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Using magic in the teaching of statistics

Abstract. This paper explores the role magic tricks can play in the teaching of
probability and statistics, especially for lectures in college courses. Demonstrations are
described that hit many families of topics, including: basic probability and
combinatorics, distributions, hypothesis testing, and advanced topics such as Markov
chains. Possible benefits identified include student engagement, a focus on conceptual
understanding, development of critical thinking, and an opportunity to reflect upon the
role of assumptions and estimates of probabilities.
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“A mathematician is a conjurer who gives away his secrets.”

– John Conway, quoted in Havil (2008, p.131)

1. Introduction

Magic is one of the 20 modalities of fun identified by Lesser & Pearl (2008) as having

potential for motivating students in statistics courses. The use of magic has recently

been gaining attention in advancing areas of science such as cognitive neuroscience

(Martinez-Conde & Macknik, 2008), biology (Kuhn & Land, 2006) and cognitive

psychology (Kuhn, Amlani & Rensink, 2008). Several papers and books are available on

classroom uses of magic involving mathematics, especially elementary algebra (e.g.,

Edwards 1992, 1994; Matthews, 2008). However, there appear to be no books and only

a few isolated articles (e.g., Mansfield, 1989) presenting the use of magic to explain

concepts in probability or statistics.

The lack of instructional guides for incorporating magic into probability and

statistics lectures is surprising because magic tricks are designed to be low-probability
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events in the eyes of a spectator, so that a probability/statistics instructor can take

advantage of producing (what appear to be) low-probability events to enhance the

intuition and understanding of probability. Magic catches our attention, and therefore has

the potential to engage the mind of a probability/statistics student precisely because (it

appears) an unlikely event has happened that seems difficult to explain by chance alone.

Predicting the result of a coin toss (p = 0.50) would not be impressive enough to capture

the attention of a student, but predicting a card drawn from a 52-card deck would (p <

0.02). Furthermore, probability and statistics have more than their share (relative to

mathematics, for example) of results that are surprising or counterintuitive, and thus offer

a natural vehicle for connections to magic.

Incorporating magic tricks into the probability and statistics classroom can

enhance instruction in several ways. First, magic tricks are one way to include visual

demonstrations, and provide an opportunity for the instructor to rely less on textbook and

blackboard-oriented teaching techniques (Felder, 1993). Second, magic tricks in the

classroom are often class-participatory demonstrations, which can be effective tools in

communicating probability and statistics concepts (Gelman & Nolan, 2002). Such

demonstrations are likely to involve active learning and emphasis on conceptual

understanding, characteristics which are called for by the American Statistical

Association (2005). Third, as stated above, all magic effects are based on a simple

premise: Given a spectator’s assumptions, an unlikely event occurs by the conclusion of

the trick, and the surprise a student experiences can help to aid his/her understanding of

probability. In a large set of magic tricks (e.g., involving making selections or

predictions from a set of cards or other objects), the probability of the unlikely event can
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be quantified, and these are the prime candidates for inclusion as probability and statistics

demonstrations.

This paper presents several example magic tricks we have used in our classes to

illustrate concepts and calculations in probability and statistics lectures. While several

are examples already described in the literature, we include additional discussion and

novel applications. All of the tricks involving props can be purchased at physical or

online magic shops. We group the demonstrations by the topic whose concepts they help

illuminate: basic probability and combinatorics, distributions, hypothesis testing, and

advanced topics.

2. Demonstrations

2.1 Basic probability and combinatorics demonstrations

Early on in our introductory probability and statistics courses, we explain how to

compute the probability of the intersection of independent events. We have found that

Hen Fetsch’s 1954 magic trick “Mental Epic” to be an effective supplement to more

conventional illustrations of this topic. The trick involves a portable chalkboard that is

divided into six separate regions in two rows and three columns and with “covers” to seal

each of the three predictions. There are videos online that demonstrate the prop, such

as http://www.youtube.com/watch?v=4wxlKl5lCiw. (As an aside, we have also used a

low-tech version of this effect described by Einhorn (2002) that does not depend on using

a particular commercially-available prop.) The instructor brings a 52-card deck, a 6-

sided die, and a coin. The instructor explains that he will attempt to predict the outcomes



