MA 542: Modern Algebra II / Spring 2023 Homework assignment #7 Due Friday 4/28/23. Wednesday 5/3 is also ok.

Final version.

Edited 26 April 2023: typos corrected in (1f). Edited 1 May 2023 to clarify assumptions in (4).

- (1) Let M be an extension of a field K, and E and L extensions of K contained in M.
 - (a) Show that both EL and E ∩ L are field extensions of K contained in M.
 (Recall that if E and L are both subfields of a field M, the compositum EL is the smallest subfield of M containing both E and L.)
 If L = K(α₁, α₂,...), show that EL = E(α₁, α₂,...).

Now assume L is finite over K.

- (b) Show that $[EL:E] \leq [L:K]$. More precisely, show that $[EL:E] \leq [L:E \cap L]$.
- (c) Give an example to show that [EL:E] may be strictly less than $[L:E \cap L]$.
- (d) If L is separable over K, show that EL is separable over E and that L is separable over $E \cap L$.
- (e) If L is normal over K, show that EL is normal over E and that L is normal over $E \cap L$.
- (f) If L is normal over K, show that for every $\sigma \in \operatorname{Aut}(EL/L)$, we have $\sigma(L)$, for every σ in $\operatorname{Aut}(EL/E)$ we have $\sigma(L) = L$, so that restriction to L gives a group homomorphism res_L : $\operatorname{Aut}(EL/E) \to \operatorname{Aut}(L/E \cap L)$ (why?). Show that res_L is injective.
- (g) If L is Galois (normal and separable) over K, show that EL is Galois over E. Show that res_L from (1f) is surjective, so that res_L : Gal(EL/E) → Gal(L/L ∩ E) is an isomorphism.
 (Hint: If H is the image of res_L, what is L^H?) In particular, [EL : L] = [L : L ∩ E].
- (2) Let L/K be an extension of finite fields. Suppose |K| = q for some prime power q.
 - (a) Show that $|L| = q^m$, where m = [L:K].
 - (b) Show that L is a simple extension of K, so that $L \simeq K[x]/\langle \pi(x) \rangle$, where $\pi(x) \in K[x]$ is an irreducible of degree m.
 - (c) Show that $\varphi_K := (\alpha \mapsto \alpha^q)$ is an automorphism of L that fixes every element of K. This automorphism is still called *Frobenius*.
 - (d) Show that φ_K has order m in Aut(L/K).
 - (e) Let β be a root of $\pi(x)$ in L. What the complete set of roots of $\pi(x)$ in L?
 - (f) Show that L is Galois over K.
 - (g) Show that $\operatorname{Gal}(L/K) \simeq \mathbb{Z}/m\mathbb{Z}$.
- (3) Follow the setup in (2), but set m = 6. Describe the Galois correspondence for L/K completely explicitly.

Read BB section 8.1, 8.2, and 8.3. Note that the *Galois group* of a polynomial $f(x) \in K[x]$ over a field K is the group $\operatorname{Aut}(L/K)$ for any splitting field of L of f(x) over K.

(4) BB 6.6.5. Note: By a "primitive element of \mathbb{F}_{64} " here BB means an element that generates the multiplicative group of units of \mathbb{F}_{64} , not merely an element u so that $\mathbb{F}_{64} = \mathbb{F}_2(u)$.

Extra challenge: Show that the conclusion is false if we merely assume $\mathbb{F}_{64} = \mathbb{F}_2(u)$.

- (5) BB 8.1.2
- (6) BB 8.1.8
- (7) BB 8.2.8
- (8) BB 8.2.12

Added 24 April

- (9) Finish your complete analysis of the Galois correspondence for the extension $\mathbb{Q}(2^{1/4}, i)$ of \mathbb{Q} from 4/26 and/or 4/28 in class. Which of the intermediate fields are conjugate?
- (10) BB 8.3.5. Give the Galois correspondence explicitly.
- (11) Consider the field $L = \mathbb{Q}(\zeta)$, where $\zeta = \zeta_7$ is a primitive 7th root of unity.
 - (a) Determine $\operatorname{Gal}(L/\mathbb{Q})$ and give the Galois correspondence explicitly.
 - (b) Which element of the Galois group corresponds to complex conjugation? Does $\mathbb{Q}(\zeta)$ have a totally real subfield? Explain.

(A totally real field is an extension of \mathbb{Q} all of whose embeddings to \mathbb{C} land in \mathbb{R} . For example, $\mathbb{Q}(\sqrt{2})$ is a totally real field, but $\mathbb{Q}(\sqrt[3]{2})$ is not.)

- (c) Show that $\sqrt{-7}$ is in $\mathbb{Q}(\zeta)$. Express $\sqrt{-7}$ as a polynomial in ζ .
- (12) Let G be the Galois group of a separable irreducible polynomial f over a field K.

Recall from 4/24 lecture: if $\{\alpha_1, \ldots, \alpha_n\}$ are the roots of f in a splitting field L, then $G = \operatorname{Gal}(L/K)$ permutes $\{\alpha_1, \ldots, \alpha_n\}$ faithfully (that is if $\sigma \in G$ fixes every α_i , then σ is the identity element), so that G may be viewed as a subgroup of Perm $(\{\alpha_1, \ldots, \alpha_n\}) \simeq S_n$.

- (a) Show that G is a transitive subgroup of S_n if and only if f is irreducible. (Recall: G is a *transitive* subgroup of S_n if for every pair of indices $1 \le i \ne j \le n$, there is a $\sigma \in G$ so that $\sigma(i) = j$. We argued one direction in class.)
- (b) If f is irreducible, show that |G| is divisible by n.
- (c) If f is irreducible and n = p is prime, show that G contains a p-cycle.
- (13) BB 8.4.11. You may assume BB 8.4.10. (If you have time, also do 8.4.10, but feel free to assume the fact that for $n \ge 2$ the group S_n is generated by (12) and the *n*-cycle (123...n). Why is BB 8.4.10 false if p is not prime?)
- (14) Let f be an irreducible cubic polynomial over a field \mathbb{Q} , and let L be a splitting field for f.
 - (a) Prove that $\operatorname{Gal}(L/\mathbb{Q})$ is isomorphic either S_3 or A_3 .
 - (b) Let $\alpha_1, \alpha_2, \alpha_3$ be the roots of f in L. Show that the discriminant

$$D := (\alpha_1 - \alpha_2)^2 (\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_3)^2$$

is in \mathbb{Q} .

- (c) Show that $\mathbb{Q}(\sqrt{D})$ is an at-most-quadratic extension of \mathbb{Q} contained in L.
- (d) Conclude that $\operatorname{Gal}(L/\mathbb{Q}) \simeq A_3$ if and only if D is a square in \mathbb{Q} .
- (e) **Optional algebraic number theory teaser:** If $f \in \mathbb{Z}[x]$, the Galois group of f is determined by the factorization of f modulo various primes p. Compare $f(x) = x^3 3x + 1$ with a random cubic, for example, using this simple SageMathCell code.