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Next, the group A = Aut(lFp +) of automorphisms is a subgroup of Perm (lFp +). 
The distributive law shows that multiplication by an element a E IFp x is an automor-
phism of IFp +. It is bijective, and a(x + y) = ax + ay. Therefore the image of 
cp: Perm (lFp +) is contained in the subgroup A. Finally, an automorphism of 
IFp + is determined by where it sends the generator I, and the image of 1 can not be 
zero. Using the operations of G, we can send I to any nonzero element. Therefore cp 
is a surjection from G onto A. Being both injective and surjective, cp is an isomor-
phism. 0 

9. FINITE SUBGROUPS OF THE ROTATION GROUP 

In this section, we will apply the Counting Formula to classify finite subgroups of 
the rotation group S03, which was defined in Chapter 4 (5.4). As happens with finite 
groups of motions of the plane, there are rather few finite subgroups of S03, and all 
of them are symmetry groups of familiar figures. 

(9.1) Theorem. Every finite subgroup G of S03 is one of the following: 

Ck : the cyclic group of rotations by multiples of 21T /k about a line; 
Dk : the dihedral group (3.4) of symmetries of a regular k-gon; 
T: the tetrahedral group of twelve rotations carrying a regular tetrahedron to 

itself; 
0: the octahedral group of order 24 of rotations of a cube, or of a regular 

octahedron; 
I: the icosahedral group of 60 rotations of a regular dodecahedron or a regular 

icosahedron: 

We will not attempt to classify the infinite subgroups. 

Proof. Let G be a finite subgroup of S03, and denote its order by N. Every ele-
ment g of G except the identity is a rotation about a line e, and this line is obviously 
unique. So g fixes exactly two points of the unit sphere S in namely the two 
points of intersection ens. We call these points the poles of g. Thus a pole is a 
point p on the unit sphere such that gp = p for some element g '* I of G. For ex-
ample, if G is the group of rotational symmetries of a tetrahedron Ll, then the poles 
will be the points of S lying over the vertices, the centers of faces, and the centers of 
edges of Ll. 
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Let P denote the set of all poles. 

(9.2) Lemma The set P is carried to itself by the action of G on the sphere. So G 
operates on P. 

Proof. Let p be a pole, say the pole of g E G. Let x be an arbitrary ele-
ment of G. We have to show that xp is a pole, meaning that xp is left fixed by 
some element g' of G other than the identity. The required element is xgx- 1: 
xgx-1(xp) = xgp = xp, and xgx- 1 '* 1 because g '* 1. 0 

We are now going to get information about the group by counting the poles. 
Since every element of G except 1 has two poles, our first guess might be that there 
are 2N - 2 poles altogether. This isn't quite correct, because the same point p may 
be a pole for more than one group element. 

The stabilizer of a pole p is the group of all of the rotations about the line 
e = (0, p) which are in G. This group is cyclic and is generated by the rotation of 
smallest angle f) in G. [See the proof of Theorem (3.4a).] If the order of the stabi-
lizer is r p, then () = 27T-j r p . 

We know that rp > 1 because, since p is a pole, the stabilizer Gp contains an 
element besides 1. By the Counting Formula (7.2), 

IGpilOpl = IGI· 
We write this equation as 
(9.3) 

where np is the number of poles in the orbit Op of p. 
The set of elements of G with a given pole p is the stabilizer Gp , minus the 

identity element. So there are (rp - 1) group elements with p as pole. On the other 
hand, every group element g except 1 has two poles. Having to subtract 1 every-
where is a little confusing here, but the correct relation is 

(9.4) L (rp - 1) = 2N - 2. 
pEP 

Now if p and p' are in the same orbit, then the stabilizers Gp and Gp ' have the 
same order. This is because Op = Op' and I G I = I Gp II Op I = I Gp' II Op' I. There-
fore we can collect together the terms on the left side of (9.4) which correspond 
to poles in a given orbit Op. There are np such terms, so the number of poles col-
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lected together is np(r p - 1). Let us number the orbits in some way, as 0" O2 , • ••• 

Then 

where ni = I od, and ri = I Gp I for any p E Oi. Since N = ni r;, we can divide both 
sides by N and switch sides, to get the famous formula 

(9.5) 2 - = 2 (1 -
N i ri 

This formula may not look very promising at first glance, but actually it tells us a 
great deal. The left side is less than 2, while each term on the right is at least It 
follows that there can be at most three orbits! 

The rest of the classification is made by listing the various possibilities: 

One orbit: 2 

1 

Two orbits: 2 

2 - = 1 -
N 

1 < 1. 
r 
2 
N 

1. This is impossible, because 2 r 
1, while 

N 

1) . 2 I I - - ,that IS, - = - + -. r2 N r, r2 

We know that ri:::; N, because r; divides N. This equation can hold only if 
r, = r2 = N. Thus n, = n2 = 1. There are two poles p, p', both fixed by every ele-
ment of the group. Obviously, G is the cyclic group CN of rotations about the line C 
through p and p , . 

Three orbits: This is the main case: Formula (9.5) reduces to 

2 1 1 1 
-=-+-+--1. 
N r, r2 r3 

We arrange the r; in increasing order. Then r, = 2. For if all r; were at least 3, then 
the right side would be :::; 0, which is impossible. 

