇ
k�i C rkC1

ˇk
:

Corollary 8.13. Any of the following conditions are sufficient to guarantee c.D/� D.ˇC1/
ˇ.ˇ�1/

:

(1) ˇ � 3 and a1 � 2;

(2) r2 �
2D
ˇ�1

;

(3) ˇ � 3 and a2� r2 � 3;

(4) a2� r2 D 2 and r3 �
2D
ˇ�1

;

(5) ˇ � 3 and a2� r2 D 2 and a3� r3 � 3.

Proof. We use Lemma 8.12 for each specified k. Recall that r1 D 0.

(1) k D 1, use estimate r2 � 0. We have c.D/� 2D
ˇ
�

D.ˇC1/
ˇ.ˇ�1/

, since 2� ˇC1
ˇ�1

for ˇ � 3.

(2) k D 1, use estimate a1 � 1:

c.D/�
DC r2

ˇ
�

DC 2D
ˇ�1

ˇ
D

D.ˇC 1/

ˇ.ˇ� 1/
:

(3) k D 2, use estimate a1 � 1 and r3 � 0:

c.D/�
ˇ.DC r2/C .Da2� br2/

ˇ2
D

D.ˇC a2� r2/

ˇ2
:

This last being greater than D.ˇC1/
ˇ.ˇ�1/

is equivalent to .ˇCa2�r2/.ˇ�1/�ˇ.ˇC1/, or a2�r2�
2ˇ
ˇ�1

.
For ˇ � 3, this is guaranteed by a2� r2 � 3.

(4) k D 2, use estimate a1 � 1:

c.D/

D
�
ˇC .a2� r2/C

r3

D

ˇ2
�
ˇC 2C 2

ˇ�1

ˇ2
D

ˇC 1

ˇ.ˇ� 1/
:

(5) k D 3, use estimate a1 � 1 and r4 � 0:

c.D/

D
�
ˇ2C .a2� r2/ˇC .a3� r3/

ˇ3
�
ˇ2C 2ˇC 3

ˇ3
D

ˇC 1

ˇ.ˇ� 1/
C

ˇ� 3

ˇ3.ˇ� 1/
: �

Proof of Proposition 8.10. Note that the assumptions D < d � b� 2 guarantee that ˇ � 3.
If condition (1) holds, then a1 � 2 (Lemma 8.3(1)) so that Corollary 8.13(1) gives what we want. If

condition (1) fails, but condition (2) holds, then by Lemma 8.11, we have r2 � b�d �2. Moreover, from
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Lemma 8.4 for DD 1 and k D 1, we know that a2 � b�d . If either inequality is strict, Corollary 8.13(3)
gives us the desired inequality. Therefore it remains to consider the case r2 D b � d � 2

�
so that

d.b�d�2/
b�d

�D < d.b�d�1/
b�d

�
and a2 D b� d (so that .b� d/2 < d .vii/).

We now estimate the third digits. By Corollary 8.6 and Lemma 8.4, we have r3 D
�

1
d

D.b� d/2
˘

and
a3 � .b� d/2. Condition (2) implies that r3 �

1
d

D.b� d/2 < .b� d/.b� d � 1/, so that

a3� r3 > .b� d/2� .b� d/.b� d � 1/D b� d � 3;

so that the desired inequality holds by Corollary 8.13(5). �

9. The nilgrowth witness: finishing the proof

Let b � d �D � 1 be integers subject to the conditions b � 2 and ˇ WD b �D � 2, as before. In this
section we exhibit a .b; d;D/-nilgrowth witness and complete the proof of Theorem 4.

Recall from Section 8C that cd
b;ˇ
WQ�0!Q�0 is the function defined by

cd
b;ˇ.n/ WD cb;ˇ

�
n
d

�
:

Also define the integer constant M d
b;ˇ
WD ˇsb.1=d/.ˇtb.1=d/� 1/. Here cb;ˇ is the .b; ˇ/-content function,

first defined in Section 7B, and sb and tb count the number of digits after the decimal point of the preperiod
and the period, respectively, of base-b expansions; see definition before (7-1).

