MA 542: Modern Algebra II / Spring 2023 Homework assignment #6 Due Friday 4/14/23

Final version. Edited 4/8/23 to fix typo in (4b). Edited 4/10/23 to give an option of simplifying (15).

(1) For each finite simple field extension $L = K(\alpha)$ over K below, find the minimial polynomial m(x) of α over K and determine how m(x) factors in L[x]. Use this factorization to find the number of automorphisms in Aut(L/K).

Can you determine the group structure of $\operatorname{Aut}(L/K)$?

- (a) $K = \mathbb{Q}, \ \alpha = \sqrt[6]{108}$
- (b) $K = \mathbb{F}_5$, α is a root of $y^2 + 2y + 3$ in $\mathbb{F}_5[y]$
- (c) $K = \mathbb{F}_2$, α is a root of $y^3 + y + 1$ in $\mathbb{F}_2[y]$ (Problem (13) on HW #3 may be helpful.)
- (d) $K = \mathbb{Q}(t), \ \alpha = t^{1/4}$
- (e) $K = \mathbb{Q}(i, t), \ \alpha = t^{1/4}$
- (f) $K = \mathbb{F}_5(t), \, \alpha = t^{1/3}$
- (g) $K = \mathbb{F}_7(t), \, \alpha = t^{1/3}$

Refresher on finite groups: Write up solutions to *at least three* of the problems (2)-(6). You do not need to write up solutions to all five, but you're responsible for understanding this material; come ask me if you get stuck. A lot of this material appears in BB 3.5 and 3.6.

Recall (or learn) that a *subgroup diagram* for a finite group G is a visual representation of the lattice of subgroups of G, where G is at the top, the trivial subgroup is at the bottom, and we connect subgroups with lines to indicate containment. See BB Examples 3.5.1, 3.5.2, 3.6.4, 3.6.5.

- (2) The cyclic group \mathbb{Z}_n is the additive group of the ring \mathbb{Z}_n .
 - (a) Prove that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$ if and only if gcd(m, n) = 1.
 - (b) Make a subgroup diagram for \mathbb{Z}_6 and \mathbb{Z}_{18} .
- (3) The multiplicative groups \mathbb{Z}_n^{\times} is a finite abelian group with $\phi(n)$ elements. If n is prime then \mathbb{Z}_n^{\times} is always cyclic.
 - (a) Prove that $\mathbb{Z}_{mn}^{\times} \cong \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$ if and only if gcd(m, n) = 1.
 - (b) Make a subgroup diagram for \mathbb{Z}_{15}^{\times} and \mathbb{Z}_{25}^{\times} .
 - (c) **Optional challenge problem:** When is \mathbb{Z}_n^{\times} cyclic? See problems (3) and (4) on https://math.bu.edu/people/medved/Teach/541F2019/541F2019_Cyclicity.pdf.
- (4) The symmetric group S_n is the group of order n! of permutations of the indices $\{1, 2, \ldots, n\}$. To keep track of elements of S_n , we typically use cycle notation, which is described in Theorem 2.3.5 and Examples 2.3.6 and 2.3.7.
 - (a) Make a subgroup diagram for S_3 . (Use cycle notation.)
 - (b) Prove that $H := \{e, (12)(34), (13)(24), (14)(24)(14)(23)\}$ is a normal subgroup of S_4 . Describe the quotient group S_4/H .

(c) **Optional challenge problem:** Show that the group of rotational symmetries of a cube is isomorphic to S_4 .

(*Hint:* Show that permuting the four diagonals of the cube gives an injective map $Rot(Cube) \hookrightarrow Symm(diagonals) \simeq S_4$.)

(5) For $n \ge 2$, the alternating group A_n is the index-2 subgroup of S_n of even permutations of the indices $\{1, 2, \ldots, n\}$.

A permutation $\sigma \in S_n$ is *even* if it can be expressed as a product of an even number of *transpositions* (permutations of the form (a b) for indices $a \neq b$); otherwise it is *odd*. It is a theorem that the map sgn : $S_n \to \{\pm 1\}$ mapping σ to $\operatorname{sgn}(\sigma) := (-1)^k$ if $\sigma = \tau_1 \dots \tau_k$, where τ_i are transpositions, is well defined. See Proposition 2.3.10 and Theorem 2.3.11.

- (a) Make a subgroup diagram for A_4 .
- (b) Show that H from (4b) is a normal subgroup of A_4 . Give the three cosets of H in A_4 . What is the structure of A_4/H ?
- (c) Show that the group of rotational symmetries of a regular tetrahedron is isomorphic to A_4 . (*Hint:* Consider the action on the four vertices.)

For $n \geq 5$ one can show that A_n is *simple* (that is, has no nontrivial proper normal subgroups): see Theorem 7.7.4. As a corollary, the group S_n is not *solvable* (Definition 7.6.1) if $n \geq 5$.

(6) The dihedral group D_n is the group of symmetries of a regular *n*-gon in the plane. The group D_n has 2n elements consisting of an index-2 cyclic subgroup of rotations

$$\langle r \rangle = \{1, r, \cdots, r^{n-1}\},\$$

where r is the rotation in the plane by $360^{\circ}/n$ counterclockwise (to fix ideas); and n order-2 flips, about axes of symmetry connecting vertices of the n-gon to midpoints of opposite sides (if n is odd) or vertices to opposite vertices and midpoints of opposite sides to each other (if n is even). If f is any such flip, one can show that $D_n = \{1, r, \ldots, r^{n-1}, f, fr, \ldots, fr^{n-1}\}$.

See Example 3.6.1 for a detailed analysis of $D_4 \simeq \text{Symm}({}_4^3 \square_1^2) \subseteq S_4$; and Example 3.6.3 for D_n more generally (with *a* for a rotation by $360^\circ/n$ and *b* for a flip).

- (a) Construct an explicit isomorphism to show that $D_3 \simeq S_3$.
- (b) BB 3.6.20

Added 7 April 2023 Read BB sections 6.4, 6.5, and 8.2.

- (7) BB 6.4.1(b)(d), 6.4.2(a)(d)
- (8) BB 6.4.7
- (9) BB 6.4.11
- (10) BB 6.4.15
- (11) BB 6.5.5
- (12) BB 6.5.8
- (13) BB 6.5.9
- (14) BB 6.5.11

- (15) BB 8.2.1. The *Galois group* of the irreducible polynomial p(x) of K[x] is the group we've been denoting $\operatorname{Aut}(L/K)$ for L is a splitting field for p(x). Feel free to assume that $K = \mathbb{F}_p$.
- (16) BB 8.2.5

Additional problems: solve these, but no need to write up or turn in.

- BB 6.4.6
- BB 6.4.14
- BB 6.5.3
- BB 6.5.10
- BB 8.2.2
- BB 8.2.3
- BB 8.2.6
- BB 8.2.7
- BB 8.2.10