MA 542: Modern Algebra II / Spring 2023
 Homework assignment \#7

Due Friday $4 / 28 / 23$. Wednesday $5 / 3$ is also ok.
Final version.
Edited 26 April 2023: typos corrected in (1f). Edited 1 May 2023 to clarify assumptions in (4).
(1) Let M be an extension of a field K, and E and L extensions of K contained in M.
(a) Show that both $E L$ and $E \cap L$ are field extensions of K contained in M.
(Recall that if E and L are both subfields of a field M, the compositum $E L$ is the smallest subfield of M containing both E and L.)
If $L=K\left(\alpha_{1}, \alpha_{2}, \ldots\right)$, show that $E L=E\left(\alpha_{1}, \alpha_{2}, \ldots\right)$.
Now assume L is finite over K.
(b) Show that $[E L: E] \leq[L: K]$. More precisely, show that $[E L: E] \leq[L: E \cap L]$.
(c) Give an example to show that $[E L: E]$ may be strictly less than $[L: E \cap L]$.
(d) If L is separable over K, show that $E L$ is separable over E and that L is separable over $E \cap L$.
(e) If L is normal over K, show that $E L$ is normal over E and that L is normal over $E \cap L$.
(f) If L is normal over K, show that for every $\sigma \subset A \operatorname{ct}(E L / L)$, we have $\sigma(L)$, for every σ in $\operatorname{Aut}(E L / E)$ we have $\sigma(L)=L$, so that restriction to L gives a group homomorphism $\operatorname{res}_{L}: \operatorname{Aut}(E L / E) \rightarrow \operatorname{Aut}(L / E \cap L)$ (why?). Show that res_{L} is injective.
(g) If L is Galois (normal and separable) over K, show that $E L$ is Galois over E. Show that res_{L} from (1f) is surjective, so that $\operatorname{res}_{L}: \operatorname{Gal}(E L / E) \rightarrow \operatorname{Gal}(L / L \cap E)$ is an isomorphism.
(Hint: If H is the image of res_{L}, what is L^{H} ?)
In particular, $[E L: L]=[L: L \cap E]$.
(2) Let L / K be an extension of finite fields. Suppose $|K|=q$ for some prime power q.
(a) Show that $|L|=q^{m}$, where $m=[L: K]$.
(b) Show that L is a simple extension of K, so that $L \simeq K[x] /\langle\pi(x)\rangle$, where $\pi(x) \in K[x]$ is an irreducible of degree m.
(c) Show that $\varphi_{K}:=\left(\alpha \mapsto \alpha^{q}\right)$ is an automorphism of L that fixes every element of K. This automorphism is still called Frobenius.
(d) Show that φ_{K} has order m in $\operatorname{Aut}(L / K)$.
(e) Let β be a root of $\pi(x)$ in L. What the complete set of roots of of $\pi(x)$ in L ?
(f) Show that L is Galois over K.
(g) Show that $\operatorname{Gal}(L / K) \simeq \mathbb{Z} / m \mathbb{Z}$.
(3) Follow the setup in (2), but set $m=6$. Describe the Galois correspondence for L / K completely explicitly.

Read BB section 8.1, 8.2, and 8.3. Note that the Galois group of a polynomial $f(x) \in K[x]$ over a field K is the group $\operatorname{Aut}(L / K)$ for any splitting field of L of $f(x)$ over K.
(4) BB 6.6.5. Note: By a "primitive element of \mathbb{F}_{64} " here BB means an element that generates the multiplicative group of units of \mathbb{F}_{64}, not merely an element u so that $\mathbb{F}_{64}=\mathbb{F}_{2}(u)$.
Extra challenge: Show that the conclusion is false if we merely assume $\mathbb{F}_{64}=\mathbb{F}_{2}(u)$.
(5) BB 8.1.2
(6) BB 8.1.8
(7) BB 8.2.8
(8) BB 8.2.12

Added 24 April
(9) Finish your complete analysis of the Galois correspondence for the extension $\mathbb{Q}\left(2^{1 / 4}, i\right)$ of \mathbb{Q} from $4 / 26$ and/or $4 / 28$ in class. Which of the intermediate fields are conjugate?
(10) BB 8.3.5. Give the Galois correspondence explicitly.
(11) Consider the field $L=\mathbb{Q}(\zeta)$, where $\zeta=\zeta_{7}$ is a primitive $7^{\text {th }}$ root of unity.
(a) Determine $\operatorname{Gal}(L / \mathbb{Q})$ and give the Galois correspondence explicitly.
(b) Which element of the Galois group corresponds to complex conjugation? Does $\mathbb{Q}(\zeta)$ have a totally real subfield? Explain.
(A totally real field is an extension of \mathbb{Q} all of whose embeddings to \mathbb{C} land in \mathbb{R}. For example, $\mathbb{Q}(\sqrt{2})$ is a totally real field, but $\mathbb{Q}(\sqrt[3]{2})$ is not.)
(c) Show that $\sqrt{-7}$ is in $\mathbb{Q}(\zeta)$. Express $\sqrt{-7}$ as a polynomial in ζ.
(12) Let G be the Galois group of a separable irreducible polynomial f over a field K.

Recall from $4 / 24$ lecture: if $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ are the roots of f in a splitting field L, then $G=\operatorname{Gal}(L / K)$ permutes $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ faithfully (that is if $\sigma \in G$ fixes every α_{i}, then σ is the identity element), so that G may be viewed as a subgroup of $\operatorname{Perm}\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right) \simeq S_{n}$.
(a) Show that G is a transitive subgroup of S_{n} if and only if f is irreducible.
(Recall: G is a transitive subgroup of S_{n} if for every pair of indices $1 \leq i \neq j \leq n$, there is a $\sigma \in G$ so that $\sigma(i)=j$. We argued one direction in class.)
(b) If f is irreducible, show that $|G|$ is divisible by n.
(c) If f is irreducible and $n=p$ is prime, show that G contains a p-cycle.
(13) BB 8.4.11. You may assume BB 8.4.10.
(If you have time, also do 8.4.10, but feel free to assume the fact that for $n \geq 2$ the group S_{n} is generated by (12) and the n-cycle ($123 \ldots n$). Why is BB 8.4.10 false if p is not prime?)
(14) Let f be an irreducible cubic polynomial over a field \mathbb{Q}, and let L be a splitting field for f.
(a) Prove that $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic either S_{3} or A_{3}.
(b) Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the roots of f in L. Show that the discriminant

$$
D:=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2}
$$

is in \mathbb{Q}.
(c) Show that $\mathbb{Q}(\sqrt{D})$ is an at-most-quadratic extension of \mathbb{Q} contained in L.
(d) Conclude that $\operatorname{Gal}(L / \mathbb{Q}) \simeq A_{3}$ if and only if D is a square in \mathbb{Q}.
(e) Optional algebraic number theory teaser: If $f \in \mathbb{Z}[x]$, the Galois group of f is determined by the factorization of f modulo various primes p. Compare $f(x)=x^{3}-3 x+1$ with a random cubic, for example, using this simple SageMathCell code.