The following theorem, combined with Corollary 6.4, will prove Theorem 4, completing in turn the
proof of Theorem 1.

Theorem 5. If b� d � 1, or if D � b
2

, then the function cd
b;b�D

is a .b; d;D/-nilgrowth witness.

We begin the proof of Theorem 5. Recall from Section 6D that a .b; d;D/-nilgrowth witness must
satisfy four properties: discreteness, growth, base, and step. We establish the first two immediately.

Lemma 9.1 (discreteness property). For any n 2 N, we have M d
b;ˇ

cd
b;ˇ
.n/ 2 N.

Proof. It suffices to see that ˇsb.1=d/.ˇtb.1=d/ � 1/cb;ˇ.n/ is an integer for n 2 1
d

N. For n D 1
d

this
follows from Lemma 7.2, and for general n 2 1

d
N from Lemmas 7.2 and 7.1. �

Lemma 9.2 (growth property). We have cd
b;ˇ
.n/� nlogb ˇ.

Proof. Lemma 7.3. �

It remains to establish the base property and the step property.
For m; n 2Q�0 with m� n, set

R.m; n/ WDRd
b;ˇ.m; n/ WDD�ˇrb

�
m�n

d
; n

d

�
:

.vii/Incidentally this implies the failure of condition (10), which should conjecturally replace condition (1) as noted in the
remark after the statement of Proposition 8.10.
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Here rb is the carry-digit word, as in Section 7C. We then have, for m; n as above

c.n/� c.n�m/D c.m/�R.n;m/: (9-1)

This is just a restatement of Lemma 7.5, in the form in which we will use it below.
We now use the technical results of Section 8 to prove that our candidate nilgrowth witness satisfies

the base property and the step property.

Lemma 9.3 (base property). Suppose that d D b or d D b� 1 or D � b
2

. Then we have:

(1) c.d �D/� c.d/;

(2) 0D c.0/ < c.1/ < � � �< c.d � 1/.

Remark. Part (1) is in fact true without the assumption D � b
2

, but we do not need this greater gen-
erality. Part (2) above is not generally true if D > b

2
. For example, for .b; d;D/ D .7; 5; 5/, we have

c.2/ D c.3/ D 3; and for .b; d;D/ D .11; 9; 7/ we have c.4/ D 334
195

> 316
195
D c.5/. The condition

delineated here is certainly not optimal, however.

Proof. If d D b or d D b� 1, then both statements are immediate from the formula in Lemma 8.7. (Note
that c.d/ is always 1.) Assume therefore that d � b� 2.

(1) If d DD, then the inequality is trivial; so assume D < d . By (9-1), we have

c.d/� c.d �D/D c.D/�R.d;D/:

Certainly rb

�
D
d
; d�D

d

�
can be no greater than 0:11. Therefore

R.d;D/DD�ˇrb

�
D
d
; d�D

d

�
�D�ˇ.0:1

1/D D
ˇ�1

:

On the other hand, by Proposition 8.10, we know that c.D/� D.ˇC1/
ˇ.ˇ�1/

> D
ˇ�1

. Therefore c.d/ > c.d�D/

(and in fact the inequality is strict).

(2) It suffices to show that, for 0 < i < d , we have c.i/ > c.i � 1/. By (9-1) this is equivalent to the
inequality c.1/ >R.i; 1/. Since i < d , we know that

R.i; 1/DD�ˇrb

�
i�1
d
; 1

d

�
�D�ˇ.0:011/D D

ˇ.ˇ�1/
:

Now Corollary 8.9 completes the claim. �

Lemma 9.4 (step property). Suppose d D b or d D b� 1 or D � b
2

. If .i; j / 2 I, and n;m are integers
with dbk � n< dbkC1 and jbk �m, then

c.n/� c.n� ibk/� c.m/� c.m� jbk/:

Here as before I Df.i; j / W 0� j < j CD � i � dg[f.d; d/g is the set of pairs .i; j / so that yj X d�i

can appear in the companion polynomial of the recursion in question; see proof of Proposition 6.3.
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Proof. We use Lemma 7.4 to divide each equation by ˇk , and replace n and m by n
bk and m

bk , respectively.
We therefore seek to show that for n;m 2 Z

�
1
b

�
�0

satisfying d � n< db and m� j , we have

c.n/� c.n� i/� c.m/� c.m� j /:

