MA 541: Modern Algebra I / Fall 2021 Some additional problems on the Sylow theorems

This set showcases some aspects of Sylow theory, including a proof of the Sylow theorems. Feel free to stop by MCS 127 next semester to chat about any of these!

First we recall the statements of the Sylow theorems. Fix a prime p. Recall that a finite p-group is a (nontrivial) group of p-power order, and a p-subgroup of a group is a subgroup that is a p-group.

Now let G be a finite group whose cardinality is divisible by p, and write $|G| = p^k m$, where m is prime to p. A subgroup P of G is called a p-Sylow subgroup, or sometimes Sylow p-subgroup, if $|P| = p^k$: that is, P is a maximal p-subgroup of G. Let $Syl_p(G)$ denote the set of p-Sylow subgroups of G, and let $n_p := |Syl_p(G)|$. In class we stated and used the Sylow theorems, proved by Norwegian mathematician Ludwig Sylow in 1872.

Theorem (Sylow).

- (I) G has p-Sylow subgroups. Moreover, any p-subgroup of G is contained in a p-Sylow subgroup.
- (II) All the p-Sylow subgroups of G are conjugate.
- (III) The number n_p of p-Sylow subgroups of G satisfies

 $n_p \mid m$ and $n_p \equiv 1 \pmod{p}$.

Moreover, if P is any p-Sylow of G, then $n_p = [G : N(P)]$, where N(P) is the normalizer of P.

(1) The search for simple groups: Use the Sylow theorems and the various lemmas from class to show that the only simple groups of order n with 30 < n < 60 are the cyclic groups of prime order.

For even more fun, do the same also for 60 < n < 168 !

The next two problems use the Sylow theorems to classify the groups of order 12.

- (2) Direct and semidirect products of Sylow subgroups. Suppose G is a finite group with $|G| = p^k q^{\ell}$ for two primes p, q and $k, \ell \ge 1$. Let P be a p-Sylow subgroup of G and Q a q-Sylow subgroup of G.
 - (a) Show that G = PQ and that $P \cap Q = \{1\}$.
 - (b) Show that if both P and Q are normal in G, then $G \cong P \times Q$. How does this statement generalize to if |G| is divisible by n distinct primes?

Now suppose further that P is normal in G.

- (c) Show that Q acts on P by conjugation. Moreover, show that the action of each $q \in Q$ on P is an *automorphism* of P, not just a permutation, so that the action gives us a homomorphism $P \to \operatorname{Aut}(Q)$.
- (d) Show that the homomorphism $P \to \operatorname{Aut}(Q)$ from (2c) determines how elements of P commute with elements of Q and hence determines the structure of G

completely. In this case we say that G is the *semidirect product* of P with Q, written $G \cong P \rtimes Q$.

- (e) Show that if the homomorphism $P \to \operatorname{Aut}(Q)$ has trivial image, then Q is also normal in G (and therefore $G \cong P \times Q$).
- (3) Groups of order 12: Let G be a group of order 12. Let P_2 be a 2-Sylow and P_3 a 3-Sylow of G.
 - (a) Show that n_2 is either 1 or 3, and P_2 is isomorphic either to \mathbb{Z}_4 or to the Klein-4 group V_4 .
 - (b) Show that n_3 is either 1 or 4, and P_3 is isomorphic to \mathbb{Z}_3 .
 - (c) Show that $n_2 = 3$ and $n_3 = 4$ cannot happen simultaneously.
 - (d) Use (2b) to identify G in the case that $n_2 = n_3 = 1$. These are familiar groups.
 - (e) Suppose $n_3 = 4$ and $P_2 \cong V_4$. Show that up to isomorphisms there is only one nontrivial map $\mathbb{Z}_3 \to \operatorname{Aut}(V_4)$. Use (2d) to identify G in this case this is a group we have studied at a lot.
 - (f) Show that the case $n_3 = 4$ and $P_2 \cong \mathbb{Z}_4$ is impossible because there are no nontrivial maps $\mathbb{Z}_3 \to \operatorname{Aut}(\mathbb{Z}_4)$. Use (2e).
 - (g) Suppose $n_2 = 3$ and $P_2 \cong V_4$. Show that up to isomorphisms there is only one nontrivial map $V_4 \to \operatorname{Aut}(\mathbb{Z}_3)$. Use (2d) to Identify G in this case this is also a group we have studied.
 - (h) Finally, suppose $n_2 = 3$ and $P_2 \cong \mathbb{Z}_4$. Show that up to isomorphism there is only one nontrival map $\mathbb{Z}_4 \to \operatorname{Aut}(\mathbb{Z}_3)$. This map determines G as in (2d). This group is new.