5

of a coin flip, a die roll, and a card selection. He explains that he will first predict the

result of a coin flip. In the upper left square on the board, the instructor writes down his

prediction and covers it with an opaque piece of cardboard. A randomly selected student

is then asked to flip a fair coin, and write down the result of the coin flip in the region on

the board below the covered prediction. Without showing the first prediction, the

instructor then explains he will write down his prediction of a die roll, which he does in

the upper middle region of the board, and then covers it. A randomly selected student

then rolls a fair die and writes down the face in the lower middle region of the board.

Finally, the instructor says he will predict a card chosen from a deck. The instructor

writes the prediction in the upper right corner and covers it with a piece of cardboard. A

student then selects a card from the deck, and writes down the selection below the

covered prediction. At this point, we find it appropriate to discuss with our students the

individual probabilities of correctly predicting the coin flip, die roll, and card selection,

followed by formally revisiting the calculation of the probability of the intersection of all

three: 1/2 x 1/6 x 1/52 = 1/624. We then reveal that, in fact, all three predictions are

correct, so that their sense of surprise is consistent with the small probability of the event

that occurred. This effect can serve as a starting point for related computations, including

the computation for the probability of at least one of the three predictions being correct,

the probability of certain combinations of predictions being correct, and so on. We note

that the original “Mental Epic” trick can be used to make three predictions of any type,

and that by choosing the predictions to involve coins, dice, and cards, we have

quantifiable probabilities that are suitable for the context of a statistics class.
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To illustrate the probability of the intersection of events that are not independent

using the multiplication rule with telescoping conditional probabilities, we have found an

effective demonstration to be “Mental Image,” the 1958 trick by Dr. (Stanley) Jaks.

Similar tricks can be substituted that involve making several simultaneous predictions.

This trick can also be used to demonstrate counting permutations. The trick involves

five large distinct ESP cards – one showing wavy lines, one with a plus sign, one with a

square, one with a star, and one with a circle. A randomly selected student is asked to

seal each card in separate opaque envelopes, shuffle the envelopes, and hand the stack of

five envelopes to the instructor. The instructor explains that he will predict the card in

each envelope before opening any of them. To compute the probability of this prediction,

we let 1A be the event that the first prediction is correct, 2A be the event that the second

prediction is correct, and so on. We then discuss how to find the probability of the

intersection of all five events if the predictions were made randomly, and have the

students recall or verify that the probability is easily computed as

),,,|(),,|(),|()|()( 432153214213121 AAAAAPAAAAPAAAPAAPAP ,

which is 120/1)1)(2/1)(3/1)(4/1)(5/1(  .

We then make our predictions, usually writing them on the outside of the

envelopes. In sequence, we reveal that each prediction is indeed correct. After each

prediction is correctly made, we point to each term in the telescoping conditional

probabilities to clarify how we obtained the values. For example, after correctly

predicting the first card, we explain that )|( 12 AAP is ¼ if we are simply guessing because
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after correctly guessing the first card, four cards remain so that the probability of a

correct guess is 1 out of a reduced sample space of four. Note that this scenario requires

students to have a conceptual interpretation of conditional probability, rather than

performing formal calculations for each component factor, in support of the third

recommendation of ASA (2005).

It is worth noting that this demonstration can also be used to motivate the

calculation of permutations. After the instructor guesses the card in each envelope, a

discussion can take place where it is of interest to know the number of possible

arrangements of five cards among the five envelopes. If the instructor is merely

guessing, then the specific guesses he made is one particular arrangement out of a total of

5!=120 possible. This is an alternative way to arrive at the event probability of 1/120.

