MA 542: Modern Algebra II / Spring 2023 Homework assignment #3 #4 Due Friday 3/17/23.

Final version [Typo in (14a) corrected.]

- (0) Read BB sections 5.2, 5.3, and 5.4.
- (1) (a) (Review from MA 541.) Show that a homomorphism $f : R \to S$ of abelian groups is injective if and only if ker $f = \{0\}$. In particular, this is true if R and S are rings.
 - (b) If F is a field, S is a nonzero ring, and $f: F \to S$ is a ring homomorphism, show that f is automatically injective.

(In what form does this problem appear on HW #3?)

Sum, product, and intersection of ideals

- (2) (a) 5.3.8
 - (b) For $n, m \in \mathbb{Z}$, compute $(n\mathbb{Z}) \cap (m\mathbb{Z})$.
- (3) 5.3.16
- (4) 5.3.19

More rings, ideals, homomorphisms, quotient rings from BB.

- (5) 5.2.11
- (6) 5.3.5
- (7) 5.3.6
- (8) 5.3.12
- (9) 5.3.13
- (10) 5.3.14
- (11) 5.3.15
- (12) 5.3.17
- (13) (a) 5.3.22(a)
 - (b) 5.3.22(b)
 - (c) Is the ideal *I* of 5.3.22 principal? (Find a generator if so.) Is it prime? Is it maximal?

More exercises

- (14) Let $f: A \to B$ be a ring homomorphism. Fix an ideal \mathfrak{a} of A and an ideal \mathfrak{b} of B.
 - (a) Prove that $f^{-1}(\mathfrak{b})$ is an ideal of $A \mathfrak{a}$.
 - (b) Let $A = \mathbb{Z}$ and $B = \mathbb{Z}_6$ and f is the reduction-mod-6 map. List the ideals of B and their preimages in A.

- (c) Prove that f induces an injective ring homomorphism $\tilde{f}: A/f^{-1}(\mathfrak{b}) \to B/\mathfrak{b}$.
- (d) Is $f(\mathfrak{a})$ always an ideal of B? Either prove that it is or find a counterexample.
- (15) Continuing the notation from (14)...
 - (a) If \mathfrak{b} is a prime ideal of B, prove that $f^{-1}(\mathfrak{b})$ is a prime ideal of A.
 - (b) If \mathfrak{b} is a maximal ideal of B, must $f^{-1}(\mathfrak{b})$ be a maximal ideal of A? Either prove that this is always so or find a counterexample.

Added 5 March 2023

More from BB.

- (16) 5.3.26
- (17) 5.3.29
- (18) 5.3.31

Note: $R \oplus S$ is BB's notation for the product $R \times S$ of rings.

- (19) 5.3.32
- (20) 5.4.4

These next few problems are optional. If you have time, do think about them — but there's no need to write anything up.

- (21) 5.3.24
- (22) (a) 5.3.27

(b) What is the characteristic of $\mathbb{Z}[i]/\langle 1+2i\rangle$?

- (23) 5.3.28
- (24) 5.4.6
- (25) 5.4.10
- (26) In class on 3/3 we proved Theorem 5.3.10: if p is a nonzero prime ideal in a PID then p is maximal. Where in the proof (same proof as in the book) did we use that p was nonzero?

Optional challenge problems — these go a little further.

- (27) Let $A = \mathbb{Z}/n\mathbb{Z}$ for some $n \ge 1$. Show that the following are equivalent for $a, b \in A$.
 - (a) a and b are associates in A.
 - (b) a and b are generators of the same ideal of A
 - (c) gcd(a, n) = gcd(b, n)
 - (d) There exists $u \in A^{\times}$ with a = ub.
- (28) Nonzero prime ideals of a PID are maximal: alternate argument pathway

Let A be a commutative ring. A nonzero, nonunit $\pi \in A$ is called *prime* if, whenever $\pi \mid ab$ for $a, b \in A$, we have $\pi \mid a$ or $\pi \mid b$. Recall also that a nonzero, nonunit $\pi \in A$ is *irreducible* if any factorization of π involves units. (So the integers that we call *prime* in \mathbb{Z} are *irreducible* by definition, and *prime* by the Fundamental Lemma (Lemma 1.2.5 in BB).)

(a) Show that a nonzero principal ideal $\langle a \rangle$ of A is prime if and only if a is a prime element.

(b) Show that a nonzero principal ideal $\langle a \rangle$ of A is maximal among principal ideals if and only if a is irreducible.

(An ideal $\langle a \rangle$ of A is maximal among principal ideals if $\langle a \rangle \neq A$ and no principal ideal sits properly between $\langle a \rangle$ and A: that is, if $\langle a \rangle \subseteq \langle b \rangle \subseteq A$ for some $b \in A$, then either $\langle a \rangle = \langle b \rangle$ or $\langle b \rangle = A$.)

- (c) Show that every prime element is irreducible.
- (d) Give an example to show irreducible elements need not be prime. (Suggestion: Use the equation $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$; the multiplicative norm $N(a + b\sqrt{-5}) = a^2 + 5b^2$ may be helpful.)
- (e) If A is a PID, show that irreducible elements are always prime.(Can you find more than one argument?)
- (f) Give another proof that every nonzero prime ideal is maximal in a PID.