MA 542: Modern Algebra II / Spring 2023 Midterm start-off questions

- (1) Give an example of two (or three or four) different ideals (or prime ideals or maximal ideals or principal ideals) of A[x] where A is \mathbb{C} , \mathbb{R} , \mathbb{Q} , $\mathbb{Q}[\sqrt{2}]$, \mathbb{Z} , \mathbb{Z}_p for small primes p, or $\mathbb{Z}_p[T]/\langle \pi(t) \rangle$ for small primes p and low-degree irreducible $\pi(t)$.
- (2) Let F be a field we've studied a lot. (So $F = \mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}_p, \mathbb{Z}_p[T]/\langle \pi(t) \rangle$ as above.)
 - (a) Prove that F[x] is a principal ideal domain.
 - (b) Find a generator of an ideal of F[x] generated by three particular polynomials. (For example, find a generator of $\langle x^2, x^3 + 4x, 3x^2 + 3x \rangle$ in $\mathbb{Z}_5[x]$.)
- (3) Let A be a commutative ring.

Recall that an element a of a ring A is *nilpotent* if $a^n = 0$ for some $n \ge 1$.

- (a) Prove that the nilpotent elements of A form an ideal N of A. This ideal is called the *nilradical* of A.
- (b) Prove that A/N has no nonzero nilpotent elements.
- (c) Prove that N is contained in every prime ideal of A.
- (d) Determine the nilradical of \mathbb{Z}_m for small values of m, the nilradical of $F[x]/\langle p(x)\rangle$ for fields F and polynomials $p(x) \in F[x]$, or the nilradical of $\mathbb{Z}_m[x]$.
- (4) Let F be a field, $p(x) \in F[x]$ a polynomial, and $a \in F$ an element. Show that the map

sending [f] to f(a) is well defined if and only if p(a) = 0. Here [f] is an element of $F[x]/\langle p(x) \rangle$ represented by a polynomial $f \in F[x]$.

(5) For each ring A and ideal J below, describe the elements of J. Use the fundamental isomorphism theorem for rings to describe A/J in some reasonable way. Is J prime? maximal?

 $F[x]/\langle p(x)\rangle \to F$

- (a) $A = \mathbb{Q}[x]$ and $J = \langle x^2 + 1 \rangle$
- (b) $A = \mathbb{Q}[x]$ and $J = \langle x^2 1 \rangle$
- (c) $A = \mathbb{Q}[x]$ and $J = \{f : f(5) = 0\}$
- (d) $A = \mathbb{Z}[x]$ and $J = \langle 6 \rangle$
- (e) $A = \mathbb{Z}[x]$ and $J = \langle x^2 + 1 \rangle$
- (f) $A = \mathbb{Z}[x]$ and $J = \langle x^2 1 \rangle$
- (g) $A = \mathbb{Z}[x]$ and $J = \langle 3, x^2 + 1 \rangle$
- (6) (a) BB 5.4.12
 - (b) In the notation of BB 5.4.12, what is $Q(D_P)$?
 - (c) BB 5.4.13