
MA 741: Algebra I / Fall 2020
Homework assignment #2
Due Thursday 9/24/2020

(0) Read and review: DF sections 1.7, 2.2, 4.1, 4.2, 4.3. 5.1.

Also recall the following theorem from class: if p is a prime and G is a finite p-group acting
on a finite set X, then

|X| ≡ |{fixed points of X}| (mod p).

(1) McKay’s proof of Cauchy’s theorem: Let G be a finite group and p a prime number
dividing |G|. Prove that G has an element of order p as follows.

Let Gp be the product of p copies of G, and H ⊂ Gp the subset of p-tuples (g1, · · · , gp)
whose product g1 · · · gp is 1. Convince yourself that H is a subgroup of Gp.

(a) Show that Z/pZ acts on both Gp and H by cyclic permutation.
(b) Show that (g1, · · · , gp) ∈ Gp is a fixed point of the action if and only if

g1 = g2 = · · · = gp.

(c) Show that a fixed point of the action of Z/pZ on H corresponds to an element g ∈ G
of order dividing p.

(d) Use the action of Z/pZ on H to prove that

|H| ≡ |{h ∈ H : h is fixed by the action of Z/pZ}| (mod p).

(e) Prove Cauchy’s theorem: if G is a finite group and p divides |G|, then G has an element
of order p.

(2) Sylow theorems: Let p be a prime dividing the cardinality n of a finite group G, and
write n = pkm, where m is prime to p. A subgroup P of G is called a p-Sylow subgroup,
or sometimes Sylow p-subgroup, if |P | = pk: that is, P is of maximal p-power order for any
subgroup of G.

Your main goal is to prove the first Sylow theorem: If p divides |G|, then G has at least
one p-Sylow subgroup.

First, let G be any group, and consider the action of G on the set of its subgroups by
conjugation. If H ⊆ G is any subgroup, then the stabilizer Stab(H) under this action is
called the normalizer NG(H), and any element in NG(H) normalizes H.

(a) Show that NG(H) is a subgroup of G containing H with the property that H is normal
in NG(H). (In fact NG(H) is the largest subgroup of G in which H is normal. Why?)

Now back to the case that p divides |G|. Let k > 0 be the largest power of p dividing |G|.
Suppose that we have found a subgroup P of G of cardinality pr for some r with 1 ≤ r < k.

(b) Consider the action of P on the cosets G/P by left translation. What are the fixed
points of the action?
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(c) Prove that the index (NG(P ) : P ) is divisible by p.

(d) Prove that G contains a subgroup Q that normalizes P with (Q : P ) = p: that is:

NG(P ) ⊇ Q
p
) P.

What is the order of Q?

(e) Finally use induction on the largest power of p dividing |G| to prove the First Sylow
Theorem.

(f) Now prove the Second Sylow Theorem: all the p-Sylow subgroups of G are conjugate.
Let P and Q be two p-Sylows, and consider the action of P on the cosets G/Q by left
translation. Show that there’s fixed point of the action. Conclude that if coset gQ is
a fixed point, then P = gQg−1.

(3) Exactness: A sequence of groups and homomorphisms

G0
f0−→ G1

f1−→ G2
f2−→ · · · fn−1−→ Gn

is called exact at Gi for some i with 1 ≤ i ≤ n − 1 if ker fi = im fi−1 as subgroups of Gi.
The sequence is called exact if it is exact at i for every i = 1, 2, . . . , n− 1.

We can also consider exactness of sequences that are infinite: on the left, or the right, or
on both sides (bi-infinite).

Let

(∗) · · · −→ G−2
f−2−→ G−1−→

1

=

G0 −→ G1
f1−→ G2

f−1−→ G3 −→ · · ·

be a (possibly infinite) sequence of groups connected by group homomorphisms. Note that
G0 = 1, the trivial group.

(a) Show that sequence (∗) is exact at G0 = 1.
(b) Show that (∗) is exact at G−1 if and only if f−2 is surjective.
(c) Show that (∗) is exact at G1 if and only if f1 is injective.
(d) Show that (∗) is exact if and only if both of the following are exact:

· · · −→ G−2
f−2−→ G−1−→1

and

1 −→ G1
f1−→ G2

f−1−→ G3 −→ · · · .

