
MA 541: Modern Algebra I / Fall 2021
Some additional problems on the Sylow theorems

This set showcases some aspects of Sylow theory, including a proof of the Sylow theorems.
Feel free to stop by MCS 127 next semester to chat about any of these!

First we recall the statements of the Sylow theorems. Fix a prime p. Recall that a finite
p-group is a (nontrivial) group of p-power order, and a p-subgroup of a group is a subgroup
that is a p-group.

Now let G be a finite group whose cardinality is divisible by p, and write |G| = pkm, where
m is prime to p. A subgroup P of G is called a p-Sylow subgroup, or sometimes Sylow p-
subgroup, if |P | = pk: that is, P is a maximal p-subgroup of G. Let Sylp(G) denote the set

of p-Sylow subgroups of G, and let np :=
∣∣Sylp(G)

∣∣. In class we stated and used the Sylow
theorems, proved by Norwegian mathematician Ludwig Sylow in 1872.

Theorem (Sylow).

(I) G has p-Sylow subgroups.
Moreover, any p-subgroup of G is contained in a p-Sylow subgroup.

(II) All the p-Sylow subgroups of G are conjugate.

(III) The number np of p-Sylow subgroups of G satisfies

np | m and np ≡ 1 (mod p).

Moreover, if P is any p-Sylow of G, then np = [G : N(P )], where N(P ) is the
normalizer of P .

(1) The search for simple groups: Use the Sylow theorems and the various lemmas
from class to show that the only simple groups of order n with 30 < n < 60 are the
cyclic groups of prime order.

For even more fun, do the same also for 60 < n < 168 !

The next two problems use the Sylow theorems to classify the groups of order 12.

(2) Direct and semidirect products of Sylow subgroups. Suppose G is a finite
group with |G| = pkq` for two primes p, q and k, ` ≥ 1. Let P be a p-Sylow subgroup
of G and Q a q-Sylow subgroup of G.

(a) Show that G = PQ and that P ∩Q = {1}.
(b) Show that if both P and Q are normal in G, then G ∼= P ×Q.

How does this statement generalize to if |G| is divisible by n distinct primes?

Now suppose further that P is normal in G.

(c) Show that Q acts on P by conjugation. Moreover, show that the action of each
q ∈ Q on P is an automorphism of P , not just a permutation, so that the action
gives us a homomorphism P → Aut(Q).

(d) Show that the homomorphism P → Aut(Q) from (2c) determines how elements
of P commute with elements of Q and hence determines the structure of G
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completely. In this case we say that G is the semidirect product of P with Q,
written G ∼= P oQ.

(e) Show that if the homomorphism P → Aut(Q) has trivial image, then Q is also
normal in G (and therefore G ∼= P ×Q).

(3) Groups of order 12: Let G be a group of order 12. Let P2 be a 2-Sylow and P3 a
3-Sylow of G.

(a) Show that n2 is either 1 or 3, and P2 is isomorphic either to Z4 or to the Klein-4
group V4.

(b) Show that n3 is either 1 or 4, and P3 is isomorphic to Z3.

(c) Show that n2 = 3 and n3 = 4 cannot happen simultaneously.

(d) Use (2b) to identify G in the case that n2 = n3 = 1. These are familiar groups.

(e) Suppose n3 = 4 and P2
∼= V4. Show that up to isomorphisms there is only one

nontrivial map Z3 → Aut(V4). Use (2d) to identify G in this case — this is a
group we have studied at a lot.

(f) Show that the case n3 = 4 and P2
∼= Z4 is impossible because there are no

nontrivial maps Z3 → Aut(Z4). Use (2e).

(g) Suppose n2 = 3 and P2
∼= V4. Show that up to isomorphisms there is only one

nontrivial map V4 → Aut(Z3). Use (2d) to Identify G in this case — this is also
a group we have studied.

(h) Finally, suppose n2 = 3 and P2
∼= Z4. Show that up to isomorphism there is

only one nontrival map Z4 → Aut(Z3). This map determines G as in (2d). This
group is new.

For what other n can you classify all groups of order n by playing similar games? For
example, you can certainly do this for n = pq, where p and q are distinct primes — see the
extra problem on the final assignment.

Finally, the next four problem will take you through the proofs of the Sylow theorems.
You will repeatedly use the following lemma from class.

Lemma. If G is a finite p-group acting on a finite set X, then

|X| ≡ |{fixed points of X under action of G}| (mod p).

(4) Normalizer subgroups: Let G be any group and H ⊆ G a subgroup.

(a) For g ∈ G, let gHg−1 := {gxg−1 : x ∈ H}. Show that gHg−1 is a subgroup of G,
and that the conjugation map

ig : H → gHg−1

x 7→ gxg−1

is an isomorphism of groups.
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(b) The group gHg−1 is a subgroup of G conjugate to H. Show that “is conjugate
to” is an equivalence relation on subgroups of G.

(c) If gHg−1 = H (as sets and as subgroups), then we say that g normalizes H.
Show that the set N(H) of elements g ∈ G that normalize H is a subgroup of G
containing H as a normal subgroup (that is, H E N(H).) This subgroup N(H)
is the normalizer of H.

(d) Show that any subgroup of G containing H as a normal subgroup is contained
in N(H). That is, N(H) is the biggest subgroup of G containing H as a normal
subgroup.

(e) Consider the action of G on its subgroups by conjugation. Show that the number
of subgroups of G conjugate to H is the index [G : N(H)] of the normalizer of
H whenever either of these quantities is finite.

(5) First Sylow theorem. Recall that k ≥ 1 is the largest power of p that divides |G|.
(a) First, suppose k = 1. Show that p-Sylow subgroups of G exist.

Now suppose k ≥ 2. Suppose H ⊆ G is a subgroup of cardinality pr for some 1 ≤ r < k.

(b) Consider the action of H on the cosets G/H by left translation. Show that the
fixed points of this action are exactly the cosets represented by N(H): that is,
N(H)/H.

(c) Prove that the index [N(H) : H] is divisible by p.

(d) Prove that G contains a subgroup K that normalizes H with (K : H) = p. That

is, we have N(H) ⊇ K
p

) H. What is the order of K?

Finally, put everything together.

(e) Use induction on k to show that any p-subgroup of G is contained in a p-Sylow
subgroup of G to prove Sylow I.

(6) Second Sylow theorem. Let P and Q be two p-Sylows, and consider the action of
P on the cosets G/Q by left translation.

(a) Suppose gQ is a fixed point of this action. Show that P = gQg−1.

(b) Show that this action has a fixed point to prove Sylow II.

(7) Third Sylow theorem. Let P be a p-Sylow subgroup of G. Recall that |G| = pkm,
where p does not divide m.

(a) Use (4) to show that np = [G : N(P )] and that np | m.

Now consider the action of P on Sylp(G) by conjugation.

(b) Suppose that we can show that this action has only one fixed point. Show that
this implies that np ≡ 1 (mod p), the key part of Sylow III.

(c) Show that P viewed as an element of Sylp(G) is a fixed point of this action.
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(d) Let Q ∈ Sylp(G) be a fixed point of this action. Show that P ⊆ N(Q).

(e) Show that P and Q are conjugate by an element of N(Q).
(Hint: Apply Sylow II to N(Q).)


