
Elliptic Curve Cryptography
and Its Application in Bitcoin Wallet

Jin Lou

https://www.nbcnews.com/news/latino/el-salvador-hits-snags-adopts-bitcoin-official-currency-first-country-rcna1910

https://www.computerworld.com/article/3389678/whats-a-crypto-wallet-and-does-it-manage-digital-currency.html

https://commons.wikimedia.org/wiki/File:Bitcoin-core-v0.10.0.png

What is Bitcoin?

It is a decentralized digital currency that is
independent of banks and can be sent from user
to user on the peer-to-peer bitcoin blockchain
network without the need for intermediaries.

The Basics

Public key
It is used to prove that the
digital signature came
from the private key. The
signature proves
ownership of the private
key.

Private key
It is the password to your bitcoin
account. You do not want to
share it with anyone!

Address
The bitcoin address is visible to
everyone on the blockchain.
Just like your bank account
number, the sender needs that
to transfer money to you.

https://www.oreilly.com/library/view/mastering-bitcoin-2nd/9781491954379/ch04.html

The Basics

Trapdoor functions

JUMP IN DEPTH
How do we obtain those three things?

Bitcoin

https://www.freecodecamp.org/news/how-to-generate-your-very-own-bitcoin-private-key-7ad0f4936e6c/

Bitcoin uses the SHA-256 hash algorithm to
generate a secret number k that is 256 bits
long.

How do we create a private key (k)?

Would there be duplicate private keys?

We don’t need to concern about that right
now because 2256 or 1077 is a very big
integer.

https://metamug.com/article/security/sign-verify-digital-signature-ecdsa-java.html

How do we create a public key(p)?

ECC algorithm is the base of ECDSA
(Elliptic Curve Cryptography)

The function: y2 = x3+ax+b (a=0,b=7 in bitcoin blockchain)

Let’s say:
● k is private key
● p is public key
● G(x,y) is a point on the curve, we call it the “generator”
● ‘*’ is a group operation such that k * G = (kx, ky)= p

(In other words, p is a point)

k * G = G+G+....+G

Point and point addition:
A + B -> C

What if it is A + A?
A + A -> use tangent line

How do we pick a G?

https://medium.com/@_ericprice/bitcoins-signing-algorithm-elliptic-curves-with-finite-fields-e386f8d0c05

The curve is actually a finite field!

- Any point in the block can be used as a
generator.

- Everyone uses the same G in bitcoin:
p=2256-232-29-28-27-26-24-20

=0279be667ef9dcbbac55a06295ce870b07029bfcdb
2dce28d959f2815b16f81798

How many G are there in the block?

- Group size - 1 since it is a cyclic
group.

Why using a field?
- To avoid numerical precision issues, we

use finite fields because the number of
elements is finite and known exactly.

0*G = (infinity)
1*G = (3,6)

2*G = (80,10)
3*G = (80,87)
4*G = (3,91)

5*G = (infinity)
6*G = (3,6)

7*G = …

An example: y² = x³ + 2x + 3 mod 97
With G=(3,6)

The order of this cyclic group is
5, much less than 97.

The points have been
partitioned into separate cyclic
groups, all of the same size.

of such groups is call
“cofactor”, h=n/r

Do we have to do calculations k times?
● No! The time complexity of ECC algo

is O(log2n)

why?
G+G=2G, 2G+2G=4G, 4G+4G=8G
…
If n = 16, we need to do sqrt(16)=4
calculations.

How fast can we compute the public key p

https://www.researchgate.net/figure/The-time-complexity-of-RSA-and-ECC_fig4_330832141

We love ECC because it is much
faster than RSA with the same key
size.

(1) Data Encryption: If we know p, we can hardly compute k.

(2) Digital Signature: If we are given k, we can compute whether k*G matches p.

Alice: ka, pa -> ka*pb = G * ka * kb
Bob: kb, pb -> kb*pa = G * ka * kb

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-prote
ction-regulation-gdpr/encryption/what-types-of-encryption-are-there/

https://stakey.club/en/verifying-digital-signatures/

Suppose m is message
m*k = N(digital signature)
m*p = m*G*k = (m*k)*G=N*G

We can check whether
signature matches to verify the
integrity of the message m.

Now we know p and k, what about the address?

https://medium.com/coinmonks/what-is-a-bitcoin-address-6c822c857004

We can compute the Bitcoin address from Double Hash functions(SHA256 +
RIPEMD160)

A secure implementation of the ECC curve is theoretically possible, it is not easy to achieve. There are numerous examples
of how failed implementation of ECC algorithms resulted in significant vulnerabilities in the cryptographic software.

A great example is that of the Sony ECDSA security disaster. Although Sony used ECDSA to sign software for their
PlayStation game console, they did not properly implement the algorithm. Using static parameters instead of random ones
made Sony’s implementation of the algorithm solvable and subsequently useless.

Issues With ECC Implementation

What if k is a static value? Disaster!

Can we obtain truly randomness?
AKA can we build a random number generator
that guarantees to create a random number?

Typical workflow of a random number generator

Thank you!