The “Birthday Problem” (see Lesser, 1999 for a discussion) can serve as a good

example of the misperception of probability disguised as a magic trick. The calculations

are straightforward but interesting enough for our more advanced introductory classes to

warrant this demonstration. Assuming we have a sufficiently large class (e.g., at least 35

students), we tell students we are going to perform a magic trick, and ask students to

create a mental image of their birthday. After appropriate theatrics, we proclaim that two

of the students have the same birthday. The common initial belief among students is that

it would take around 183 people to have even a 50% chance (Lesser, 1999), when the

actual number necessary is only 23. We ask students to state their birthday out loud as

we go around the room, and stop once we obtain two students with the same birthday

(which is highly likely to happen with our class size). Once a match is found, we explain
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that the probability of finding a match is much more likely than it would seem at first,

and proceed to demonstrate the computation. This involves finding the probability of the

complement (no two students have the same birthday), which is the telescoping product

of conditional probabilities as in the ESP card prediction example.

Two points about the Birthday Problem “trick” are worth mentioning. First,

unlike most of the tricks in this paper (where the event that appeared to happen has a very

low probability), this trick involves students being surprised by the occurrence of an

event that only appears to be unlikely but actually is not. Research (e.g., Shaughnessy

1977, 1992) shows that people generally tend to underestimate disjunctive probabilities

(i.e., probabilities that something happens “at least once”). Second, it is possible, though

unlikely, that this trick will not “work” and teachers need to be prepared to turn that

outcome into a mini-lesson with more detail about how the probabilities depend on the

size of the class and how one might conduct simulations. We note that the birthday

problem mathematics has been used to support other magic tricks (e.g., Mulcahy, 2006).

2.2 Demonstrations involving distributions

We have employed demonstrations to illustrate the concept of distributions of

functions, and of sampling distributions. For example, the “Divining Rod” trick in

Edwards (1994, pp. 28-31) can be described as the student finding all possible

permutations of her secretly chosen three-digit number with distinct digits, and then

dividing the mean of those (six) permutations by the sum of the digits of the original

three-digit number. We explain that depending on the choice of the 3-digit number, a

different computation might result. If the student selected her original three-digit number
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at random, then the distribution of the resulting computation is the distribution of that

function relative to a discrete uniform distribution on three-digit numbers with non-

repeating digits. What is not apparent to the student is that the distribution is degenerate

– it is a point mass at 37. We then find a creative way to reveal that the computation

results in the value 37 (which students can later use algebra to verify that this is always

the answer).

A slightly more elaborate version of the preceding demonstration involves the

magic trick “Predict Perfect” by Meir Yedid. The instructor shows nine cards having the

digits 1 through 9 and also shows an envelope containing a prediction which the

instructor places in full view during the demonstration. After shuffling these cards, the

instructor gives three students three cards each and tells the students to shuffle their three

cards. The instructor explains that he will form three 3-digit numbers based on the values

on the cards, and then add the three numbers. He asks the three students to call out the

first of the three shuffled set of cards they are holding – these will be the hundreds digits

of the three 3-digit numbers. Then the instructor asks the students to call out the values

of the second cards, which will be the tens digits. Finally, the instructor asks for the

values of the third cards, which become the ones digits of the 3-digit numbers. The

instructor then sums the three 3-digit numbers. Before revealing the prediction, the

instructor demonstrates that different configurations of the nine cards would produce

different final sums. Depending on the class, we go through the details of understanding

the entire sampling distribution of the sum, showing for example that there are a total of

199 unique sums possible (noting that the smallest possible sum is 774, the largest is

2556, and all sums must be divisible by 9). We also explain how to compute the
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probability of certain sums based on the process being entirely random, and show which

sums have the greatest probability (specifically, 1566, 1575, 1638, 1656, 1674, 1692,

1755, and 1764, each of which can be shown with effort to have a 3/280, or 1.07%,

probability – the calculations to determine this probability is a brute-force computation,

and requires enumerating all outcomes of the sample space within a computational

software package). We then finally reveal the prediction, which of course is correct, and

illustrate that even though it was unlikely to guess the correct sum, there were multiple

outcomes in the original sample space that would have led to the predicted sum. For

example, if the predicted sum were 1647, then we explain that several outcomes could

have led to this sum, for example 124+536+987, or 371+582+694, or 213+645+789,

among others. We therefore illustrate that even if the 9 digits were arranged randomly to

construct three sets of 3-digit numbers, the distribution of the sum of the 3-digit numbers

is not uniformly distributed. We find this concept helpful to establish through such a

demonstration before teaching topics such as the sampling distribution of the sample

mean applied to, for example, rolls of two dice.

