Supersingular Isogeny Graphs and Quaternion Algebras.

1. Isogeny Graphs: Background and Motivation.

Outline / Motivation:
This minicourse will consist of four lectures:

1) Background. Isogeny graphs. Applications.
2) Supersingular Isogeny Graphs in Cryptography.
 * post-quantum cryptography.
3) Introduction to Quaternion Algebras.
4) The Deuring correspondence:
 \[
 \{ \text{maximal orders} \} \quad \overset{\sim}{\longleftrightarrow} \quad \{ \text{supersingular} \} \quad \mathbb{F}_p^2 / \text{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)
 \]
 * applications to SIG cryptography.

Background

- **Elliptic Curves.**
 Let \(k = \mathbb{F}_q \) be a finite field of characteristic \(p \neq 2,3 \).

 Definition.
 - An **elliptic curve** \(E/k \) is a smooth projective curve of genus 1 over \(k \), together with a distinguished \(k \)-rational point \(0 \).
 - \(E \) is isomorphic over \(k \) to the projective curve associated to an affine Weierstrass equation
 \[
 E: y^2 = x^3 + ax + b, \quad a, b \in k.
 \]
 - We define the **j-invariant** \(j(E) \) of \(E \) to be
 \[
 j(E) := j(a, b) := 1728 \frac{4a^3}{4a^3 + 27b^2}
 \]
 for any Weierstrass model of \(E \).
FACTS:

1) Elliptic curves E, E' are isomorphic over $\bar{k} \iff j(E) = j(E')$.

2) There is a 1-1 correspondence

$$\bar{k} \leftrightarrow \text{ set of } \bar{k}\text{-isomorphism classes of elliptic curves over } \bar{k}.$$

Isogenies,

DEFINITION.

- Let E, E' be elliptic curves over \bar{k}. An isogeny $\varphi : E \to E'$ is a nonzero morphism of pointed curves.

- The degree of an isogeny is its degree as a rational map.

- An isogeny of degree n is called an n-isogeny.

E, E' are n-isogenous if they are related by a degree n isogeny, and if $j, j' \in \bar{k}$ are n-isogenous over \bar{k} if there are n-isogenous $E, E'/\bar{k}$ such that $j(E) = j$ and $j(E') = j'$.

- The kernel of φ is the kernel of the induced map

$$\varphi : E(\bar{k}) \to E'(\bar{k}).$$

FACTS:

1) If $p | n$, then the kernel of an n-isogeny φ has size n (we say φ is separable).

2) Every finite subgroup of $E(\bar{k})$ is the kernel of a separable isogeny over \bar{k} which is uniquely determined up to isomorphism. (This isogeny can be explicitly computed using Vélu's formulas).
3) Every \(n \)-isogeny \(\varphi : E \to E' \) has a unique dual isogeny \(\hat{\varphi} : E' \to E \) such that \(\varphi \circ \hat{\varphi} = \hat{\varphi} \circ \varphi = \text{Id} \), where \([n]\) is the multiplication-by-\(n\) map.

4) The kernel of \([n]\) is the \(n \)-torsion subgroup
\[
E[n] = \left\{ P \in E(\bar{k}) \mid nP = 0 \right\},
\]
and when \(p \nmid n \),
\[
E[n] \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}.
\]

Lemma

Let \(E \) be an elliptic curve with \(j(E) \neq 0, 1728 \), and let \(l \neq p = \text{char}(k) \) be prime. Up to isomorphism, the number of \(k \)-rational \(l \)-isogenies from \(E \) is 0, 1, 2 or \(l+1 \).

Proof

- \(E[l] \) contains \(l+1 \) subgroups of order \(l \), each of which is the kernel of a separable \(l \)-isogeny over \(\bar{k} \). Every \(l \)-isogeny \(\varphi \) from \(E \) arises in this way, since \(\ker(\varphi) \subseteq \ker(\hat{\varphi} \circ \varphi) = E[l] \). So there are \(l+1 \) isogenies of degree \(l \) defined over \(\bar{k} \).
- \(\varphi \) is defined over \(k \) \(\iff \) \(\ker(\varphi) \) is invariant under the action of the group \(G = \text{Gal}(k(E[l])/k) \), which acts linearly on \(E[l] \cong \mathbb{F}_l^2 \), in which order- \(l \) subgroups are linear subspaces. But if \(G \) fixes more than 2 linear subspaces, then it must fix everything.
• **Note:** The hypothesis that \(j(E) \neq 0, 1728 \) guarantees that
\(E \) doesn't have extra automorphisms.

