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by Euler’s theorem, because ϕ(49) = 42 = 7 ·6. Since 37 ≡ 3 mod 7 and 57 ≡ 5 mod
7, by Fermat’s little theorem, we conclude that 37 and 57 are the two exceptions:

37 ≡ 31 mod 49 and 57 ≡ 19 mod 49.

Hence, the set G2 of primitive roots modulo 49 = 72 is the union of

{3 + 7k : 0 ≤ k ≤ 6, k �= 4} and {5 + 7j : 0 ≤ j ≤ 6, j �= 2}.
Alternatively, in the notation of Corollary 8.5.5, we have H2 = {19, 31 mod 49}, so

G2 = {a mod p2 : a ≡ 3 or 5 mod 7, and a �≡ 19 or 31 mod 49}.
Finally, for each k ≥ 2, the set Gk of primitive roots modulo 7k are those elements
that reduce to one of the elements in G2 modulo 49.

Theorem 8.5.7. Let m = 2, 4, pk, or 2pk, for some odd prime p and some k ≥ 1.
Then, m has a primitive root.

Proof. If m = 2, then g ≡ 1 mod 2 is a primitive root. If m = 4, then g ≡ 3 mod 4
is one. If p is an odd prime, then there exists a primitive root modulo p by Theorem
8.4.1. Corollary 8.5.5 shows that there is a primitive root modulo pk for every k ≥ 1.

It remains to show that m = 2pk has a primitive root. Let g ∈ Z be a primitive
root modulo pk. We distinguish two cases:

• If g is odd, then every power of g is odd, so gj ≡ 1 mod 2 for all j ≥ 1. Thus,
gj ≡ 1 mod 2pk if and only if gj ≡ 1 mod pk. Hence, the multiplicative order
of g mod 2pk is the same as the order of g mod pk which is ϕ(pk) = ϕ(2pk).
Hence, g is also a primitive root modulo 2pk.

• If g is even, then g is not even a unit in Z/2pkZ so it cannot be a primitive
root. Let g′ = g + pk. Then g′ is odd, and g′ ≡ g mod pk, so it is a primitive
root modulo pk. Hence, by our previous bullet point, g′ is a primitive root
modulo 2pk.

Thus, in all cases, m = 2pk has a primitive root, as we claimed. �

Example 8.5.8. Let p = 7. In Example 8.5.4 we showed that 3 is a primitive root
modulo 7k, for all k ≥ 1. Since g = 3 is odd, it follows that 3 is also a primitive
root modulo 2 · 7k, for all k ≥ 1.

Similarly, Example 8.5.6 shows that g = 10 is a primitive root modulo 7k, for
all k ≥ 1. However, 10 is even, so it is not a unit modulo 2 · 7k. However, 10 + 7k

is a primitive root modulo 2 · 7k, for all k ≥ 1. For instance, this shows that 59 is
a primitive root modulo 98.

The converse of Theorem 8.5.7 is also true; i.e., if m ≥ 2 has a primitive root,
then m = 2, 4, pk, or 2pk for some odd prime p. Before we prove this fact, we will
introduce the concept of indices, which is an analogue of the concept of logarithm.

8.6. Indices

The logarithm in base b, denoted by logb(x), is the inverse function of exponentia-
tion in base b, i.e., bx. Logarithms are quite useful when solving equations where
the unknown is in the exponent. Let us see two examples.
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Example 8.6.1. Let us find x such that x5 = 16807, using logarithms. Let us take
logarithms (in base e, the natural logarithm) on both sides of the equation:

5 log x = log(x5) = log(16807).

Thus, log x = log(16807)/5 = 1.945910149 . . .. Now we use the inverse function of
log x, the exponential ex, to retrieve x:

x = elog x = e1.945910149... = 7.

Example 8.6.2. Let us find x such that 7x+3 = 16807. Notice that 16807 = 75.
Let us take logarithms in base 7 of both sides:

x+ 3 = log7(7
x+3) = log7(16807) = log7(7

5) = 5.

Thus, x+ 3 = 5, so x = 2.

Here are the key properties of the exponential and logarithm functions that
make them so useful in the applications. Let b > 1 be fixed. Then:

(a) bx is a bijection, from R to R+, and logb(x) is a bijection, from R+ to R;
(b) logb(x) is the inverse function of bx;
(c) logb(x

n) = n · logb(x);
(d) logb(xy) = logb(x) + logb(y);
(e) and (perhaps the most important property of all) we can calculate bx and

logb(x) efficiently.