2.3 Hypothesis testing demonstrations

Castro Sotos et al. (2009) review many misconceptions students are known to

have about the meaning of a p-value, such as mistakenly believing (despite the efforts of

the instructor) that it is the probability of the null hypothesis. Because the p-value is a

probability of observing data at least as extreme as what was observed under the null

hypothesis, using magic tricks to produce low-probability events is an ideal method for

illustrating the concept of a p-value. Lesser (2006) has noted that by using a procedure or
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prop from magic to generate an unlikely event, student probability intuition can be

discussed and connected to the formal idea of a p-value.

Lesser (2006) discussed the “Predicting Coin Flipping” example of Maxwell

(1994), in which students have the chance to notice at what point they became suspicious

when a flipped coin is correctly predicted every time. Maxwell described the instructor as

doing the flip while a student predicts, and then the instructor always reports (lying as

necessary) that the prediction was correct. Holland (2007) offers a variation involving

students discussing at what point they became suspicious that something was “fake” or

“rigged” when a flipped coin kept landing on heads (the instructor was indeed using a

two-headed coin, a prop commonly available in magic stores; because students may have

heard of this prop, it may be even more effective to buy a “two-tailed” coin to use). This

discussion gives context for significance level, as each student personally experienced

their threshold of suspicion.

Whether the setup involves tracking which outcomes were heads or which

outcomes involved correct predictions, the context can be conventionally framed as

testing the null hypothesis that a binomial probability equals ½. We find that most

students begin to get suspicious after the fifth head or tail in a row. By showing students

that the probability that the first five tosses are all heads or all tails works out to be 1/16 =

0.0625, which is close to the conventional benchmark of 0.05, which supports statistician

Fred Mosteller’s claim (Cohn, 1989, p. 20) of “some empirical evidence that the rarity of

events in the neighborhood of 0.05 begins to set people’s teeth on edge.” This
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demonstration also is a vehicle to discuss what it means for a process to be independent

or memoryless.

Gelman & Glickman (2000) introduce a fairly simple card trick called the

“Invisible Deck.” The instructor explains that he has reversed a card in the deck before

coming to class. A student is selected at random (for example by having a student catch a

piece of chalk we throw in the air), and is asked to name a playing card of his/her

choosing. The deck of cards is then fanned with all the cards face-up, and a single card is

seen among them face-down. The reversed card is then placed aside in full view of the

students, still without revealing its identity. Suppose the student named the eight of

spades. The instructor then asks the students if they would be surprised if the reversed

card was a black card, like the eight of spades. After the students say they would not be

surprised, we add a formalism to the discussion by explaining that under the null

hypothesis that the naming of a card was unrelated to the card’s reversal, the probability

would be ½ that the card would be black. The instructor also asks if the students would

be surprised if the card were a spade, if the card were an “eight,” and if the card were

actually the “eight of spades” and the students verify the respective probabilities of ¼,

1/13, and 1/52. After the students say they would be particularly surprised at the reversed

card being the eight of spades, we clarify that if it is the eight of spades then there are two

possible conclusions: Either (1) the original assumption that the reversed card and the

card named were unrelated is true so that we are observing a low-probability event (p =

1/52) under this assumption, or (2) the original assumption is not correct (i.e., that the

card being reversed has some connection to the card being named, corresponding to p >

1/52). The instructor then reveals to the surprise of the students that the reversed card is
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indeed the eight of spades. We have found this an excellent launching point for a more

formal setup of hypothesis testing, and often refer back to this demonstration when

outlining the conventional hypothesis testing procedure as taught in conventional steps.

2.4 Advanced topics

While many magic tricks lend themselves to illustrate basic concepts in

probability and statistics, greater ingenuity is required to find application to more

advanced concepts and methods. We present here two magic effects that apply to topics

more likely to have a home in advanced courses.