For what other n can you classify all groups of order n by playing similar games? For example, you can certainly do this for n = pq, where p and q are distinct primes — see the extra problem on the final assignment.

Finally, the next four problem will take you through the proofs of the **Sylow theorems**. You will repeatedly use the following lemma from class.

Lemma. If G is a finite p-group acting on a finite set X, then

- $|X| \equiv |\{ fixed points of X under action of G\}| \pmod{p}.$
- (4) Normalizer subgroups: Let G be any group and $H \subseteq G$ a subgroup.
 - (a) For $g \in G$, let $gHg^{-1} := \{gxg^{-1} : x \in H\}$. Show that gHg^{-1} is a subgroup of G, and that the conjugation map

$$i_g: H \to gHg^{-1}$$

 $x \mapsto gxg^{-1}$

is an isomorphism of groups.

- (b) The group gHg^{-1} is a subgroup of *G* conjugate to *H*. Show that "is conjugate to" is an equivalence relation on subgroups of *G*.
- (c) If $gHg^{-1} = H$ (as sets and as subgroups), then we say that g normalizes H. Show that the set N(H) of elements $g \in G$ that normalize H is a subgroup of G containing H as a normal subgroup (that is, $H \leq N(H)$.) This subgroup N(H) is the normalizer of H.
- (d) Show that any subgroup of G containing H as a normal subgroup is contained in N(H). That is, N(H) is the biggest subgroup of G containing H as a normal subgroup.
- (e) Consider the action of G on its subgroups by conjugation. Show that the number of subgroups of G conjugate to H is the index [G : N(H)] of the normalizer of H whenever either of these quantities is finite.
- (5) First Sylow theorem. Recall that $k \ge 1$ is the largest power of p that divides |G|.
 - (a) First, suppose k = 1. Show that p-Sylow subgroups of G exist.
 - Now suppose $k \ge 2$. Suppose $H \subseteq G$ is a subgroup of cardinality p^r for some $1 \le r < k$.
 - (b) Consider the action of H on the cosets G/H by left translation. Show that the fixed points of this action are exactly the cosets represented by N(H): that is, N(H)/H.
 - (c) Prove that the index [N(H) : H] is divisible by p.
 - (d) Prove that G contains a subgroup K that normalizes H with (K : H) = p. That is, we have $N(H) \supseteq K \stackrel{p}{\supseteq} H$. What is the order of K?

Finally, put everything together.

- (e) Use induction on k to show that any p-subgroup of G is contained in a p-Sylow subgroup of G to prove Sylow I.
- (6) Second Sylow theorem. Let P and Q be two p-Sylows, and consider the action of P on the cosets G/Q by left translation.
 - (a) Suppose gQ is a fixed point of this action. Show that $P = gQg^{-1}$.
 - (b) Show that this action has a fixed point to prove Sylow II.
- (7) Third Sylow theorem. Let P be a p-Sylow subgroup of G. Recall that $|G| = p^k m$, where p does not divide m.
 - (a) Use (4) to show that $n_p = [G : N(P)]$ and that $n_p \mid m$.

Now consider the action of P on $Syl_p(G)$ by conjugation.

- (b) Suppose that we can show that this action has only one fixed point. Show that this implies that $n_p \equiv 1 \pmod{p}$, the key part of Sylow III.
- (c) Show that P viewed as an element of $Syl_p(G)$ is a fixed point of this action.

- (d) Let $Q \in \text{Syl}_p(G)$ be a fixed point of this action. Show that $P \subseteq N(Q)$.
- (e) Show that P and Q are conjugate by an element of N(Q). (*Hint*: Apply Sylow II to N(Q).)