MA 541: Modern Algebra I / Fall 2021 Homework assignment #4 Due WEDNESDAY 10/13/21 before 5pm Due THURSDAY 10/14/21 before 12pm

Three ways to turn in your work on the due date: in class, before $\frac{5pm}{12pm}$ in the envelope hanging on MCS 127, or before $\frac{5pm}{12pm}$ emailed as an attachment to buma541f2021@gmail.com.

- If you handwrite your solutions, please try to turn in the original rather than email a scan; also, please <u>staple</u> or otherwise connect the pages of your work. Definitely write your name on the front page.
- If you email, please have the <u>filename</u> identify you, the homework number, and this course, in that order.
- Challenge problems: Please turn solutions to challenge problems in separately. You may also turn in challenge problems later, after the deadline on the main set.
- (1) Consider the set $\operatorname{GL}_2(\mathbb{Z}_2)$ of invertible 2×2 matrices with coefficients in \mathbb{Z}_2 . Convince yourself that this is a group under multiplication.
 - (a) List the elements of $GL_2(\mathbb{Z}_2)$. How many are there?
 - (b) Give the group table for $GL_2(\mathbb{Z}_2)$.
 - (c) Is there another group G that we have studied with the same Cayley table up to relabeling as $\operatorname{GL}_2(\mathbb{Z}_2)$? If so, construct an explicit isomorphism $f: G \to \operatorname{GL}_2(\mathbb{Z}_2)$.

(Recall that a map $f : G \to H$ between groups G and H is an *isomorphism* if f is both a *homomorphism* of groups — that is, f(xy) = f(x)f(y) for every $x, y \in G$ — and a bijection of sets.)

Groups G and H are said to be *isomorphic* if there exists an isomorphism $f : G \to H$. (Think about why being isomorphic is an equivalence relation on all groups!)

- (2) (a) Find a subgroup of \mathbb{Z}_{18} isomorphic to \mathbb{Z}_6 . Explain.
 - (b) Fix $m, n \ge 1$. Find a subgroup H of \mathbb{Z}_{mn} that is isomorphic to \mathbb{Z}_n and constructing an explicit isomorphism $f : \mathbb{Z}_n \to H$. (Don't forget to show that f is well defined!)
- (3) Use Bézout's lemma (Judson Theorem 2.10) to prove each of the following assertions. Suppose a, b are nonzero integers with gcd(a, b) = 1. Let $c \in \mathbb{Z}$ be arbitrary.
 - (a) If $a \mid bc$, then $a \mid c$.
 - (b) If $a \mid c$ and $b \mid c$, then $ab \mid c$.

Are either of the statements above still true without the assumption that gcd(a, b) = 1? Prove or disprove with a counterexample.

(4) Show that gcd(a, n) only depends on the equivalence class of a modulo n. In other words, show that the map $\mathbb{Z}_n \to \mathbb{Z}^+$ sending $[a]_n$ to gcd(a, n) is well-defined.

- (5) For each pair a, b below, use Euclid's algorithm to find gcd(a, b). Use your computations to find an integer solution (x, y) to ax + by = gcd(a, b). Then find a different integer solution.
 - (a) a = 562, b = 471(b) a = 165, b = 234
- (6) Challenge problem: Show that the relation

 $G \sim H$ if there exists an isomorphism $f: G \to H$

is an equivalence relation on all groups.

(7) **Division algorithm in** $\mathbb{Z}[i]$ (challenge problem): Show that the Gaussian integers $\mathbb{Z}[i]$ has a division algorithm: that is, for every $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$, there exist $q, r \in \mathbb{Z}[i]$ so that

a = bq + r

with r satisfying $0 \le N(r) < N(\beta)$.

Here the norm map, defined in HW #3 problem (8), is the function $N : \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$ given by $N(a + bi) = a^2 + b^2$. It might be helpful to show that the norm map is multiplicative.

(For ideas, you could start by reading the proof of division algorithm in \mathbb{Z} (Judson Theorem 2.9). Alternatively, you could try for a geometric argument by plotting the lattice of multiples of β in $\mathbb{Z}[i]$ and tracking how far α can be from a lattice point.)