MA 541: Modern Algebra I / Fall 2019 Homework assignment #7 Due 11/5/2019

- (0) Read in F...
 - ...section 8, the part called "Cayley's Theorem";
 - ...section 9, the parts called "Even and Odd Permutations" and "The Alternating Groups";
 - ...section 10.
- (1) F exercise 9.23
- (2) F exercise 9.29
- (3) Use the proof of Cayley's Theorem (F Theorem 8.16) to realize the quaternion group Q_8 as subgroup of S_8 , as we did in class for \mathbb{Z}_4 and D_3 . (That is, list the elements of Q_8 and label them with indices 1...8. For each element of Q_8 , give the permutation in S_8 that corresponds to left translation by that element.)
- (4) Recall that $D_4 = \langle r, f : r^4 = f^2 = rfrf = 1 \rangle$.
 - (a) Find the left cosets of the subgroup $\langle f \rangle$ in D_4 . Find the rights cosets of $\langle f \rangle$ in D_4 . Are the two sets of cosets the same?
 - (b) Same question for the subgroup $\langle r^2 \rangle$ of D_4 .
- (5) **Right cosets:** Let G be a group, and $H \leq G$ a subgroup. Recall that for any $g \in G$, the set Hg is a *right coset* of H in G.
 - (a) Show that two right cosets of H in G either coincide or are disjoint.
 - (b) Show that the relation \sim_R on G given by $g \sim_R h$ if and only if $gh^{-1} \in H$ is an equivalence relation.
 - (c) Show that the equivalence class of $g \in G$ under the equivalence relation from (b) is the right coset Hg.
- (6) Let G be a group. For $a, b \in G$, we say that a is conjugate to b (or a is a conjugate of b) if there exists some $g \in G$ such that $a = gbg^{-1}$. The element a then is the result of conjugating b by g.

[Compare to problem 4(a) on the midterm: you essentially showed that for groups conjugation is a self-similarity (better known as an *automorphism*).]

- (a) Prove that if a is conjugate to b, then there exists some $h \in G$ such that $a = h^{-1}bh$.
- (b) Find the result of conjugating the element $(1 \ 7 \ 5 \ 2 \ 3)(4 \ 6)$ of S_7 by $(2 \ 4)$. Do you notice anything?
- (c) Find all the elements of S_3 that are conjugate to $(1 \ 2)$.
- (d) Find all the elements of A_4 that are conjugate to $(1 \ 2 \ 3)$.