
MA 741: Algebra I / Fall 2020
Homework assignment #4

Due Thursday, October 15, 2020 or soon thereafer

Clean copy

Thanks to Alanna, Benedikt, Duncan, and Yaron for pointing out typos, inconsistencies, and
trouble points on this set.

When you turn in your solutions, please do not forget to identify yourself, this course, and the
number of the HW set in the document name. Please also indicate if you worked with anyone else.

Edit 10/8/20: To turn in your work, email your well-titled document to buma741fall2020@gmail.com
with “HW 4” in the subject line.

(0) Read and review

(a) Free groups, presentations: DF pp. 25–27 and section 6.3. Try DF exercise 1.2.18 on p.28.

(b) Rings: DF sections 7.1, 7.2, 7.3, but recall that unlike DF we assume that all rings
have a multiplicative identity. If it’s helpful, Keith Conrad has notes notes on ring
definitions to replace DF’s:
https://kconrad.math.uconn.edu/blurbs/ringtheory/ringdefs.pdf.

(1) Quaternion group: presentation, automorphisms: DF 6.3.7 and 6.3.9 on pp. 220–21.

(2) Left and right units: An element a of a ring A is a left unit (or right invertible) if there
exists b ∈ A with ab = 1. Such a b is a right inverse for a. Similarly, a is a right unit (or
left invertible) if there exists c ∈ A with ca = 1. Such a c is a left inverse for a.

(a) Show that a ∈ A is a left unit if and only if the multiplication-by-a-on-the-left map
x 7→ ax is surjective on A. Similarly, show that a ∈ A is a right unit if and only if
multiplication by a on the right is surjective on A.

(b) If a ∈ A is both a left unit and a right unit (a is a two-sided unit, or simply unit), show
that its left inverse is unique and agrees with its right inverse, which is also unique.

(c) Give an example of a ring that has a left unit which is not a right unit. Give an
example of a ring that has a right unit which is not a left unit. Can you find multiple
one-sided inverses for each? (If you get stuck, ask for a hint.)

(d) Now let A be an arbitrary ring again. Let a ∈ A be a left unit with right inverse b.
Show that for every n ≥ 0, the element

bn := b+ (1− ba)an

is a right inverse for a.

(e) Show that the following are equivalent for a left unit a:

(i) a is not a two-sided unit;

(ii) a has at least two distinct right inverses;

(iii) a has infinitely many distinct right inverses.

(Hint: Show that if bn = bm for n 6= m, then a has a left inverse.) This is a theorem
of Kaplansky; the constructive argument suggested here is due to Jacobson.
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(3) Zero divisors: An element a of a ring A is a left zero divisor if there exists a nonzero
b ∈ A with ab = 0. It is a right zero divisor if there exists a nonzero b ∈ A with ba = 0. A
zero divisor is either a left or a right zero divisor. (Note the difference with the definitions
in (2): being a unit is “good”, so a unit has to be two-sided, whereas being a zero divisor
is “bad”, so one-sidedness is enough to qualify.)

(a) Show that a ∈ A is a left zero divisor if and only if left multiplication by a is not an

injective map A
x 7→ax−→ A. Similarly, a ∈ A is a right zero divisor if and only if right

multiplication by a is not injective.

(b) If a ∈ A is a left unit (see (2)), then a is not a right zero divisor. Similarly, if a ∈ A is
a right unit, then a is not a left zero divisor.

(c) If a ∈ A is not a left zero divisor, then a is left cancellable: for b, c ∈ A, we have ab = ac
implies b = c. State and prove the analogous right-side statement.

(d) If a ∈ A is a left unit with more than one right inverse, show that a is a left zero
divisor. Analogous statement on the other side?

(e) What are the zero divisors of Z/nZ? Here n ∈ Z+.

A nonzero commutative ring with no nonzero zero divisors is called an integral domain. If
A is an integral domain, then any nonzero a ∈ A is cancellable.

(4) Products of rings

(a) Let I be an indexing set, and Ri, i ∈ I, a collection of rings. Show that the set
product R :=

∏
i∈I Ri with componentwise operations satisfies the universal property

for products of rings: R is a ring equipped with maps πi : R −→ Ri for each i, and
given any ring S with maps fi : S −→ Ri for each i, there’s a unique map β : S −→ R
factoring each fi: that is, satisfying fi = πi ◦ β for each i.

(b) Now let R1 and R2 be two rings, and for i = 1, 2, let πi : R1 × R2 −→ Ri be the
projection map guaranteed by (4a). Are there ring homomorphisms ιi : Ri −→ R1×R2

with ιi a section (right inverse) of πi? Explain.

(c) Continuing with I = {1, 2}, does R1 ×R2 satisfy the universal property for rings that
is dual to the product property? (See HW #1 5b; replace every instance of “group”
with “ring”.) If yes, prove it. If no, explain. What kind of ring would satisfy such a
property for R1 = Z[x] and R2 = Z[y] in the world of commutative rings?

(5) Characteristic of a ring: As pointed out in class, there’s a unique ring homomorphism

Z −→ R

for any ring R. The nonnegative generator n of the kernel nZ of this homomorphism is
called the characteristic of R.

