MA 741: Algebra I / Fall 2020 Homework assignment #5 Due weekend of October 24-25, 2020

Clean copy.

To turn in your work, please email your well-titled document (title should identify you, this course, and the HW set number) to buma741fall2020@gmail.com with "HW 5" in the subject line. Please indicate whom you worked with on the problem set.

(0) Suggested reading: DF 7.4, 8.1, 8.2, 9.1, 9.2; Aluffi III.1–4, V.1–3; Atiyah-Macdonald chapter 1. Note that all rings in Atiyah-Macdonald (AM) are commutative.

An element a of a ring A is called *nilpotent* if $a^n = 0$ for some $n \ge 1$.

- (1) (a) Show that the set of all nilpotent elements of a commutative ring A forms an ideal of A. What if A is not commutative?
 - (b) Let a be a nilpotent element in a commutative ring A. Show that 1 + a is a unit of A. What if A is not commutative?
 - (c) Deduce that the sum of a nilpotent element and a unit in a commutative ring A is a unit of A. What if A is not commutative?

Part of this question comes from AM exercise 1.1.

- (2) Let A be a commutative ring, and $f = a_0 + a_1 x + \cdots + a_n x^n \in A[x]$. Prove that
 - (a) f is a unit in $A[x] \iff a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent.
 - (b) f is nilpotent $\iff a_0, \ldots a_n$ are all nilpotent.
 - (c) f is a zero divisor \iff there exists $a \neq 0$ in A with af = 0.
 - (d) f is said to be primitive if (a₀,..., a_n) = 1. Prove that if f, g ∈ A[x], then fg is primitive ⇔ f and g are primitive.
 (*Hint:* If fg is not primitive, let m be a maximal ideal containing the coefficients of fg. Now either work in A/m[x] or show that various coefficients are in m by hand.)
 - (e) Show that A[x] is an integral domain if and only if A is an integral domain.

Parts (a)-(d) is AM exercise 1.2. See that prompt for more hints!

- (3) Let A be a commutative ring, and let A[x] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$. (These power series are called formal because we are not concerned with convergence.)
 - (a) Show that f is a unit in $A[x] \iff a_0$ is a unit in A.
 - (b) If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is the converse true?

This is part of AM exercise 1.5.

(4) Nilradical ideal: The ideal of all nilpotent elements of a commutative ring A is called the *nilradical* of A. Call it \mathfrak{N} .

(It is sometimes also denoted $\sqrt{0}$ or r(0) as it is the *radical* of the zero ideal. More generally, the *radical* of any ideal \mathfrak{a} is $r(\mathfrak{a}) = \sqrt{\mathfrak{a}} = \{a \in A : a^n \in \mathfrak{a} \text{ for some } n \ge 1\}$.)

- (a) Show that A/\mathfrak{N} has no nilpotent elements (such a ring is called *reduced*).
- (b) If $a \in A$ is nilpotent, show that a is in every prime ideal of A.
- (c) The converse is also true: an element in every prime ideal of A is nilpotent. For the proof, you will need to use Zorn's lemma (see Aluffi V.3, for example). Suggested steps: Take any nonnilpotent element a of A. Let Σ be the set of ideals \mathfrak{a} of A with the property that no positive power of a is in \mathfrak{a} , ordered by inclusion.
 - (i) Show that Σ is nonempty.
 - (ii) Show that every chain in Σ has an upper bound.

Zorn's lemma now implies that Σ has a maximal element. Call it \mathfrak{m} . Show that \mathfrak{m} is a prime ideal as follows.

- (iii) Prove that for any $x \in A$ we have $x \notin \mathfrak{m}$ if and only if there exists a positive integer n with $a^n \in \mathfrak{m} + (x)$.
- (iv) Show that $x, y \notin \mathfrak{m}$ implies that $xy \notin \mathfrak{m}$. Conclude that \mathfrak{m} is prime.

In other words, the nilradical of A is the intersection of all the prime ideals of A.

- (d) If \mathfrak{a} is an ideal of A, show that the radical ideal $\sqrt{\mathfrak{a}}$ is the intersection of all the prime ideals of A containing \mathfrak{a} . (*Hint:* Work in A/\mathfrak{a} .)
- (5) **Zariski topology on** Spec A (AM exercises 1.15, 1.16): Let A be a commutative ring, and X the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A that contain E. Show each of the following.
 - (a) If \mathfrak{a} is the ideal generated by E, then $V(E) = V(\sqrt{\mathfrak{a}})$.
 - (b) V(0) = X and $V(1) = \emptyset$
 - (c) If $\{E_i\}_{i \in I}$ is any collection of subsets of A, then $V(\bigcup_{i \in I} E_i) = \bigcap_{i \in I} V(E_i)$.
 - (d) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A.

Proposition 1.11 in AM may be helpful.

These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the *Zariski* topology. The topological space X is called the *(prime) spectrum* of A, written Spec A.

- (e) Think about and draw $\operatorname{Spec} \mathbb{Z}$, $\operatorname{Spec} \mathbb{C}$, $\operatorname{Spec} \mathbb{C}[x]$, $\operatorname{Spec} \mathbb{Z}[x]$.
- (6) Read about the ring of Gaussian integers Z[i] being a Euclidean domain with respect to the norm N(a+bi) = a²+b²: Aluffi V.6 has a lovely geometric treatment; or see DF example 3 starting on p. 271 (or Aluffi exercise V.6.12) for an algebraic proof.
 - (a) View the ring $\mathbb{Z}[\sqrt{-2}]$ as a subring of \mathbb{C} , and define the *norm* of $\alpha = a + b\sqrt{-2}$ as $N(\alpha) := a^2 + 2b^2$. (Note that the norm is the square of the complex absolute value.) Show that the ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain with respect to the norm: that is, show that for all $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$ with $\beta \neq 0$, there exists $q, r \in \mathbb{Z}[\sqrt{-2}]$, with $0 \leq N(r) < N(\beta)$, satisfying $\alpha = \beta q + r$. You may use either a geometric or an algebraic argument (or both!).

It follows that $\mathbb{Z}[\sqrt{-2}]$ is a PID and a UFD.

(b) What happens when you try to run the same argument for $\mathbb{Z}[\sqrt{-3}]$? Here use the norm $N(a + b\sqrt{-3}) = a^2 + 3b^2$.

(c) Explain why the equation

$$2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$$

shows that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD.

(d) Do you still have these problems if you replace $\mathbb{Z}[\sqrt{-3}]$ by the larger ring

$$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right] = \left\{\frac{a+b\sqrt{-3}}{2} : a \equiv b \mod 2 \text{ in } \mathbb{Z}\right\}?$$

Note that $N(\alpha)$ is still integral for $\alpha \in \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$.

Come talk to me about this problem if you get stuck!

(7) **Optional challenge problem:** Keep reading about the two-square theorem of Fermat (Aluffi V.6.3). How do odd integer primes of \mathbb{Z} factor in $\mathbb{Z}[\sqrt{-2}]$? Factor all the primes up to 20 in $\mathbb{Z}[\sqrt{-2}]$ as products of irreducibles.