The Modular Equation.

Let \(j(\tau) \) be the modular \(j \)-function. For each \(N \in \mathbb{N} \), the minimal polynomial \(\phi_N \) of \(j(N\tau) \) over \(\mathbb{C}(j(\tau)) \) is the modular polynomial

\[
\phi_N \in \mathbb{Z}[j(\tau)][y] \subset \mathbb{Z}[x,y].
\]

FACTS:

1) \(\phi_N \) is symmetric in \(x \) and \(y \).

2) When \(\ell \) is prime, \(\phi_\ell \) has degree \(\ell+1 \) in both variables.

3) The modular equation \(\phi_N(x,y) = 0 \) is a canonical equation for the modular curve \(Y_0(N) = \Gamma_0(N)\backslash \mathcal{H} \). It parametrizes pairs of elliptic curves over \(\mathbb{C} \) related by a cyclic \(N \)-isogeny.

 In particular, when \(N = \ell \) is prime,

 \[
 \phi_\ell(j(E), j(E')) = 0 \iff j(E) \text{ and } j(E') \text{ are } \ell \text{-isogenous.}
 \]

 This moduli interpretation remains true over any field \(\mathbb{F} \) with \(\text{char}(\mathbb{F}) \neq \ell \).

4) Let \(m_\ell(j, j') := \text{ord}_{t=j'} \phi_\ell(j, t) \). Whenever \(j, j' \neq 0, 1728 \),

 \[
 m_\ell(j, j') = m_\ell(j', j).
 \]
The Endomorphism Ring.

Definition.
An endomorphism of an elliptic curve E is either the zero map or an isogeny from E to itself.

The endomorphisms of E form a ring $\text{End}(E)$ in which

$$ (\phi + \psi)(P) = \phi(P) + \psi(P) $$

$$ (\phi \circ \psi)(P) = \phi(\psi(P)) $$

for all $P \in E(\overline{K})$.

- For each integer n, $[n] \in \text{End}(E)$, so $\mathbb{Z} \subseteq \text{End}(E)$.
- Over a finite field $k = \mathbb{F}_q$, $\text{End}(E)$ is always larger than \mathbb{Z}:
 $$ \text{End}(E) \cong \begin{cases}
 \text{an order } 0 \text{ in an imaginary quadratic field (E ordinary).} \\
 \text{an order } 0 \text{ in a definite quaternion algebra (E supersingular).}
\end{cases} $$

We say that E has complex multiplication (CM) by 0, and we'll fix an isomorphism $0 \rightarrow \text{End}(E)$.

Proposition
Let $E/\mathbb{k} = \mathbb{F}_p^n$ be an elliptic curve. The following are equivalent:

a) E is supersingular.

b) $E[p]$ is trivial.

c) The map $[p] : E \rightarrow E$ is purely inseparable and $j(E) \in \mathbb{F}_p^2$.

Note: if E and E' are isogenous, then $\text{End}(E) \otimes \mathbb{Q} \cong \text{End}(E') \otimes \mathbb{Q}$. Hence, supersingularity is preserved under isogeny.
Isogeny graphs of elliptic curves.

Let $k = \mathbb{F}_q$ be a field with $\text{char}(k) = p$ and $l \neq p$ be prime.

Definition.

The l-isogeny graph $G_e(k)$ is the directed graph with vertex set k and edges (j, j') present with multiplicity $m_e(j, j') := \text{ord}_{t = j} \phi_e(j, t)$.

- The vertices of $G_e(k)$ represent l-invariants and its edges correspond to (isomorphism classes of) l-isogenies defined over k.
- Since $m_e(j, j') = m_e(j', j)$ when $j, j' \neq 0, 1728$, we can regard the subgraph of $G_e(k)$ on $k \setminus \{0, 1728\}$ as an undirected graph.
- By the last remark, $G_e(k)$ consists of ordinary and supersingular components. We'll see that they have different properties.

Supersingular Isogeny Graphs.

