MA 294: Applied Abstract Algebra / Spring 2022 Homework assignment #6 final version (preliminary version: more problems will be added 3/17/2022) Due Thursday 3/24/2022 by 4pm

Turn in your work either in class or before 4pm in the envelope hanging on MCS 127.

- Please staple or otherwise connect the pages of your work. There is a stapler in the math department main office. Yes, this requires a tiny bit of planning but I know we can do this! Our grader is anxious that homework set pages might get lost.
- Write your name on the front page. Plan ahead: perhaps you need to carry around a pen for this purpose on Thursdays?
- Consider using a pen rather than a pencil, especially if your pencilwork is smudgy.

Read section 20.8 through the middle of p. 275.

- (1) Exercise 20.8.2. In the notation we've been using in class, $H = \{1, \text{flip}(|)\}$.
- (2) Exercise 20.8.3. It may be helpful to introduce the notation $r = rot(72^{\circ})$ and f = flip(|). (Note that in order for flip(|) to be a symmetry, we have to assume that the pentagon has a horizontal side.)

Read section 10.6.

- (3) Exercise 10.6.1
- (4) Exercise 10.6.2

More questions

(5) Let p and q be two distinct primes. Prove that $\varphi(pq) = (p-1)(q-1)$.

(Do this by hand, by thinking about the numbers less than pq that are relatively prime to pq. Do not use any theorems about the multiplicativity of φ that we have not discussed in this course.)

(6) Consider the following 2×2 matrices with coefficients in \mathbb{C} :

$$\mathbf{i} := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \mathbf{j} := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{k} := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

- (a) Show that the set $Q_8 := \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$ is closed under matrix multiplication by constructing a multiplication table. Here $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $-1 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.
- (b) Use this table to prove that Q_8 is a group.
- (c) We've found four groups of order 8 up to isomorphism so far:

 $\mathbb{Z}_8, \quad \mathbb{Z}_4 \times \mathbb{Z}_2, \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \quad \text{Symm}(\Box).$

Is Q_8 isomorphic to any of these? If not explain why not; if yes, construct an explicit isomorphism.

- (7) Let G be a group, and suppose that $a, b \in G$ are commuting elements so that the cyclic subgroups they generate intersect trivially: that is, ab = ba and $\langle a \rangle \cap \langle b \rangle = \{1\}$. Prove that $\operatorname{ord}(ab) = \operatorname{lcm}(\operatorname{ord}(a)\operatorname{ord}(b))$.
- (8) (a) Let G be a group and suppose $a, b \in G$ are commuting elements so that $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime. Show that $\operatorname{ord}(ab) = \operatorname{ord}(a) \operatorname{ord}(b)$.
 - (b) Give an example to show that $\operatorname{ord}(ab) \neq \operatorname{ord}(a) \operatorname{ord}(b)$ in general, even if $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime.
- (9) Show that any group of even order has an element of order 2.

(*Hint:* pair up elements with their inverses. Which elements are paired with themselves?)

(10) Let G be a group of order 2n, where n > 1 is odd. Show that G must have an element of order strictly greater than 2.

(*Hint:* Suppose every element g of G satisfies $g^2 = 1$. Show that G must have two elements a, b that are distinct from each other and from the identity. Show that $\langle a, b \rangle$ is a subgroup of G isomorphic to the Klein 4-group and derive a contradiction. Problem (3) on HW #3 might be helpful as a way of setting the scene.)

(11) Show that any group of order 6 is either cyclic or isomorphic to $\text{Symm}(\Delta)$.