In this section, we want to define an analog of the logarithm function for the units
modulo m, i.e., Um = (Z/mZ)×. Clearly, if g is a primitive root, then gx is a
bijection;

gx : {1, 2, . . . , ϕ(m)} → Um.

Thus, we can define a “logarithm in base g” (an index function for the powers of
g) as the inverse function of gx. This is exactly what we will do, and we will show
that our index function satisfies properties (a) through (e) above. The following
is a preliminary definition of the concept of index, which we will refine below in
Definition 8.6.7.

Definition 8.6.3. Let m ≥ 2 be an integer, such that there exists a primitive root
g modulo m. We define the index function in base g as the function

indg : (Z/mZ)× → {1, 2, . . . , ϕ(m)}
such that n = indg(a mod m) is the smallest integer n ≥ 1 with gn ≡ a mod m.

Example 8.6.4. In Example 8.2.2 we showed that g = 2 is a primitive root modulo
11. We indeed calculated a table of powers of 2 mod 11:

x mod 11 x2 x3 x4 x5 x6 x7 x8 x9 x10

2 4 8 5 10 9 7 3 6 1

Using this table, we can calculate values of ind2, the index in base 2. For instance,
ind2(9) = 6, because 29 ≡ 6 mod 11. Similarly, ind2(3) = 8 because 28 ≡ 3 mod 11.
We can also build a table of all indices in base 2:

a mod 11 1 2 3 4 5 6 7 8 9 10

ind2(a) 10 1 8 2 4 9 7 3 6 5
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Example 8.6.5. In Example 8.2.8, we showed that g ≡ 3 mod 43 is a primitive
root in Z/43Z. Let us calculate a table of indices in base 3. First, let us calculate
a table of powers of 3 modulo 43:

x mod 43 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

3 9 27 38 28 41 37 25 32 10 30 4 12

x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25

36 22 23 26 35 19 14 42 40 34 16 5

x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37

15 2 6 18 11 33 13 39 31 7 21 20

x38 x39 x40 x41 x42

17 8 24 29 1

And now we can calculate a table of indices in base 3:

a mod 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ind3(a) 42 27 1 12 25 28 35 39 2 10 30 13 32 20
a mod 43 15 16 17 18 19 20 21 22 23 24 25 26 27 28
ind3(a) 26 24 38 29 19 37 36 15 16 40 8 17 3 5
a mod 43 29 30 31 32 33 34 35 36 37 38 39 40 41 42
ind3(a) 41 11 34 9 31 23 18 14 7 4 33 22 6 21

Remark 8.6.6. Let m be a positive integer and suppose that gcd(a,m) = 1. Then,
as ≡ at mod m if and only if s ≡ t mod (ordm(a)). Indeed, if as ≡ at mod m, then
as−t ≡ 1 mod m, and ordm(a) must be a divisor of s − t (by Proposition 8.1.5).
Hence s ≡ t mod (ordm(a)).

Conversely, if s ≡ t mod (ordm(a)), then s− t = n · ordm(a) and

as−t ≡ (aordm(a))n ≡ 1n ≡ 1 mod m,

and, therefore, as ≡ at mod m.
In particular, if g is a primitive root modulo m and gs ≡ b mod m, then gt ≡

b mod m, for all t ≡ s mod ϕ(m), because ordm(g) = ϕ(m). This means that
indg(b) can be regarded as the congruence class of s mod ϕ(m).

In light of Remark 8.6.6, we redefine the index function as follows.

Definition 8.6.7. Let m ≥ 2 be an integer, such that there exists a primitive root
g modulo m. We define the index function in base g as the function

indg : (Z/mZ)× → Z/ϕ(m)Z

such that n ≡ indg(a mod m) mod ϕ(m) is in the unique congruence class modulo
ϕ(m) that satisfies gn ≡ a mod m.

With this definition, we are ready to show that the index function satisfies
properties very similar to the logarithm.
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Proposition 8.6.8. Let m ≥ 2 be an integer such that there exists a primitive root
g modulo m. Then, the function indg satisfies the following properties:

(a) gx is a bijection, from Z/ϕ(m)Z to Um = (Z/mZ)×, and indg is a bijection,
from Um to Z/ϕ(m)Z.

(b) indg(x) is the inverse function of gx.
(c) indg(x

t) ≡ t · indg(x) mod ϕ(m).
(d) indg(xy) ≡ indg(x) + indg(y) mod ϕ(m).

Proof. Since g is a primitive root, the map gx is surjective on (Z/mZ)×. By
Remark 8.6.6, gx ≡ gy mod m if and only if x ≡ y mod ϕ(m). Thus, gx is injective
with domain Z/ϕ(m)Z. Hence, gx is a bijection. The index function indg is defined
to be the inverse function of gx, so it is also a bijection. This shows (a) and (b).

