MA 541: Modern Algebra I / Fall 2021 Homework assignment #7Due Thursday 11/18/2021 by 5pm

Three ways to turn in your work on the due date: in class, before 5pm in the envelope hanging on MCS 127, or before 5pm emailed as an attachment to buma541f2021@gmail.com.

- If you handwrite your solutions, please try to turn in the original rather than emailing a scan. Please staple or otherwise connect the pages of your work. Definitely write your name on the front page. Consider using a pen rather than a pencil.
- If you email, please have the filename identify you, the homework number, and this course, in that order.
- Challenge problems: Please turn solutions to challenge problems in separately. You may also turn in challenge problems later, after the deadline on the main set.
- (1) Cosets: For each of the following groups G and subgroups H, determine [G:H]. If there are finitely many (left) cosets, list them all. Can you think of a conceptual interpretation for each coset? If there are infinitely many cosets, describe them geometrically.

(a)
$$G = \mathbb{Q}^{\times}, H = \mathbb{Q}^{+}$$

(b)
$$G = \mathbb{Z}_{12}, H = 3\mathbb{Z}_{12}$$

- (c) $G = \mathbb{C}^{\times}, H = \mathbb{R}^+$
- (d) $G = \mathbb{C}^{\times}, H = \mathbb{T}$. (Recall that $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.)
- (e) $G = D_4$, $H = \langle f \rangle$. (Recall that $D_4 = \text{Symm}(\Box)$ and f = flip(|).)
- (f) $G = S_4, H = \text{Symm}(^3_4 \square^2_1)$
- (g) $G = \mathbb{R}^2, H = (1, 2)\mathbb{Z}$
- (2) If H and K are subgroups of a group G, then the set of products

$$HK = \{hk : h \in H, k \in K\}$$

need not be a subgroup of G (see (3c) on HW #3), but it IS a union of cosets of K. On the other hand, $H \cap K$ is a subgroup of H, so that H is a union of cosets of $H \cap K$. Show that there's a natural set bijection between sets of left cosets

$$HK/K \to H/H \cap K$$
 given by $hK \mapsto h(H \cap K)$.
Conclude that $|HK| = \frac{|H| |K|}{|H \cap K|}$.

(3) Let G be a group. For $a, b \in G$, we say that a is conjugate to b (or a is a a conjugate of b) if there exists some $q \in G$ such that $a = qbq^{-1}$. The element a then is the result of *conjugating b by q*.

Convince yourself that a is conjugate to b if and only if there exists some $h \in G$ so that $a = h^{-1}bh$ — or, in the notation (5b) from the midterm, if and only if there is an $h \in G$ so that $a = c_h(b)$.

- (a) Show that the relation "is conjugate to" is an equivalence relation on G. The equivalence class under the conjugation relation is called a *conjugacy class*.
- (b) Find the result of conjugating the element $(1\ 7\ 5\ 2\ 3)(4\ 6)$ of S_7 by $(2\ 4)$. Do you notice anything?
- (c) Find all the elements of S_3 that are conjugate to $(1\ 2\ 3)$. What do you think will happen if you do this for $(1\ 2\ 3)$ in S_4 ?
- (d) Find all the elements of A_4 that are conjugate to $(1\ 2\ 3)$.
- (e) Decompose D_4 into a union of conjugacy classes.

(4) Internal direct products of groups.

- (a) Suppose that G is a group and H and K are two subgroups of G satisfying the following three properties:
 - (i) Every element of H commutes with every element of K.
 - (ii) $H \cap K = \{1\}.$
 - (iii) HK = G.

Prove that the map $H \times K \to G$ sending (h, k) to hk is an isomorphism of groups.

- (b) Show that $\mathbb{C}^{\times} \cong \mathbb{R}^+ \times \mathbb{T}$.
- (5) **Dihedral groups:** For $n \ge 3$, let $D_n = \langle r, f \mid r^n = f^2 = 1, fr = r^{-1}f \rangle$ be the group of symmetries of a regular *n*-gon, as defined in class.
 - (a) Find $Z(D_n)$. It may be helpful to consider the cases of odd and even *n* separately. (Here Z(G) is the *center* of a group *G*, the set of elements of *G* that commute with every element of *G*, defined in (5) of HW #3.)
 - (b) Set n = 6. Show that $H = \langle r^2, f \rangle$ is a subgroup of D_6 isomorphic to D_3 . Give both an algebraic and a geometric explanation.
 - (c) Show that $D_6 \cong D_3 \times \mathbb{Z}_2$ by constructing an explicit isomorphism (and proving that it is one).
- (6) **Groups of order** 8: The goal of this problem is to show that every group of order 8 is isomorphic to exactly one of

 $\mathbb{Z}_8, \quad \mathbb{Z}_4 \times \mathbb{Z}_2, \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \quad D_4, \quad Q_8.$

Let G be a group of order 8. If G has an element of order 8, then G is cyclic and isomorphic to \mathbb{Z}_8 . So eliminate this case and assume that every element of G has order 1, 2, or 4.

- (a) If every element of G has order dividing 2, show that $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (b) Otherwise, let $a \in G$ have order 4. Let $H = \langle a \rangle$. Choose any $b \in G H$. Show that $G = H \cup Hb$.

- (c) If every $b \in G H$ has order 2, show that $G \cong D_4$.
- (d) Otherwise we can find $b \in G H$ of order 4. Prove that $a^2 = b^2$. (*Hint:* (2).)
- (e) To understand the multiplication structure on G completely, it remains to identify ba as an element of Hb. Show that either ba = ab or $ba = a^3b$.
- (f) Complete the proof!
- (7) \mathbb{Z}_p^{\times} is cyclic.
 - (a) Find all the roots of the polynomial $X^2 + 3X 4$ in \mathbb{Z}_{21} ? How many are there?
 - (b) Suppose G is a finite abelian group. Let M be the maximum of the orders of any of the elements of G. Prove that $g^M = 1$ for any element $g \in G$. (*Hint:* Use (5d) on HW #6.)
 - (c) Let p be prime. Assume the following statement from ring theory as a black box:

A polynomial of degree n has no more than n roots in \mathbb{Z}_p .

Use (7b) to show that the group \mathbb{Z}_p^{\times} is cyclic.

- (8) Optional challenge problem: Cyclicity of units mod odd prime powers: Now let p be an odd prime.
 - (a) Show that for every $n \ge 1$ the group $\mathbb{Z}_{p^n}^{\times}$ has an element of order p-1. (*Hint:* Start with an integer a that generates \mathbb{Z}_p^{\times} (see problem ??), and show that the order of a in $\mathbb{Z}_{p^n}^{\times}$ must be *divisible* by p-1.)
 - (b) Show that 1 + p has order p^{n-1} in $\mathbb{Z}_{p^n}^{\times}$. (*Hint:* for $b \in p\mathbb{Z}$ and $k \geq 1$, show that $1 + b \equiv 1$ modulo p^k if and only if $(1+b)^p \equiv 1$ modulo p^{k+1} .)
 - (c) Conclude that $\mathbb{Z}_{p^k}^{\times}$ is a cyclic group.

(9) Optional challenge problem: Which \mathbb{Z}_N^{\times} are cyclic?

- (a) Explain where your argument in (8) above fails for p = 2.
- (b) Show that $\mathbb{Z}_{2^k}^{\times}$ is never cyclic if $k \geq 3$.
- (c) Show that \mathbb{Z}_N^{\times} is cyclic if and only if N = 1, 2, 4, an odd prime power, or twice an odd prime power.