- Since every supersingular j-invariant in k lies in \mathbb{F}_{p^2}, if E is supersingular then all roots of $\phi_e(j(E), y)$ lie in \mathbb{F}_{p^2}. Hence every vertex in a supersingular component of $G_e(\mathbb{F}_{p^2})$ has out-degree $l + 1$.
- Moreover, by a result of Kohel, $G_e(\mathbb{F}_{p^2})$ has just one supersingular component.
- By the above, if \(p \equiv 1 \mod 12 \), then the single supersingular component of \(G_{\ell}(\mathbb{F}_p) \) is an undirected \((l+1)\)-regular graph, with \(N_p \approx \frac{p}{12} \) vertices. Moreover:

- **Theorem (Pizer)**
 The supersingular component of \(G_{\ell}(\mathbb{F}_p) \) is a Ramanujan graph.

- **Definition.**
 A d-regular graph is a Ramanujan graph if \(\lambda_2 \leq \sqrt{d+1} \), where \(\lambda_2 \) is the 2\(^{nd}\) largest eigenvalue of its adjacency matrix.

- **Remark:** Pizer proved an analogous result in the context of orders in a quaternion algebra; it translates to our setting by the Deuring correspondence.

 We'll come back to this next week.

- **Ordinary Isogeny Graphs.**

 Let \(E / \mathbb{F}_q \) be ordinary. Then \(\text{End}(E) \cong 0 \) with \(\mathbb{Z}[\pi] \subset 0 \subset 0_K \), where \(\pi \) is the Frobenius endomorphism and \(K = \mathbb{Q}(\sqrt{\text{tr}(\pi)^2 - 4q}) \).

 By a theorem of Tate, isogenous elliptic curves have the same \(\text{tr}(\pi) \).

 We can separate the vertices of the connected component of \(G_{\ell}(\mathbb{F}_q) \) containing \(j(E) \) into levels \(V_0, \ldots, V_d \), so that a vertex \(j(E') \) belongs to the level \(V_i \) with \(i = \nu_E([0_K : 0]) \).

(We'll check below that \(\bigcup_{i=0}^d V_i \) is in fact a connected graph).
Let \(\varphi : E \to E' \) be an \(\ell \)-isogeny of elliptic curves with CM by imaginary orders \(\mathcal{O} = \mathbb{Z} + \tau \mathbb{Z} \) and \(\mathcal{O}' = \mathbb{Z} + \tau' \mathbb{Z} \), for some \(\tau, \tau' \in \mathbb{H} \). Then \(\varphi \circ \tau' \cdot \varphi \in \text{End}(E) \Rightarrow \ell \tau' \in \mathcal{O} \); similarly, \(\ell \tau \in \mathcal{O}' \). Hence there are three possibilities:

1) \(\mathcal{O} = \mathcal{O}' \) (\(\varphi \) is horizontal)

2) \([\mathcal{O} : \mathcal{O}'] = \ell \) (\(\varphi \) is descending)

3) \([\mathcal{O}' : \mathcal{O}] = \ell \) (\(\varphi \) is ascending)

Both \(\mathcal{O} \) and \(\mathcal{O}' \) lie in the ring of integers \(\mathcal{O}_k \) of the same field \(k \).

Horizontal Isogenies

Let \(E/k \) be an elliptic curve with CM by an imaginary quadratic order \(\mathcal{O} \). Let \(\mathfrak{a} \) be an invertible \(\mathcal{O} \)-ideal. The \(\mathfrak{a} \)-torsion subgroup

\[
E[\mathfrak{a}] = \{ P \in E(\overline{k}) | \mathfrak{a}(P) = 0 \text{ for all } \mathfrak{a} \in \mathfrak{a} \}
\]

is the kernel of a separable isogeny \(\varphi_\mathfrak{a} : E \to E' \).

- If \(\mathfrak{p} \not| \text{Norm}(\mathfrak{a}) \), then \(\deg(\varphi_\mathfrak{a}) = \text{Norm}(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}] \).
- \(\mathfrak{a} \) invertible \(\Rightarrow \text{End}(E) \cong \text{End}(E') \) (exercise), so \(\varphi_\mathfrak{a} \) is a horizontal isogeny.

If \(\mathfrak{a}, \mathfrak{b} \) are invertible \(\mathcal{O} \)-ideals, then \(\varphi_{\mathfrak{a} \mathfrak{b}} = \varphi_\mathfrak{a} \varphi_\mathfrak{b} \). So the group of invertible \(\mathcal{O} \)-ideals acts on the set of elliptic curves with endomorphism ring \(\mathcal{O} \).