Let n ≡ indg(x mod m). Then, n is in the unique congruence class mod-
ulo ϕ(m) that satisfies gn ≡ x mod m. It follows that gtn ≡ xt mod m, and so
indg(x

t) ≡ t · n ≡ t · indg(x) mod ϕ(m). This is (c).
Let u ≡ indg(x mod m) and v ≡ indg(y mod m) mod ϕ(m). Then, gu ≡ x and

gv ≡ y mod m. Hence,

gu+v ≡ gu · gv ≡ x · y mod m.

This implies that

indg(x) + indg(y) ≡ u+ v ≡ indg(xy) mod ϕ(m),

as claimed in (d). �

Remark 8.6.9. Note that property (d) in Proposition 8.6.8 would not be true if the
index function was integer-valued (as we had preliminarily defined it in Definition
8.6.3) instead of Z/ϕ(m)Z-valued.

Traditional exponentials and logarithms can be calculated efficiently (any cal-
culator can do that!). In order to use indices, however, (i) there must be a primitive
root modulo m, (ii) we need to be able to find an explicit primitive root g modulo
m, and (iii) we need a table of indices in base g.

Example 8.6.10. Let us find all the solutions to the congruence 3x6 ≡ 4 mod 11,
using indices. In Example 8.6.4 we calculated a table of indices in base 2:

a mod 11 1 2 3 4 5 6 7 8 9 10

ind2(a) 10 1 8 2 4 9 7 3 6 5

Taking indices on both sides of 3x6 ≡ 4 mod 11 and using the properties of Propo-
sition 8.6.8, we obtain on one hand ind2(4) ≡ 2 mod 10 and on the other hand

2 ≡ ind2(4) ≡ ind2(3x
6) ≡ ind2(3) + ind2(x

6) ≡ 8 + 6 ind2(x) mod 10.

Therefore, 6 ind2(x) ≡ 2 − 8 ≡ −6 ≡ 4 mod 10. Solving the congruence 6t ≡
4 mod 10 is equivalent to finding the solutions of 10s + 6t = 4, which in turn is
equivalent to finding solutions to the diophantine equation 5s+3t = 2. Using what
we learned in Section 2.9, we find the solution to be

s = 1 + 3k, t = −1− 5k
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for each k ∈ Z. Hence, t ≡ −1 ≡ 4 mod 5, which means t ≡ 4 or 9 mod 10. It
follows that the solutions x to our original equation satisfy

ind2(x) ≡ 4 or 9 mod 10

and by our table, these indices correspond to x ≡ 5 or 6 mod 11. Indeed,

3 · 56 ≡ 46875 ≡ 4 mod 11

and since 6 ≡ −5 mod 11, it follows that 3 · 66 ≡ 3 · (−5)6 ≡ 3 · 56 ≡ 4 mod 11.

In general, there is a formula for the number of solutions of xk ≡ a mod m,
which is given in the following theorem, and it is an application of indices.

Theorem 8.6.11. Let m ≥ 2 and suppose that Z/mZ has a primitive root. Let
gcd(a,m) = 1. Then, the congruence xk ≡ a mod m has a solution if and only if

aϕ(m)/ gcd(k,ϕ(m)) ≡ 1 mod m.

If xk ≡ a mod m is solvable, then it has exactly gcd(k, ϕ(m)) different solutions in
Z/mZ.

Proof. Let g be a primitive root modulo m. Then, the congruence xk ≡ a mod m
has a solution x mod m if and only if k · indg(x) ≡ indg(a) mod ϕ(m). Moreover,
by Theorem 4.4.3, the congruence ky ≡ b mod ϕ(m) has a solution y0 mod m if
and only if d = gcd(k, ϕ(m)) is a divisor of b, and if it has a solution, then it has
exactly d different solutions modulo ϕ(m). We need a lemma to finish our proof.

Lemma 8.6.12. Let m ≥ 2 and suppose that Z/mZ has a primitive root. Let
gcd(a,m) = 1 and let d be a divisor of ϕ(m). Then, indg(a) ≡ 0 mod d if and only
if aϕ(m)/d ≡ 1 mod m if and only if ordm(a) is a divisor of ϕ(m)/d.

