MA 542: Modern Algebra II / Spring 2023 Homework assignment #2 Due Friday 2/10/23 Monday 2/13/23 in class

Final version [Edit 12 Feb 23: minor typo in (13). Also hint added.]

Make sure to read BB through section 4.3.

Exercises from BB:

- (1) 4.1.2
- (2) 4.1.5(b)(d)
- (3) 4.1.6
- (4) 4.1.7

(Suggestion: Prove that if r and s are orders of elements in an abelian group, then so is $\operatorname{lcm}[r, s]$. If m is the maximal order of any element of \mathbb{Z}_p^{\times} , what can you say about $x^m - 1$?)

- (5) 4.1.16. Have you seen this field before?
- (6) 4.2.2(a,b,c)
- (7) 4.2.5(d) and 4.2.7(d)

Additional exercises:

- (8) Show that $x^2 + x + 1$ is irreducible in $\mathbb{R}[x]$, so that $F := \mathbb{R}[x]/(x^2 + x + 1)$ is a field. Is F isomorphic to \mathbb{C} ? Either find an isomorphism or show that none exists.
- (9) List all irreducible polynomials of degree 2 in \mathbb{Z}_3 . Construct a finite field with 9 elements.
- (10) Construct a finite field with 16 elements.
- (11) Let $F := \mathbb{Z}_5[x]/(x^2+2)$. Show that F is a field. Let α be the image of x in F. What is the order of α in F^{\times} ?
- (12) Let F be a finite field of size q. Show that $\alpha^q = \alpha$ for all $\alpha \in F$.
- (13) Prove that any finite subgroup of C[×] is cyclic.
 (*Hint:* Can you use the same methods as for (4)?)
- (14) (a) Factor $y^3 y$ in $\mathbb{Z}_3[y]$ into irreducibles.
 - (b) Factor $y^5 y$ in $\mathbb{Z}_5[y]$ into irreducibles.
 - (c) Factor $y^4 y$ in F[y], where $F = \mathbb{Z}_2[x]/(x^2 + x + 1)$ is a field of order 4, into irreducibles.