Case 1: At least two of the orders ri are 2: r, = r2 = 2. The third order r3 = r can 
be arbitrary, and N = 2r. Then n3 = 2: There is one pair of poles {p,p '} making 
the orbit 0 3 • Every element g either fixes p and p' or interchanges them. So the ele-
ments of G are rotations about ( = (p, p '), or else they are rotations by 7r about a 
line (' perpendicular to (. It is easily seen that G is the group of rotations fixing a 
regular r-gon the dihedral group Dr. The polygon lies in the plane perpendicu-
lar to (, and the vertices and the centers of faces of corresponding to the remain-
ing poles. The bilateral (reflection) symmetries of the polygon in [R2 have become 
rotations through the angle 7r when is put into [R3. 
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Case 2: Only one n is 2: The triples r1 = 2, r2 ;::::: 4, r3 ;::::: 4 are impossible, because 
1/2 + 1/4 + 1/4 - 1 = 0. Similarly, n = 2, r2 = 3, r3 ;::::: 6 can not occur be-
cause 1/2 + 1/3 + 1/6 - 1 = 0. There remain only three possibilities: 

(9.6) 

(i) n = (2,3,3), N = 12; 
(ii) ri = (2,3,4), N = 24; 

(iii) ri = (2,3,5), N = 60. 

It remains to analyze these three cases. We will indicate the configurations 
briefly. 

(9.7) 

(i) ni = (6,4,4). The poles in the orbit O2 are the vertices of a regular tetrahe-
dron and G is the group of rotations fixing it: G = T. Here nl is the number 
of edges of and n2, n3 are the numbers of vertices and faces of 

(ii) ni = (12,8,6). The poles in O2 are the vertices of a cube, and the poles in 0 3 

are the vertices of a regular octahedron. G = 0 is the group of their rotations. 
The integers ni are the numbers of edges, vertices, and faces of a cube. 

(iii) ni = (30,20, 12). The poles of O2 are the vertices of a regular dodecahedron, 
and those in 0 3 are the vertices of a regular icosahedron: G = I. 

There is still some work to be done to prove the assertions of (9.7). Intu-
itively, the poles in an orbit should be the vertices of a regular polyhedron because 
they form a single orbit and are therefore evenly spaced on the sphere. However this 
is not quite accurate, because the centers of the edges of a cube, for example, form a 
single orbit but do not span a regular polyhedron. (The figure they span is called a 
truncated polyhedron.) 

As an example, consider (9. 7iii). Let p be one of the 12 poles in 0 3 , and let q 
be one of the poles of O2 nearest to p. Since the stabilizer of p is of order 5 and op-
erates on O2 (because G does), the images of q provide a set of five nearest neighbors 
to p, the poles obtained from q by the five rotations about p in G. Therefore the 
number of poles of O2 nearest to p is a multiple of 5, and it is easily seen that 5 is the 
only possibility. So these five poles are the vertices of a regular pentagon. The 12 
pentagons so defined form a regular dodecahedron. D 

We close this chapter by remarking that our discussion of the motions of the 
plane has analogues for the group M3 of rigid motions of 3-space. In particular, one 
can define the notion of crystallographic group, which is a discrete subgroup whose 
translation group is a three-dimensional lattice L. To say that L is a lattice means 
that there are three linearly independent vectors a, b, c in such that 
ta , tb, tc , E G. The crystallographic groups are analogous to lattice groups in 
M = M 2 , and crystals form examples of three-dimensional configurations having 
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such groups as symmetry. We imagine the crystal to be infinitely large. Then the fact 
that the molecules are arranged regularly implies that they form an array having 
three independent translational symmetries. It has been shown that there are 230 
types of crystallographic groups, analogous to the 17 lattice groups (4. 15). This is 
too long a list to be very useful, and so crystals have been classified more crudely 
into seven crystal systems. For more about this, and for a discussion of the 32 crys-
tallographic point groups, look in a book on crystallography. 

Un bon heritage vaut mieux que Ie plus joli probleme de geometrie, 
parce qu'it tient lieu de methode generale, 

et sert a resoudre bien des problemes. 

Gottfried Wilhelm Leibnitz 

EXERCISES 

1. Symmetry of Plane Figures 

1. Prove that the set of symmetries of a figure F in the plane forms a group. 
2. List all symmetries of (a) a square and (b) a regular pentagon. 
3. List all symmetries of the following figures. 

(a) (1.4) (b) (1.5) (c) (1.6) (d) (1.7) 
4. Let G be a finite group of rotations of the plane about the origin. Prove that G is cyclic. 

1. The Group of Motions of the Plane 

1. Compute the fixed point of tape algebraically. 
2. Verify the rules (2.5) by explicit calculation, using the definitions (2.3). 
3. Prove that 0 is not a normal subgroup of M. 
4. Let m be an orientation-reversing motion. Prove that m2 is a translation. 
S. Let SM denote the subset of orientation-preserving motions of the plane. Prove that SM 

is a normal subgroup of M, and determine its index in M. 
6. Prove that a linear operator on /R2 is a reflection if and only if its eigenvalues are 1 and 

-1, and its eigenvectors are orthogonal. 
7. Prove that a conjugate of a reflection or a glide reflection is a motion of the same type, 

and that if m is a glide reflection then the glide vectors of m and of its conjugates have 
the same length. 

8. Complete the proof that (2.13) is a homomorphism. 
9. Prove that the map M {1, r} defined by tapelVVlN'+ 1, taPerlVVlN'+ r ·is a homomor-

phism. 
10. Compute the effect of rotation of the axes through an angle 'T/ on the expressions taPe and 

taPer for a motion. 