Proof. Suppose that aϕ(m)/d ≡ 1 mod m. Taking indices in base g we obtain an
equivalent expression

(ϕ(m)/d) · indg(a) ≡ indg(1) ≡ 0 mod ϕ(m),

which is equivalent to indg(a) ≡ 0 mod d by Proposition 4.3.1. This concludes the
proof of the lemma. �

Back to the proof of Theorem 8.6.11, aϕ(m)/d ≡ 1 mod m if and only if indg(a) ≡
0 mod d if and only if k · indg(x) ≡ indg(a) mod ϕ(m) has d solutions for indg(x)
and these correspond to d different solutions of xk ≡ a mod m. �

Example 8.6.13. In Example 8.6.10 we saw that the congruence 3x6 ≡ 4 mod 11
has two solutions, namely x ≡ 5, 6 mod 11. Let us show that there are two solutions
using Theorem 8.6.11. The congruence in question is equivalent to

x6 ≡ 4 · 3−1 ≡ 4 · 4 ≡ 16 ≡ 5 mod 11.

Hence, Theorem 8.6.11 says that there are gcd(6, 10) = 2 solutions if 510/2 = 55 ≡
1 mod 11. So it only remains to calculate

55 ≡ 5 · (52)2 ≡ 5 · (25)2 ≡ 5 · 32 ≡ 5 · 9 ≡ 5 · (−2) ≡ −10 ≡ 1 mod 11.

Next, we list a few corollaries of Theorem 8.6.11. If m = p is prime, then we
know the existence of a primitive root modulo p (by Theorem 8.4.1).
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Corollary 8.6.14. Let p be a prime and let gcd(a, p) = 1. Then, a is congruent
to a kth power in Z/pZ if and only if

a(p−1)/ gcd(k,p−1) ≡ 1 mod p.

Corollary 8.6.15. Suppose that there exists a primitive root modulo m. Then:

(1) The congruence xk ≡ 1 mod m has exactly gcd(k, ϕ(m)) distinct solutions in
Z/mZ. In particular, if k is a divisor of ϕ(m), then xk ≡ 1 mod m has exactly
k solutions.

(2) The number of distinct kth powers modulo m is ϕ(m)/ gcd(k, ϕ(m)).

Proof. Part (1) follows directly from Theorem 8.6.11, with a = 1. For part (2), we
note that b is a kth power if and only if bϕ(m)/ gcd(k,ϕ(m)) ≡ 1 mod m if and only if
b is a solution of xϕ(m)/ gcd(k,ϕ(m)) ≡ 1 mod m. By part (1), the latter congruence
has exactly ϕ(m)/ gcd(k, ϕ(m)) solutions. �

Example 8.6.16. The congruences x6 ≡ 1 and x7 ≡ 1 mod 43 have, respectively, 6
solutions and 7 solutions, but x5 ≡ 1 mod 43 only has one solution (x ≡ 1 mod 43),
because gcd(6, ϕ(43)) = 6, gcd(7, 42) = 7, but gcd(5, 42) = 1. Let us calculate the
solutions to each of these congruences using indices. Recall that in Example 8.6.5
we have calculated a table of indices in base 3:

a mod 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ind3(a) 42 27 1 12 25 28 35 39 2 10 30 13 32 20

a mod 43 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ind3(a) 26 24 38 29 19 37 36 15 16 40 8 17 3 5

a mod 43 29 30 31 32 33 34 35 36 37 38 39 40 41 42

ind3(a) 41 11 34 9 31 23 18 14 7 4 33 22 6 21

Now, taking indices on the congruence x6 ≡ 1 mod 43 we obtain

6 ind3(x) ≡ ind3(1) ≡ 42 ≡ 0 mod 42,

and therefore ind3(x) ≡ 0 mod 7, so that ind3(x) ≡ 7k mod 42, for 0 ≤ k ≤ 5. In
other words, ind3(x) ≡ 0, 7, 14, 21, 28, 35 mod 42, and these correspond to

x ≡ 1, 37, 36, 42, 6, 7 mod 43,

respectively. Notice that to find x knowing ind3(x), it is best to use the table of
powers of 3 (as it appears in Example 8.6.5). Similarly, x7 ≡ 1 mod 43 is equivalent
to 7 ind3(x) ≡ 0 mod 42, which means that ind3(x) ≡ 0 mod 6, and the solutions
satisfy ind3(x) ≡ 6j mod 42 for 0 ≤ j ≤ 6. These correspond to

x ≡ 1, 41, 4, 35, 16, 11, 21 mod 43.

Last, x5 ≡ 1 mod 43 translates to 5 ind3(x) ≡ 0 mod 42. Since gcd(5, 42) = 1,
this means that ind3(x) ≡ 0 mod 42, and there is a unique solution; namely, x ≡
1 mod 43.


