
MA 542: Modern Algebra II / Spring 2023
Homework assignment #6

Due Friday 4/14/23

Final version.

Edited 4/8/23 to fix typo in (4b).

Edited 4/10/23 to give an option of simplifying (15) .

(1) For each finite simple field extension L = K(α) over K below, find the minimial polyno-
mial m(x) of α over K and determine how m(x) factors in L[x]. Use this factorization to
find the number of automorphisms in Aut(L/K).

Can you determine the group structure of Aut(L/K)?

(a) K = Q, α = 6
√
108

(b) K = F5, α is a root of y2 + 2y + 3 in F5[y]

(c) K = F2, α is a root of y3 + y + 1 in F2[y] (Problem (13) on HW #3 may be helpful.)

(d) K = Q(t), α = t1/4

(e) K = Q(i, t), α = t1/4

(f) K = F5(t), α = t1/3

(g) K = F7(t), α = t1/3

Refresher on finite groups: Write up solutions to at least three of the problems (2)–(6). You do
not need to write up solutions to all five, but you’re responsible for understanding this material;
come ask me if you get stuck. A lot of this material appears in BB 3.5 and 3.6.

Recall (or learn) that a subgroup diagram for a finite group G is a visual representation of the
lattice of subgroups of G, where G is at the top, the trivial subgroup is at the bottom, and we
connect subgroups with lines to indicate containment. See BB Examples 3.5.1, 3.5.2, 3.6.4, 3.6.5.

(2) The cyclic group Zn is the additive group of the ring Zn.

(a) Prove that Zmn
∼= Zm × Zn if and only if gcd(m,n) = 1.

(b) Make a subgroup diagram for Z6 and Z18.

(3) The multiplicative groups Z×
n is a finite abelian group with ϕ(n) elements. If n is prime

then Z×
n is always cyclic.

(a) Prove that Z×
mn

∼= Z×
m × Z×

n if and only if gcd(m,n) = 1.

(b) Make a subgroup diagram for Z×
15 and Z×

25.

(c) Optional challenge problem: When is Z×
n cyclic? See problems (3) and (4) on

https://math.bu.edu/people/medved/Teach/541F2019/541F2019_Cyclicity.pdf.

(4) The symmetric group Sn is the group of order n! of permutations of the indices {1, 2, . . . , n}.
To keep track of elements of Sn, we typically use cycle notation, which is described in
Theorem 2.3.5 and Examples 2.3.6 and 2.3.7.

(a) Make a subgroup diagram for S3. (Use cycle notation.)

(b) Prove thatH := {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 4)(1 4)(2 3)} is a normal subgroup of S4.

Describe the quotient group S4/H.

https://math.bu.edu/people/medved/Teach/542S2023/HW/542S2023_HW3.pdf
https://math.bu.edu/people/medved/Teach/541F2019/541F2019_Cyclicity.pdf
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(c) Optional challenge problem: Show that the group of rotational symmetries of a
cube is isomorphic to S4.

(Hint: Show that permuting the four diagonals of the cube gives an injective map
Rot(Cube) ↪→ Symm(diagonals) ≃ S4.)

(5) For n ≥ 2, the alternating group An is the index-2 subgroup of Sn of even permutations of
the indices {1, 2, . . . , n}.
A permutation σ ∈ Sn is even if it can be expressed as a product of an even number of
transpositions (permutations of the form (a b) for indices a ̸= b); otherwise it is odd. It is
a theorem that the map sgn : Sn → {±1} mapping σ to sgn(σ) := (−1)k if σ = τ1 . . . τk,
where τi are transpositions, is well defined. See Proposition 2.3.10 and Theorem 2.3.11.

(a) Make a subgroup diagram for A4.

(b) Show that H from (4b) is a normal subgroup of A4. Give the three cosets of H in A4.
What is the structure of A4/H?

(c) Show that the group of rotational symmetries of a regular tetrahedron is isomorphic
to A4. (Hint: Consider the action on the four vertices.)

For n ≥ 5 one can show that An is simple (that is, has no nontrivial proper normal
subgroups): see Theorem 7.7.4. As a corollary, the group Sn is not solvable (Definition 7.6.1)
if n ≥ 5.

(6) The dihedral group Dn is the group of symmetries of a regular n-gon in the plane. The
group Dn has 2n elements consisting of an index-2 cyclic subgroup of rotations

⟨r⟩ = {1, r, · · · , rn−1},

where r is the rotation in the plane by 360◦/n counterclockwise (to fix ideas); and n order-2
flips, about axes of symmetry connecting vertices of the n-gon to midpoints of opposite sides
(if n is odd) or vertices to opposite vertices and midpoints of opposite sides to each other (if
n is even). If f is any such flip, one can show that Dn = {1, r, . . . , rn−1, f, fr, . . . , frn−1}.
See Example 3.6.1 for a detailed analysis of D4 ≃ Symm(34□

2
1) ⊆ S4; and Example 3.6.3

for Dn more generally (with a for a rotation by 360◦/n and b for a flip).

(a) Construct an explicit isomorphism to show that D3 ≃ S3.

(b) BB 3.6.20

Added 7 April 2023

Read BB sections 6.4, 6.5, and 8.2.

(7) BB 6.4.1(b)(d), 6.4.2(a)(d)

(8) BB 6.4.7

(9) BB 6.4.11

(10) BB 6.4.15

(11) BB 6.5.5

(12) BB 6.5.8

(13) BB 6.5.9

(14) BB 6.5.11
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(15) BB 8.2.1. The Galois group of the irreducible polynomial p(x) of K[x] is the group we’ve
been denoting Aut(L/K) for L is a splitting field for p(x). Feel free to assume that K = Fp.

(16) BB 8.2.5

Additional problems: solve these, but no need to write up or turn in.

• BB 6.4.6
• BB 6.4.14
• BB 6.5.3
• BB 6.5.10
• BB 8.2.2
• BB 8.2.3
• BB 8.2.6
• BB 8.2.7
• BB 8.2.10


