MA 541: Modern Algebra I / Fall 2021 Homework assignment #3 Due Tuesday 10/5/21 before 5pm

(Edited 9/29/21 to add [mandatory non-challenge] problems (9) and (10), plus a small additional piece to problem (4). All edits in blue.)

Three ways to turn in your work on the due date: in class, before 5pm in the envelope hanging on MCS 127, or before 5pm emailed as an attachment to buma541f2021@gmail.com.

- If you handwrite your solutions, please try to turn in the original rather than email a scan; also, please staple or otherwise connect the pages of your work. Definitely write your name on the front page.
- If you email, please have the <u>filename</u> identify you, the homework number, and this course, in that order.
- Challenge problems: If you're able to, turn the challenge problems in separately (if it's too late for this assignment, that's ok). You may also turn in challenge problems later, after the deadline.
- (1) Recall that we defined \mathbb{Z}_m^{\times} as the subset of elements of \mathbb{Z}_m that have multiplicative inverses. We showed that \mathbb{Z}_m^{\times} is a group under multiplication modulo m.
 - (a) For m = 4, 5, 6, 7, 8, 9, 10, find and list all the elements of \mathbb{Z}_m^{\times} .
 - (b) For which *m* from part (1a) does \mathbb{Z}_m^{\times} has 4 elements? For each of these *m*, does \mathbb{Z}_m^{\times} have the same structure (that is, the same Cayley table, up to relabeling) as any of the groups listed in $\mathrm{HW}\#2(2)$? Which ones?
 - (c) Same question for those m from (1a) for which \mathbb{Z}_m^{\times} has order 6 and groups listed in $\mathrm{HW}\#_2(4)$.
- (2) A monoid (M, \circ) is a set M with an associative binary operation $\circ : M \times M \to M$ and an identity element.
 - (a) Let (M, \circ) be a monoid with identity element e. Show that the subset

 $M^{\circ} := \{x \in M : \text{ there exists } y \in M \text{ satisfying } x \circ y = y \circ x = e\}$

is a group under \circ .

- (b) In each part below, is (M, \circ) is a monoid? Explain why or why not. If (M, \circ) is a monoid, what is M° ?
 - (i) $(M, \circ) = (\mathbb{C}, \times)$
 - (ii) $(M, \circ) = (\mathbb{Q}_{\geq 0}, \times)$
 - (iii) $(M, \circ) = (\mathbb{Z}^+, \circ)$, where $a \circ b := a^b$
 - (iv) $(M, \circ) = (\mathbb{R}_{\leq 0}, +)$
 - (v) $(M, \circ) = (\mathbb{Z}_m, \times)$
 - (vi) $(M, \circ) = (M_2(\mathbb{R}), \times)$
 - (vii) Let S be a set, and let $\operatorname{Fun}(S)$ be the set of functions $f: S \to S$. Consider $(M, \circ) := (\operatorname{Fun}(S), \operatorname{composition}).$

[The notation M° is not standard.]

- (3) Let G be a group, and suppose that H and K are subgroups of G. Either prove or disprove with a counterexample each of the following.
 - (a) The intersection $H \cap K$ is a subgroup of G.
 - (b) The union $H \cup K$ is a subgroup of G.
 - (c) The set $HK = \{hk : h \in H, k \in K\}$ of pairwise products is a subgroup of G.

Do any of the false statements among the three above become true if we G assume that G is abelian? Explain.

- (4) Find all the subgroups of Q_8 , the quaternion group from HW#1(5). Explain why you've found them all. Arrange them in a subgroup diagram showing all the nested relationships. For each subgroup $H \subseteq Q_8$, determine whether H is cyclic and find all the generators of H if so.
- (5) Let G be a group. Define the set

$$Z(G) := \{ a \in G : xa = ax \text{ for all } x \in G \}.$$

(a) Show that Z(G) is a subgroup of G.

The subgroup Z(G) is called the *center* of G.

- (b) Find Z(G) for each of the following groups. Explain!
 - (i) $G = \mathbb{Z}$
 - (ii) $G = \operatorname{GL}_2(\mathbb{R})$
 - (iii) $G = \text{Symm}(\Delta)$, the symmetry group of an equilateral triangle
 - (iv) $G = \text{Symm}(\square)$, the symmetry group of a nonsquare rectangle
 - (v) $G = Q_8$, the quaternion group from HW#1(5)
- (6) Let G be a group and $H \subseteq G$ a subgroup. Define a relation \sim on G as follows:

$$a \sim b$$
 if $a^{-1}b \in H$.

