MA 541: Modern Algebra I / Fall 2021 Some problems that will appear on HW #8 (due 11/30/21) Full set coming Tuesday 23 November

Fixed typo in (1a) 11/23/21.

- (1) **Right-inverse translation action:** Let G be a group, and let $H \subseteq G$ a subgroup.
 - (a) Show that $h \cdot g = gh^{-1}$ defines a (left) action of H on G. G on H. Here $h \in H$ and $g \in G$.
 - (b) Is this action faithful? If not, what is the kernel of this action?

(Recall that the kernel of the action of a group G on a set X is the kernel of the associated homomorphism $G \to \text{Perm}(X)$. Equivalently (why?), the kernel of the action is the set $\{g \in G : g \cdot x = x \text{ for all } x \text{ in } X\}$.)

- (c) What are the orbits of the action? Is this action transitive?
- (d) What group theory fact does the orbit-stabilizer formula recover in this case?
- (2) Rotations of a cube: Let R be the group of rotational symmetries of a cube.
 - (a) Consider the action of R on the set of vertices of the cube. Convince yourself that this action is transitive. How big is the orbit? Describe the stabilizer of a vertex.
 - (b) Consider the action of R on the set of faces of the cube. Convince yourself that this action is transitive. How big is the orbit? Describe the stabilizer of a face.
 - (c) Consider the action of R on the set of edges of the cube. Convince yourself that this action is transitive. How big is the orbit? Describe the stabilizer of an edge.
 - (d) How many elements does R have? Explain.
 - (e) For the purposes of this question, let's call a line that connects the midpoint of a face of the cube to the midpoint of the opposite face a "face connector". Consider the action of R on the set of face connectors of the cube. Is this action transitive? What are the orbits? Is it faithful? If not, what is the kernel of this action?

(3) Fibers of group homomorphisms.

(A fiber of a homomorphism is the preimage of a single element of the codomain.)

- (a) Consider the homomorphism $f : \mathbb{R} \to \mathbb{T}$ given by $f(x) = e^{2\pi i x}$.
 - (i) What is ker f?
 - (ii) What is $f^{-1}(-1)$? What is the relationship of this set to ker f?
 - (iii) Same question for $f^{-1}(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)$.

(b) Let D_6 and D_3 be the dihedral groups of order 12 and 6, respectively, as usual. Set notation as follows:

$$D_6 = \langle r_6, f_6 \mid r_6^6 = f_6^2 = (r_6 f_6)^2 = 1 \rangle;$$

$$D_3 = \langle r_3, f_3 \mid r_3^3 = f_3^2 = (r_3 f_3)^2 = 1 \rangle.$$

- (i) Show that there is a homomorphism $\phi: D_6 \to D_3$ that sends r_6 to r_3 and f_6 to f_3 .
- (ii) What is ker ϕ ?
- (iii) For every element g of D_3 , compute $\phi^{-1}(g)$. Describe this partitioning of D_6 with reference to ker ϕ .

(4) Quotients of abelian groups.

Let G be an abelian group, and let $H \subseteq G$ be a subgroup. Let aH and bH be two cosets of H in G.

- (a) Show that the set of all inverses of elements of aH is a coset of H in its own right. Which coset is it?
- (b) Show that the set of all pairwise products $aHbH = \{xy : x \in aH, y \in bH\}$ forms a coset of H in G in its own right. Which coset is it?
- (c) Show that the set of cosets G/H forms a group under the operation defined in (4b). What is its identity element?

Now describe the group G/H as precisely as you can for each case below. (Try to identify G/H as a group we've already studied.)

- (d) $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$
- (e) $G = \mathbb{R}^2$ and $H = (1, 2)\mathbb{R}$
- (f) $G = \mathbb{Z}_{18}$ and $H = 3\mathbb{Z}_{18}$
- (g) $G = \mathbb{R}$ and $H = \mathbb{Z}$