MA 541: Modern Algebra I / Fall 2021 Homework assignment #6 Due Tuesday 11/9/21 before 5pm

Three ways to turn in your work on the due date: in class, before 5pm in the envelope hanging on MCS 127, or before 5pm emailed as an attachment to buma541f20210gmail.com.

- If you handwrite your solutions, please try to turn in the original rather than emailing a scan. Please staple or otherwise connect the pages of your work. Definitely write your name on the front page.
- If you email, please have the <u>filename</u> identify you, the homework number, and this course, in that order.
- Challenge problems: Please turn solutions to challenge problems in separately. You may also turn in challenge problems later, after the deadline on the main set.
- (1) Let $\sigma, \tau \in S_{15}$ be the permutations

$\sigma = \left[\right.$	1 13	$\frac{2}{2}$	$\frac{3}{15}$	4 14	$\begin{array}{c} 5\\ 10 \end{array}$	6 6	$\frac{7}{1}$	7 8 2 3	8 9 8 4	10 1	$\frac{11}{7}$	12 9	$\frac{13}{5}$	14 11	$\begin{bmatrix} 15\\8 \end{bmatrix},$
$\tau = \left[\right]$	1 14	$\frac{2}{9}$	$\frac{3}{10}$	$\frac{4}{2}$	$5\\12$	6	75	8 11	9 15	$\frac{10}{3}$	$\frac{11}{8}$	$\frac{12}{7}$	$\frac{13}{4}$	14 1	$\begin{bmatrix} 15\\ 13 \end{bmatrix}$.

Express each of the following in cycle notation: σ , τ , $\sigma\tau$, $\tau\sigma$, τ^{-1} , σ^{100} . Determine whether each of these six permutations is odd or even.

- (2) (a) How many elements in S_8 have cycle structure (5,3)? An element with cycle structure (5,3) is a product of two disjoint cycles, a 5-cycle and a 3-cycle. What is the order of such an element?
 - (b) How many elements in S_{15} have cycle structure (6, 5, 4)? An element with cycle structure (6, 5, 4) is a product of three disjoint cycles, a 6-cycle, a 5-cycle, and a 4-cycle. What is the order of such an element?
- (3) Let $f: G \to H$ be a homomorphism between two groups G and H with identity elements e_G and e_H , respectively.
 - (a) If A is a subgroup of G, show that f(A) is a subgroup of H. In particular, show that the image im f is a subgroup of H.

Recall that the *kernel* of f is the set of elements of G that map to the identity in H under f. That is, ker $f = f^{-1}(e_H) = \{g \in G : f(g) = e_H\}.$

- (b) If B is a subgroup of H, show that $f^{-1}(B)$ is a subgroup of G. In particular show that ker f is a subgroup of G.
- (c) Show that ker $f = \{e_G\}$ if and only if f is injective.

- (4) Subgroups of finite cyclic groups: Fix a positive integer m.
 - (a) Since every subgroup of a cyclic group is cyclic (Judson Theorem 4.10), we know that every subgroup of \mathbb{Z}_m has the form $a\mathbb{Z}_m$ for some integer a. What is the order of $a\mathbb{Z}_m$?
 - (b) How many elements of \mathbb{Z}_m have order d? Explain.
 - (c) Show that $\sum_{d|m} \varphi(d) = m$. (Here φ is the Euler phi function.)
 - (d) Show that \mathbb{Z}_m has a unique cyclic subgroup of order d for every $d \mid m$. Identify all the elements of \mathbb{Z}_m that generate this subgroup.
- (5) More on orders: Suppose that G is a group, and $a, b \in G$ are two commuting elements of finite order. Let $m = \operatorname{ord}(a)$ and $n = \operatorname{ord}(b)$.
 - (a) Show that the order of ab divides lcm(m, n).
 - (b) Show by example that $\operatorname{ord}(ab)$ may be strictly smaller than $\operatorname{lcm}(m, n)$.
 - (c) If gcd(m, n) = 1, prove that ord(ab) = mn.
 - (d) Prove that G always has an element of order lcm(m, n).
 - (e) Show by example that (5c) and (5d) need not be true if a and b do not commute.
- (6) (a) Suppose gcd(m, n) = 1. Show that the map

$$\mathbb{Z}_{mn}^{\times} o \mathbb{Z}_m^{\times} imes \mathbb{Z}_n^{ imes}$$

sending $[a]_{mn}$ to $([a]_m, [a]_n)$ is an isomorphism of groups. (Don't forget to show that this map is surjective. Come ask me for a hint if you're struggling.)

- (b) If gcd(m, n) = 1, show that $\varphi(mn) = \varphi(m)\varphi(n)$.
- (c) For a prime number p and an integer $r \ge 1$, compute $\varphi(p^r)$. Explain.
- (d) Can \mathbb{Z}_k^{\times} and $\mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$ ever be isomorphic except if m and n are relatively prime and k = mn? Give an example or explain that this is impossible.
- (7) Let G be a group, and $H \subseteq G$ a subgroup. For any element $a \in G$, write aH for the set of products $\{ah : h \in H\}$. This is a *left coset* of H in G.
 - (a) For $a \in G$, show that the map $H \to aH$ given by $h \mapsto ah$ is a bijection of sets.
 - (b) Show that aH = H if and only if $a \in H$.
 - (c) Show that aH = bH if and only if $a^{-1}b \in H$.

Now suppose that G is abelian, and finite of order n.

(d) Show that $a^n = 1$ for any $a \in G$. (*Hint:* Compare $\prod_{g \in G} g$ and $\prod_{g \in G} ag$.) Conclude that $\operatorname{ord}(a) \mid n$ for any $a \in G$.

(8) Challenge problem

- (a) We showed in class that a k-cycle in S_n can be expresses as a product of k-1 transpositions. Show that fewer than k-1 transpositions will never do.
- (b) More generally, suppose $\sigma \in S_n$ is a product of r cycles counting singletons more properly said, σ partitions $\{1, 2, \ldots, n\}$ into r orbits. Show that σ may be expressed as the product of n r transpositions, and no fewer will do.