A short exact sequence of groups is an exact sequence of the form

1 −→ G −→ H −→ K −→ 1.

(e) Let
1 −→ G

f−→ H
g−→ K −→ 1

be a sequence of groups connected by group homomorphisms. Show that this sequence
is short exact if and only if all three of the following hold:

(i) f is injective;
(ii) g is surjective;

(iii) g induces an isomorphism H/f(G)
∼−→ K.
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(4) Automorphisms: An automorphism of a group G is an isomorphism G −→ G. Write
Aut(G) for the set of automorphisms of a group G.

(a) Show that Aut(G) forms a group under composition.

Now let N be a normal subgroup of a group G.

(b) Show that the action of G on N by conjugation induces a group homomorphism

πN : G −→ Aut(N).

(That is, for g ∈ G we let π(g) be the map N −→ N given by n 7→ gng−1.)
(c) What is the kernel of πN?

In the case that N = G, elements in the image of πG are called inner automorphisms of G.
The subgroup of inner automorphisms is sometimes denoted Inn(G).

(d) Show that Inn(G) is a normal subgroup of Aut(G).

The quotient Aut(G)/ Inn(G) is the group Out(G) of outer automorphisms.

(e) Show that we have an exact sequence

1 −→ Z(G) −→ G
πG−→ Aut(G) −→ Out(G) −→ 1.

(f) What does the exact sequence in (4e) look like for D8, the symmetry group of a square?
Justify your assertions.

(5) Abelianization: Let G be a group, and a, b elements of G. The element aba−1b−1 is called
the commutator of a and b, often denoted [a, b]. Let [G,G] be the subgroup of G generated
by all the commutators of all the pairs of elements of G.

(a) Show that [G,G] is a normal subgroup of G.
(b) Show that the quotient G/[G,G] is an abelian group, called the abelianization of G,

and often denoted Gab.
(c) Let N be a normal subgroup of G. Show that the quotient G/N is abelian if and only

if N contains [G,G].
(d) Show that Gab satisfies the following (initial) universal property: it’s an abelian group

equipped with a map π : G −→ Gab, and any group homomorphism f : G −→ A to
an abelian group A factors through π: that is, there is a unique map α : Gab −→ A so
that f = α ◦ π.

Now let f : G −→ H be a group homomorphism.

(e) Show that f induces a homomorphism of abelian groups

fab : Gab −→ Hab.

(f) Must fab be injective if f is injective? Prove or give a countexample.
(g) Must fab be surjective if f is surjective? Prove or give a countexample.

(h) More generally, suppose 1 −→ G
f−→ H

g−→ K −→ 1 is an exact sequence of groups.
By part (5e) above, we obtain a sequence of maps

1 −→ Gab fab−→ Hab gab−→ Kab −→ 1.

At which of Gab, Hab, Kab is this sequence exact? Prove your assertions.
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(6) Torsion in abelian groups: Let A be an abelian group, written additively. Fix n ≥ 1.
An element a ∈ A is an n-torsion element if na = 0. Let

A[n] := {a ∈ A : na = 0}
be the subset of n-torsion elements, and let

T (A) :=
⋃
n≥1

A[n],

the set of all torsion elements of A. If T (A) = {0} then A is said to be torsion free.

(a) Show that both A[n] and T (A) are subgroups of A.

(b) Show that A/T (A) is torsion free.

(c) Let A be a free abelian group. Show that A is torsion free.

(d) Show that Q is torsion free but not free as an abelian group.

(7) Optional challenge problems: The following are all implied by the structure theorem
for finitely generated abelian groups. Can you show show these without appealing to that
theorem, or the notion of noetherianness?

(a) If A is a torsion-free finitely generated abelian group, then A is free.

(b) If A is finitely generated free abelian group, and B ⊂ A is a subgroup, then B is also
a finitely generated free abelian group, and rankB ≤ rankA. (In fact, it’s true without
the finitely generated condition: a subgroup of a free abelian group is free abelian.)

(c) If A is a finitely generated abelian group, then T (A) is a finitely generated (equivalently,
finite) group.