Using (9-1) twice and rearranging terms, the desired statement is equivalent to

c.i/� c.j /�R.n; i/�R.m; j /:

Since R.m; j / is nonnegative, it suffices to show that

c.i/� c.j /�R.n; i/:

We now take two cases. If i D d , then R.n; i/ D 0, so that it suffices to show that c.d/ � c.j / for
.d; j / 2 I. For j D d , this is clear; and for j � i �D, this follows from both parts of Lemma 9.3 above.

If, on the other hand, i < d , then (9-1) gives us c.i/� c.j /D c.i � j /�R.i; j /, which reduces the
desired statement to

c.i � j /�R.n; i/CR.i; j /: (9-2)

If d D b or d D b � 1, then R.i; j /D 0; since c.i � j /D i�j
d�D

�
D

d�D
(Lemma 8.7), it remains to

show that R.n; i/� D
d�D

. If d D b, then at most one digit is carried, so that R.n; i/�D�ˇ.0:1/D
D
ˇ

.
And if d D b� 1, then every digit may be carried, so that R.n; i/�D�ˇ.0:1

1/D D
ˇ�1

. In both cases,
the desired inequality holds.

On the other hand if d � b � 2
�
and so D � b

2

�
, then we reason as follows. The left-hand side of

desired inequality (9-2) is bounded below by c.D/, and the right-hand side is bounded above by

D�ˇ.0:1
1/CD�ˇ.0:011/D

D.ˇC 1/

ˇ.ˇ� 1/
:

Therefore it suffices to show that c.D/� D.ˇC1/
ˇ.ˇ�1/

which is established in Proposition 8.10. �
Lemmas 9.3 and 9.4 complete the proof of Theorem 5, which in turn completes the proof of Theorem 4,

and hence of Theorem 1.

10. Complements

10A. Refinement of Theorem 2. We state a refinement of the toy version of the NGT. One can also
obtain similar refinements of Theorem 4.

Theorem 6 (refined toy NGT). Let F be a field of characteristic p and let q D pk . Suppose that
T W FŒy�! FŒy� is an F-linear operator satisfying the following two conditions:

(1) For f 2 FŒy�, we have deg T .f /� degf �E for some E � 1.

(2) The sequence fT .yn/gn satisfies a linear recursion whose companion polynomial has the shape

P D .X C cy/d C .terms of total degree� d �D/ 2 FŒy�ŒX �

for some d � q, D � 1, and c 2 F.
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Then
NT .f /�

.q�D/.q� 1/

E.q�D� 1/
.degf /log.q�D/=log q:

Remark. Since the total degree of the companion polynomial of the recursion is the same as the order, it
suffices to check the condition that deg T .f /� degf �E on f D 1;y; : : : ;yd�1 only.

Proof. The sequence fT .yn/gn also satisfies the linear recursion with companion polynomial

P 0 D .X C cy/q�dP DX q
C cyq

C .terms of total degree� q�D/:

Let c D cq;q�D , define Qc W FŒy� ! N [ f�1g from c as in the proof of Theorem 2, and follow the
same inductive argument mutatis mutandis to show that Qc.Tf /� Qc.f /�E. (The main adjustment is in
Proposition 4.1(4); if i is a digit base q and n� i has no more than 2 digits base q, then c.n/� c.n� i/

is either i or i �D; see Lemma 7.5 for a conceptual explanation.)
We have therefore shown that NT .y

n/� c.n/
E

. Lemma 7.3 completes the proof. �

10B. Comments on ˛ in Theorem 4. How optimal is the order of growth of the nilpotence index ˛ from
the empty-middle NGT?