The first example is fairly well-known. The instructor has a student shuffle a

deck of cards, and hand the deck back to the instructor. The student is then asked to think

of an integer between 1 and 10. Let 1a denote this number. The instructor, who holds the

deck face down, explains that he will slowly count through the cards, turning each one

face up in succession, until he has gone through the entire deck. The student is told to

count to the 1a -th card, and note the face value of this “key” card (call this value 2a ).

We will follow the convention that if the key card is a jack, queen, or king, act as if

12 a , 2 or 3, respectively. Then the student is to count 2a more cards, and note the face

value of the key card in this position. The student is to continue the recursion of counting

cards indicated by the face value of the card at the position on which a sequence ends

until the instructor goes through all of the cards in the deck. The student is told to

remember the last key card before the deck has been completely counted through. After a

suspenseful moment, the instructor then reveals the identity of the last key card, which

presumably on the student could possibly know, and of course is correct. Readers can get
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a sense of the effect by using the online applet at: http://oldweb.cecm.sfu.ca/cgi-

bin/organics/carddemo.pl?mbutton=Shuffle

This “Key Card Trick,” which uses the principle of counting due to physicist

Martin Kruskal (Haga & Robins, 1997), is a relatively straightforward application of

discrete-time Markov chains. While the student selects a number 1a at the start of the

trick, the instructor also does so silently. And while the student follows the recursion

explained above, the instructor also follows the recursion while counting through the

cards. With high probability, the student’s and instructor’s sequence of key cards will

eventually dovetail, and will therefore end the sequence on the same key card regardless

of the first key card in the sequence. (The last key card is the key card that is not

followed by enough cards to continue the count.) More specifically, the trick can be

formulated as an inhomogeneous Markov chain: If id is the distance from the instructor’s

i-th key card to the nearest key card of the student, then 90  id , forming 10 discrete

states, where 0id is an absorbing state of the chain. With an unlimited chain, it can be

shown that the absorbing state is reached with probability 1, though for finite chains there

is a non-zero probability that the demonstration will fail and details on calculating this

probability appear in Havil (2008). There are versions of this trick involving a deck of

cards (Peterson, 2001; Mulcahy, 2000) or a piece of text (Gardner, 1998; Havil, 2008).

We have developed an application of a magic effect to updating probabilistic

knowledge via Bayes’ Theorem. The following demo can also be used to provide

intuition for the concept of the “odds” of an event, as well as a tool to understand the

concept of a Bayes factor. The demonstration is based on the card trick “All Alike”

created by José de la Torre in the 1970s and demonstrated in an online video at
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http://math.bu.edu/people/mg/video/all_alike_glicko.wmv. The trick was subsequently

marketed as “Incredible!” by Nick Trost, and can be found described in Trost (2008).

For this demo, the instructor shows the class a deck of cards where the backs of half of

the cards are blue, and half are red. He spreads out the blue half of the deck face down

on a flat surface, and asks a student to push any card forward and then place it on the red

half. The instructor then selects a red-backed card from his half, and places on the blue

half, which the student now holds. Both student and instructor cut their halves of the

deck, and spread out the face down cards, showing that one red card is among the blue

backs, and one blue card is among the red backs. The instructor then asks the student (on

the count of three) to turn over the odd-backed cards in each half. When he does so, the

cards are identical (e.g., they are both the 5 of clubs).

Without proceeding further, the student usually speculates that all of the cards that

are face down in both halves are identical (which would naturally explain why the odd-

backed cards match). Rather than turn over the face down cards to confirm or deny the

student’s suspicion, we first formalize the problem. Letting S be the event that the two

odd-backed cards match, we consider two possible assumptions about the identities of the

face down cards: Let T denote the event that all the cards are identical (the 5 of clubs),

and let U denote the event that we started with 26 distinct red-backed cards, and a

matching set of 26 distinct blue-backed cards. We will assume that T and U are mutually

exhaustive, that is, there is no other possible truth. We explain to the students that we

would like to say something about )|( SUP , the probability that we started with 26

distinct cards in each half given that we observed a match between the odd-backed cards.
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We explain that because we are making a probabilistic inference about an

assumption, Bayes’ rule applies. Specifically,

)()|()()|(

)()|(
)|(

TPTSPUPUSP

UPUSP
SUP


 ,

where 1)|( TSP and 26/1)|( USP . We also have that )(1)( TPUP  , even

though we do not know each individually. We explain that it is more convenient to think

about the problem in terms of the odds of U relative to T (possibly given S). Defining