- (a) Show that \sim is an equivalence relation on G.
- (b) What are the equivalence classes for \sim if $G = \mathbb{Z}$ and $H = 3\mathbb{Z}$?
- (c) What are the equivalence classes for ~ if $G = \text{Symm}(\Delta)$ and $H = \{1, \text{flip}(|)\}$?
- (d) Consider the relation \approx on G given by

$$a \approx b$$
 if $ab^{-1} \in H$.

Is \approx an equivalence relation? Explain. If it is, what are the equivalence classes for \approx in each of the cases (6b) and (6c)?

(7) William's original question (challenge problem): Suppose (G, \circ) is a set that we do not assume to be associative. Suppose further that G satisfies the "unique solution to linear equations property" from HW#2(5): for every $a, b \in G$, there exists a unique $x \in G$ satisfying $a \circ x = b$ and a unique $y \in G$ satisfying $y \circ a = b$. (We might alternatively call this the sudoku property. Why?) Must G be a group? Prove that it is or give a counterexample.

(8) Gausian integers (challenge problem): The Gaussian integers

$$Z[i] := \{a + bi : a, b \in \mathbb{Z}\}$$

is an additive subgroup of \mathbb{C} . Consider the relation \equiv_{1+2i} on $\mathbb{Z}[i]$, where for α, β in $\mathbb{Z}[i]$ we say that $\alpha \equiv_{1+2i} \beta$ if there exists a $\gamma \in \mathbb{Z}[i]$ so that $\alpha - \beta = (1+2i)\gamma$.

- (a) Show that \equiv_{1+2i} ("congruence modulo 1+2i") is an equivalence relation on $\mathbb{Z}[i]$.
- (b) Write $\mathbb{Z}[i]_{1+2i}$ for the set of equivalence classes of $\mathbb{Z}[i]$ under \equiv_{1+2i} . Is $\mathbb{Z}[i]_{1+2i}$ a finite or an infinite set? If it is finite, how many equivalence classes are there? List or describe them all, giving explicit representatives.

(Suggestion: plot $\mathbb{Z}[i]$ in the complex plane on graph paper, and then plot the multiples of 1 + 2i. What do the equivalence classes for \equiv_{1+2i} look like in your diagram? Sometimes it's helpful to consider the *norm* (square of the absolute value) of a Gaussian integer:

$$N(a+bi) := a^2 + b^2$$

as a way of keeping track of distance.)

- (c) Show that $\mathbb{Z}[i]_{1+2i}$ is an abelian group under addition. It has the same Cayley table as another group that we have studied. Explain!
- (9) Well-definition: Which of the following "wannabe"-functions on sets of equivalence classes are well defined, and hence actually functions? In each case, either prove well-definition or give a (counter)example that shows that this is not a true function. Below we denote an element of Z_m as [a]_m for clarity.
 - (a) $\mathbb{Q} \{1\} \longrightarrow \mathbb{Z}$ sending $\frac{a}{b}$ to $\frac{1}{a-b}$
 - (b) $\mathbb{Q} \{1\} \longrightarrow \mathbb{Z}$ sending $\frac{a}{b}$ to $\frac{a+b}{a-b}$.
 - (c) $\mathbb{Z}_{18} \to \mathbb{Z}_6$ sending $[a]_{18}$ to $[a]_6$
 - (d) $\mathbb{Z}_6 \to \mathbb{Z}_{18}$ sending $[a]_6$ to $[a]_{18}$
 - (e) $\mathbb{Z}_{35} \to \mathbb{Z}_{15}$ sending $[a]_{35}$ to $[9a]_{15}$
 - (f) $\mathbb{Z}_m^{\times} \to \mathbb{Z}_m^{\times}$ sending $[a]_m$ to $[b]_m$ where $b \in \mathbb{Z}$ is any number that satisfies $ab \equiv_m 1$
 - (g) $\mathbb{Z}_m \to \mathbb{T}$ sending $[a]_m$ to $e^{2\pi i a/m}$ (Recall that $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.)
- (10) (a) Find all the subgroups of \mathbb{Z}_{12} . For each subgroup $H \subseteq \mathbb{Z}_{12}$, list all the elements of H, determine whether H is cyclic, and find all the generators if so. Arrange the subgroups in a subgroup diagram.
 - (b) Same question for $\mathbb{Z}_3 \times \mathbb{Z}_4$.
 - (c) Same question for \mathbb{Z}_{13}^{\times} .
 - Any observations?