To this end, if K is a field, and T WKŒy�!KŒy� a degree-lowering linear operator, let

˛.T / WD lim sup
n!1

log NT .y
n/

log n
;

and let
˛K .d;D/D sup

T2LK .d;D/

f˛.T /g;

where LK .d;D/ is the set of degree-lowering operators T WKŒy�!KŒy� with fT .yn/gn satisfying a
recurrence with companion polynomial X d C cyd C .terms of total degree � d �D/ for some c 2K.
Since NT .y

n/ � n, we know that ˛K .d;D/ � 1. The following proposition clarifies that studying
˛K .d;D/ is only interesting in characteristic p.

Proposition 10.1. If K has characteristic zero and D < d , then ˛K .d;D/D 1.

Proof. Fix d , and consider the recursion operator T WKŒy�!KŒy� defined by the companion polynomial
P D X d � yd � y, corresponding to the recurrence T .yn/ D .yd C y/T .yn�d /, and initial values
fT .yn/gd�1

nD0
D f0; : : : ; 0; 1g. We will show that NT .y

kdCd�1/D
�

k
d�1

˘
C 1, which will establish that

˛T D 1.
Indeed, from the recurrence, we have T .yn/D 0 if n 6� �1mod d , and T .ykdCd�1/D .yd C y/k .

For f D
P

anyn 2KŒy�, write e.f / for the set fn W an ¤ 0g of exponents appearing in f . From above,
we see that

e.T .ykdCd�1//D fk; kC .d � 1/; kC 2.d � 1/; : : : ; kdg:

More generally, we can show by induction that the set Sm;k WD e.T m.ykdCd�1// is an arithmetic progres-
sion of common difference d �1, greatest term d.k� .m�1/.d �1//, and length k� .m�1/.d �1/C1,
so long as k� .m�1/.d�1/; otherwise the set is empty and T m.ykdCd�1/D0. Indeed, from the explicit
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formulation of T .yn/, we see that if Sm;k is as claimed, then the greatest element of SmC1;kDN�.d�1/,
where N is the greatest element of Sm;k congruent to d � 1 modulo d . Since the maximum element of
Sm;k is congruent to 0 modulo d , and every successive smaller element is d � 1 less, we see that N is
the d -th greatest element of Sm;k . In other words,

N D d.k � .m� 1/.d � 1//� .d � 1/2;

so that the greatest element of SmC1;k is N � .d � 1/ D d.k � m.d � 1//, as desired. Since the
relevant coefficients are positive and we are in infinite characteristic, no cancellation of intermediate
terms is possible. Finally, since T m.ykdCd�1/ ¤ 0 if and only if k � .m � 1/.d � 1/, we have
NT .y

kdCd�1/D
�

k
d�1

˘
C 1, as claimed. �

For F a field of characteristic p, let us confine our inquiry to the case where d can be taken to be a
power of p, as in Theorem 6 above. Theorem 6 tells us that ˛F.p

k ;D/ � log.pk �D/=log pk . How
optimal is this estimate? Computationally, it appears that for k D 1 this inequality is optimal. A few
examples for D D 1:

Examples. (1) p D 3: The recursion operator T with companion polynomial X 3CyX �y3 and initial
values f0; 1;yg appears to achieve NT .y

n/D c3;2.n/ infinitely often.

(2) p D 5: The recursion operator T with companion polynomial

X 5
C 3yX 3

Cy2X 2
C 3y3X C 4y5

and initial values Œ0; 1;y;y2;y3� appears to achieve NT .y
n/Dc5;4.n/ for “most” n; every counterexample

n has 0s in its base-5 expansion.

(3) p D 7: The recursion operator T with companion polynomial

X 7
C 3y2X 4

C 6y3X 3
C 5y4X 2

C 3y5X C 6y7

appears to achieve NT .y
n/D c7;6.n/ for most n. For n< 1000, there are only 36 counterexamples, and

c7;6.n/�NT .y
n/� 3 for each one.

(4) p D 11. The recursion operator T with companion polynomial

PT DX 11
C 6yX 9

C 2y2X 8
C 3y3X 7

C 6y4X 6
C 8y6X 4

Cy8X 2
C 9y9X C 10y11

appears to achieve NT .y
n/D c11;10.n/ for most n. For n< 1000, there are only 8 counterexamples, and

NT .y
n/D c11;10.n/� 1 for each one.

The estimate appears not to be optimal as soon as k � 2.
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