)(/)()(odds TPUPU  and )|(/)|()|(odds STPSUPSU  , it is straightforward to

confirm that

)(odds
)|(

)|(
)|(odds U

TSP

USP
SU 








 ,

where the parenthetical term is the Bayes factor, and can be understood as the weight of

evidence of U relative to T. For the card demonstration, we conclude that

)(odds
26

1
)(odds

1

26/1
)|(odds UUSU 








 .

Thus, if we start out believing that it is just as likely that the cards are identical (5 of

clubs) as they are different, so that 1)(odds U , then after seeing the matched cards we

are now 26 times more inclined to believe that the cards are all the same.

We finally reveal the face down cards, showing that all the cards are indeed the

same, but that they are not the same as the odd-backed cards. In other words, all the face

down cards are the 7 of diamonds, while the two selected cards are the 5 of clubs. The

students are clearly surprised, and by performing a similar calculation to the above

process we show that the Bayes factor for the comparison of all the cards being identical

(event T) versus having all the face down cards be identical but different to the selected
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cards is 1/676. Thus, relative to the original explanation the student speculated, the

actual explanation is even more surprising (in the sense of a Bayes factor) than if the

cards were all distinct within halves.

2.5 Other connections to statistics content

Having already explored several tricks in a fair amount of depth, we now note briefly a

few additional tricks or connections that interested reader may wish to explore or develop

further. A probabilistic trick involving the entire class besides the Birthday Problem trick

could involve some sort of sampling of data in class where the instructor correctly

predicts that the most common first (i.e., leftmost) digit of numbers in the dataset will be

1, based on a result for first-digits known as Benford’s Law (e.g., Fewster, 2009). For

example, Gelman & Nolan (2002) describe a classroom demonstration applied to street

addresses sampled randomly from the telephone book. Each student could even bring in

completely different datasets and have them all aggregated together to result in Benford’s

law being demonstrated, where the probability that “d” is the first-digit is log10(1 + 1/d),

which is clearly a decreasing function of d.

Mulcahy (2007) describes a card trick where the volunteer is “forced” to select a

set of four numbers from the set {1, 2, 3, 4, 5, 6, 7, 8} such that her set has the same

mean, and even more amazingly, the same sum of squares as well as the set of four

numbers that were not selected. Because variance is the mean square minus the squared

mean, this means that the datasets also have the same standard deviation. The details of

how the trick is carried out is in Mulcahy (2007) and will not be repeated here.
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Other connections include using common magician “street bets” as vehicles to

train students to be more explicit about specifying sample spaces or conditioning events.

For example, the “Three-Card Swindle” in Gardner (1982) has been developed into a

classroom demonstration by Gelman and Nolan (2002), while the “Three Shell Game”

connects to the Monty Hall problem, about which there has been much literature (e.g.,

Barbeau, 1993).

3. Discussion

The tricks introduced in this paper span a range of concepts and techniques

applicable to classes of varied levels of technical sophistication. Just as Berk (2003)

identifies a continuum of low-risk to high-risk uses of humor, there is certainly a similar

continuum of magic tricks for classroom use. Some tricks are simple and self-working,

while others involve multiple steps, additional practice beforehand, or more concentration

(in terms of story-telling, calculation, or even sleight of hand) during performance. We

highlight some of the main features of the tricks in this paper, including approximate time

to carry out the demonstration, Table 1.
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TABLE 1: Overview of Magic Tricks for Teaching Statistics

Trick Statistical Topic(s) Difficulty to
Learn and
Perform

Materials and Class
(Time Needed)

Mental Epic Probability of the
intersection of independent

events

Medium Mental Epic board,
coin, dice, cards.

