MA 542: Modern Algebra II / Spring 2023
 Homework assignment \#6
 Due Friday 4/14/23

Final version.
Edited 4/8/23 to fix typo in (4b).
Edited 4/10/23 to give an option of simplifying (15) .
(1) For each finite simple field extension $L=K(\alpha)$ over K below, find the minimial polynomial $m(x)$ of α over K and determine how $m(x)$ factors in $L[x]$. Use this factorization to find the number of automorphisms in $\operatorname{Aut}(L / K)$.
Can you determine the group structure of $\operatorname{Aut}(L / K)$?
(a) $K=\mathbb{Q}, \alpha=\sqrt[6]{108}$
(b) $K=\mathbb{F}_{5}, \alpha$ is a root of $y^{2}+2 y+3$ in $\mathbb{F}_{5}[y]$
(c) $K=\mathbb{F}_{2}, \alpha$ is a root of $y^{3}+y+1$ in $\mathbb{F}_{2}[y]$ (Problem (13) on HW \#3 may be helpful.)
(d) $K=\mathbb{Q}(t), \alpha=t^{1 / 4}$
(e) $K=\mathbb{Q}(i, t), \alpha=t^{1 / 4}$
(f) $K=\mathbb{F}_{5}(t), \alpha=t^{1 / 3}$
(g) $K=\mathbb{F}_{7}(t), \alpha=t^{1 / 3}$

Refresher on finite groups: Write up solutions to at least three of the problems (2)-(6). You do not need to write up solutions to all five, but you're responsible for understanding this material; come ask me if you get stuck. A lot of this material appears in BB 3.5 and 3.6.
Recall (or learn) that a subgroup diagram for a finite group G is a visual representation of the lattice of subgroups of G, where G is at the top, the trivial subgroup is at the bottom, and we connect subgroups with lines to indicate containment. See BB Examples 3.5.1, 3.5.2, 3.6.4, 3.6.5.
(2) The cyclic group \mathbb{Z}_{n} is the additive group of the ring \mathbb{Z}_{n}.
(a) Prove that $\mathbb{Z}_{m n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ if and only if $\operatorname{gcd}(m, n)=1$.
(b) Make a subgroup diagram for \mathbb{Z}_{6} and \mathbb{Z}_{18}.
(3) The multiplicative groups \mathbb{Z}_{n}^{\times}is a finite abelian group with $\phi(n)$ elements. If n is prime then \mathbb{Z}_{n}^{\times}is always cyclic.
(a) Prove that $\mathbb{Z}_{m n}^{\times} \cong \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$if and only if $\operatorname{gcd}(m, n)=1$.
(b) Make a subgroup diagram for \mathbb{Z}_{15}^{\times}and \mathbb{Z}_{25}^{\times}.
(c) Optional challenge problem: When is \mathbb{Z}_{n}^{\times}cyclic? See problems (3) and (4) on https://math.bu.edu/people/medved/Teach/541F2019/541F2019_Cyclicity.pdf.
(4) The symmetric group S_{n} is the group of order n ! of permutations of the indices $\{1,2, \ldots, n\}$. To keep track of elements of S_{n}, we typically use cycle notation, which is described in Theorem 2.3.5 and Examples 2.3.6 and 2.3.7.
(a) Make a subgroup diagram for S_{3}. (Use cycle notation.)
(b) Prove that $H:=\{e,(12)(34),(13)(24),(14)(24)(14)(23)\}$ is a normal subgroup of S_{4}.

Describe the quotient group S_{4} / H.
(c) Optional challenge problem: Show that the group of rotational symmetries of a cube is isomorphic to S_{4}.
(Hint: Show that permuting the four diagonals of the cube gives an injective map $\operatorname{Rot}($ Cube $) \hookrightarrow \operatorname{Symm}($ diagonals $) \simeq S_{4}$. .
(5) For $n \geq 2$, the alternating group A_{n} is the index- 2 subgroup of S_{n} of even permutations of the indices $\{1,2, \ldots, n\}$.
A permutation $\sigma \in S_{n}$ is even if it can be expressed as a product of an even number of transpositions (permutations of the form ($a b$) for indices $a \neq b$); otherwise it is odd. It is a theorem that the map sgn : $S_{n} \rightarrow\{ \pm 1\}$ mapping σ to $\operatorname{sgn}(\sigma):=(-1)^{k}$ if $\sigma=\tau_{1} \ldots \tau_{k}$, where τ_{i} are transpositions, is well defined. See Proposition 2.3.10 and Theorem 2.3.11.
(a) Make a subgroup diagram for A_{4}.
(b) Show that H from (4b) is a normal subgroup of A_{4}. Give the three cosets of H in A_{4}. What is the structure of A_{4} / H ?
(c) Show that the group of rotational symmetries of a regular tetrahedron is isomorphic to A_{4}. (Hint: Consider the action on the four vertices.)

For $n \geq 5$ one can show that A_{n} is simple (that is, has no nontrivial proper normal subgroups): see Theorem 7.7.4. As a corollary, the group S_{n} is not solvable (Definition 7.6.1) if $n \geq 5$.
(6) The dihedral group D_{n} is the group of symmetries of a regular n-gon in the plane. The group D_{n} has $2 n$ elements consisting of an index- 2 cyclic subgroup of rotations

$$
\langle r\rangle=\left\{1, r, \cdots, r^{n-1}\right\},
$$

where r is the rotation in the plane by $360^{\circ} / n$ counterclockwise (to fix ideas); and n order- 2 flips, about axes of symmetry connecting vertices of the n-gon to midpoints of opposite sides (if n is odd) or vertices to opposite vertices and midpoints of opposite sides to each other (if n is even). If f is any such flip, one can show that $D_{n}=\left\{1, r, \ldots, r^{n-1}, f, f r, \ldots, f r^{n-1}\right\}$.
See Example 3.6.1 for a detailed analysis of $D_{4} \simeq \operatorname{Symm}\left({ }_{4}^{3} \square_{1}^{2}\right) \subseteq S_{4}$; and Example 3.6.3 for D_{n} more generally (with a for a rotation by $360^{\circ} / n$ and b for a flip).
(a) Construct an explicit isomorphism to show that $D_{3} \simeq S_{3}$.
(b) BB 3.6.20

Added 7 April 2023
Read BB sections 6.4, 6.5, and 8.2.
(7) BB 6.4.1(b)(d), 6.4.2(a)(d)
(8) BB 6.4.7
(9) BB 6.4.11
(10) BB 6.4.15
(11) BB 6.5.5
(12) BB 6.5 .8
(13) BB 6.5.9
(14) BB 6.5.11
(15) BB 8.2.1. The Galois group of the irreducible polynomial $p(x)$ of $K[x]$ is the group we've been denoting $\operatorname{Aut}(L / K)$ for L is a splitting field for $p(x)$. Feel free to assume that $K=\mathbb{F}_{p}$. (16) BB 8.2.5

Additional problems: solve these, but no need to write up or turn in.

- BB 6.4.6
- BB 6.4.14
- BB 6.5.3
- BB 6.5.10
- BB 8.2.2
- BB 8.2.3
- BB 8.2.6
- BB 8.2.7
- BB 8.2.10