(a) Determine the characteristic of the rings (i) Q, (ii) Z[x], (iii) Z/nZ, (iv) Z/nZ[x],
(v) Z/12Z× Z/18Z, (vi) A = {(a, b) : a ≡ b (mod n)} ⊆ Z× Z, (vii)

∏
p prime Z/pZ.

Is there a ring of characteristic 1?

(b) Let p be prime and R a commutative ring of characteristic p. Prove that for all a, b ∈ R
we have (a+ b)p = ap + bp. Must this still hold if R is not commutative?

(c) Show that the characteristic of an integral domain (see (3)) is either 0 or a prime
number p.
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(6) (a) Construct a field with 4 elements by giving an addition and multiplication table.
Remember that two of the elements have to be 0 and 1. Explain! How many noniso-
morphic such fields can you construct?

(b) Show that the ring Z/2Z[x]/(x2 + x+ 1) is a field. How many elements does it have?
Compare to your answers from part (a).

(7) Monomorphisms and epimorphisms: A map α : A −→ B of groups (respectively,
abelian groups, rings, etc.) is said to be monic or a monomorphism if it is left cancellable:

that is, whenever f, g : C −→ A are two maps from another group (respectively, abelian
group, ring, etc.) C to A

C A B
f

g

α

then α ◦ f = α ◦ g implies f = g.

(a) Show that a homomorphism of groups is injective if and only if it is monic.

A monomorphism therefore captures some property of being injective without any reference
to elements; that’s one of the goals of category theory.

Dually (that is, reversing all arrows), a map β : B −→ A is said to be epi or an epimorphism
if it is right cancellable: that is, whenever f, g : A −→ C are two maps

B A C
β f

g

then f ◦ β = g ◦ β implies f = g.

(b) (i) Show that a surjective homomorphism of groups is epi.

(ii) Show that a epimorphism of abelian groups is always surjective.

(iii) Let G = S3 and H = {e, (12)} ⊂ G. Show that the inclusion H ↪→ G is not an
epimorphism.

More generally, it’s true that a homomorphism of groups is surjective if and only if it
is epi. See (10) below for hints and references.

Now consider commutative rings.

(c) Show that a homomorphism of commutative rings is injective if and only if it is monic.

(d) Convince yourself that your argument from (7(b)ii) still works to show that a surjection
is an epimorphism. But show that the inclusion Z ↪→ Q is epi without being surjective.

Think about the following problems, but you do not need to turn anything in.

(8) Let A be a commutative ring, In class, we defined A[
√
d] for A = Z,Q as a ring structure

on the abelian group A×A, where we write an element (a, b) as a+ b
√
d. Multiplication is

defined by the fact that 1 + 0
√
d is the multiplicative identity and (0 + 1

√
d)2 = d (convince

yourself that these two facts plus the ring properties really do define a ring structure on
A[
√
d]. We saw in class that if d ∈ Z is squarefree then Q[

√
d] is a field, isomorphic to the

subfield Q(
√
d) of C.

(a) Suppose d = e2 is the square of positive integer. Show that the map

Q[
√
d] −→ Q×Q
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defined by

a+ b
√
d 7→ (a+ be, a− be)

is an isomorphism of rings.

(b) Still supposing that d = e2 for some e ∈ Z+, identify Z[
√
d] with a subring of Z × Z.

Explain.

(c) Now take any nonzero d ∈ Z. Describe R[
√
d] as simply as possible.

(9) The free group Fn := F ({s1, . . . , sn}) appears in algebraic topology as the fundamental
group of a bouquet of n circles. Call this bouquet Bn. Below, an image of B3.

Suppose G ⊂ Fn is a subgroup of finite index d. The Nelson-Schreier theorem tells us that
G is also free. Explain the Schreier index formula: G ∼= Fr, where r = 1 + d(n− 1).

(Let X be the covering space of Bn corresponding to G, so that G = π1(X). Then X
is contractible to a bouquet of r circles. Now use the Euler characteristic multiplicative
formula for covering spaces (for example, exercise 2.2.22 in Hatcher’s Algebraic Topology)
to conclude that d(1− n) = 1− r.)

(10) Show that an epimorphism of groups is surjective.

(It suffices to show that if H ( G is a proper subgroup of a group G, then there exists a
group K and distinct maps f, g : G −→ K with f |H = g|H . Let G/H∗ := G/H ∪ {∗},
the set of left cosets of H in G augmented by an additional element ∗. Consider the left
translation action of G on G/H, and the same but with the elements H and ∗ of G/H∗

switched, as permutations of G/H∗.

This statement was originally proved by Schreier, but the argument suggested here is due
to Linderholm(i). See also Arturo Magidin’s posts here and here.)

(i)BU sign-in required: https://www-jstor-org.ezproxy.bu.edu/stable/pdf/2317336.pdf.

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://groups.google.com/g/sci.math/c/DV2iNGdzQ8U/m/AEMrOtkjQG0J
https://math.stackexchange.com/questions/1443049
https://www-jstor-org.ezproxy.bu.edu/stable/pdf/2317336.pdf