(20-30 minutes)

Mental Image Probability of the
intersection of non-
independent events

Medium Special ESP cards

(15-20 minutes)

Birthday Problem* Probability of the
intersection of non-
independent events

Easy Blackboard

(15-20 minutes)

Divining Rod Sampling distribution Easy Blackboard

(15-20 minutes)
Predict Perfect Sampling distribution Easy Cards with digits 1

through 9

(20-30 minutes)
Predicting Coin

Flipping
Hypothesis testing,

Binomial tail probability
Easy “Fake” coin

(15-20 minutes)
Invisible Deck Hypothesis testing Medium Special deck of cards

(15-20 minutes)
Key Card Trick* Markov chains Medium Regular deck of cards

(20-30 minutes)
All Alike Bayes’ Theorem, odds,

Bayes factor
Medium Special deck of cards

(20-30 minutes)

In our classrooms (and this paper), we generally choose not to reveal the full

secrets of magic tricks out of professional courtesy to working magicians, and because

the secrets to the tricks are usually not relevant for (and could distract attention from) an

enlightening discussion of probability and statistics concepts and techniques. (Of course,
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sufficiently interested students know they can always learn magic trick secrets by going

to magic books or magic shops.) The intentionality of not revealing a trick can itself

become a teaching moment to explain about the reality of inferential statistics. As

Holland (2007) notes in further discussion about the (two-headed) coin flipping

demonstration, “The coin is safely in your pocket, and the students will never see it. This

is just like testing of hypotheses in research situations: you never know the ultimate

truth, you just draw conclusions based on the probabilities of your observations.”

Paralleling Gelman & Glickman (2000), our magic trick demonstrations are

designed to involve students in traditional lecture material, but are not meant to be a

replacement for student-initiated investigations. In fact, students may enjoy the challenge

(for enrichment or extra-credit) to devise their own magic tricks to illustrate particular

topics. Our demonstrations also should be a vehicle to support critical thinking

throughout the course. For example, in magic tricks and in real-life data, what initially

appears to be a random sample (or random selection) is actually not, and it is no small

feat to develop the skills and habit of mind to engage in this mode of critical thinking.

While it is hoped that we have made the case for how magic tricks can facilitate a

memorable experience of conceptual aspects of the discipline, a concern can be raised

that students may have a negative feeling of having been “tricked.” To the extent magic

tricks produce surprising results, they are similar to paradoxes or counterintuitive

examples in statistics (e.g., Lesser 1999, 2001). Educators need to be aware of the

possible pitfall expressed by former National Council of Teachers of Mathematics

president Gail Burrill (1990), repeated by the ASA (1994) that emphasis should be on
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building intuition, not on “probability paradoxes or using statistics to deceive.” Falk and

Konold (1992) express a similar caution that students may despair if teachers persist in

exposing their vulnerabilities.

However, the stronger trend in research studies on this issue is that well-chosen

paradoxes are more likely to motivate than demoralize (e.g., Lesser 1998; Shaughnessy,

1977; Wilensky, 1995). In short, magic tricks must be thoughtfully chosen so that the

quality and intensity of surprise is “just right,” so that students will feel engaged to want

to dig deeper to discuss and understand, rather than feel unduly tricked or deceived.

Indeed, some introductory textbooks (e.g., Utts, 2005) actually address explicitly how

intuition can be fallible or distorted by such phenomena as the availability heuristic,

anchoring, the representativeness heuristic, the conjunction fallacy, and forgotten base

rates. And the classic by Huff (1993) on statistical literacy and critical thinking playfully

incorporates the “deception” theme in its title: How to Lie with Statistics. As researchers

continue to learn about the cognitive and physiological dynamics in the brain in response

to seeing magical happenings, educators (particularly in probability and statistics) can

continue to take advantage of the unique opportunities afforded in enhancing the concepts

of statistics in a way that students experience the discipline as “magical” (in a positive

sense) in its power to illuminate the unknown.
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