When \(\mathfrak{a} \) is principal, \(E \cong E' \). Hence there is an induced action of \(\text{Cl}(\mathcal{O}) \) on the set

\[
\text{Ell}_{\mathcal{O}}(k) = \{ j(E) \mid E/k \text{ with } \text{End}(E) \cong \mathcal{O} \}.
\]
- This action is faithful and transitive, so if $E(k) \neq \emptyset$, it is a torsor for the group $\text{Cl}(O)$.
- The cardinality of $E(k)$ is either 0 or $h = \#\text{Cl}(O)$, so either every E/\bar{k} with CM by O can be defined over k, or none of them can.
- Each horizontal l-isogeny Φ arises from the action of an invertible O-ideal l of norm l (the ideal of endomorphisms $x \in O$ whose kernels contain the kernel of Φ).
- If $l \mid [O_k:O]$, then no such ideals exist.
- Otherwise we say that O is maximal at l, and in this case the number of invertible ideals of norm l equals

$$1 + \left(\frac{\text{disc}(k)}{l}\right) = \begin{cases} 0, & \text{if } l \text{ is inert in } k \\ 1, & \text{if } l \text{ is ramified in } k \\ 2, & \text{if } l \text{ splits in } k. \end{cases}$$

Vertical Isogenies

Let O be an imaginary quadratic order with discriminant D, and let $O' = \mathbb{Z} + lO$ be the order of index l in O.

Assume $D < -4$, so that the only units in O, O' are $\pm 1, i$ (this excludes $O = \mathbb{Z}[i]$ and $O = \mathbb{Z}[\sqrt{3}]$, corresponding to $j = 1728$ and 0, respectively).

Lemma

Let E'/k be an elliptic curve with CM by O'. Then there is a unique ascending l-isogeny from E' to an elliptic curve E/k with CM by O.
PROOF (Sketch)
First, show that if any E'/\mathbb{K} with CM by \mathcal{O}' admits an ascending ℓ-isogeny, then so does every such elliptic curve. Then use induction on $d = v_\ell([\mathcal{O}_k : \mathcal{O}])$, plus the fact that the number of horizontal ℓ-isogenies and $\# \Ell_{\mathbb{G}}(\mathbb{K})$ are known. (See Lemma 6 in Sutherland’s “Isogeny Volcanoes” for details).

Now we are ready to describe the ordinary components of $\mathbb{G}_\ell(F_q)$. First, we need a definition:

DEFINITION.
An ℓ-volcano V is a connected undirected graph whose vertices are partitioned into levels V_0, \ldots, V_d such that:

1) The subgraph on V_0 (the surface) is a regular graph of degree at most 2.

2) For $i > 0$, each vertex in V_i has exactly one neighbour in level V_{i-1}, and this accounts for every edge not on the surface.

3) For $i < d$, each vertex in V_i has degree $\ell + 1$.

The integer d is the depth of the volcano.
Theorem (Kohel). Let V be an ordinary component of $G_{e}(F_q)$ that does not contain 0 or 1728. Then V is an l-volcano for which:

1. The vertices in level V_{i} all have the same endomorphism ring O_{i}.
2. The subgraph on V_{0} has degree $1 + \left(\frac{\text{disc}(k)}{l} \right)$, where K is the fraction field of O_{0}.
3. If $\left(\frac{\text{disc}(k)}{l} \right) \geq 0$, then $\#V_{0}$ is the order of $[l]$ in $\mathcal{O}(O_{0})$; otherwise $\#V_{0} = 1$.
4. The depth of V is $d = \nu_{e}(\left[O_{k} : \mathbb{Z}[\pi] \right])$, where π is the Frobenius endomorphism of any E with $j(E) \in V$.
5. We have $e \mid \left[O_{k} : O_{0} \right]$ and $\left[O_{i} : O_{i+1} \right] = l$ for $0 \leq i < d$.

Proof

Exercise.

Remark: The theorem can be easily extended to the case where V contains 0 or 1728, modifying the claim that V is an l-volcano appropriately.
Applications

- **Identifying Supersingular Curves.**

 We can exploit the differences between ordinary and supersingular isogeny graphs to determine whether an elliptic curve E/k is supersingular.

- **Algorithm:** (Sutherland).

 Input: an elliptic curve E/k, with $\text{char}(k) = p$.

 Output: whether E is ordinary or supersingular.

 - **Step 1:** if $j(E) \notin \mathbb{F}_p$, return "ordinary".

 - **Step 2:** if $p \leq 3$ return "supersingular," if $j(E) = 0$ "ordinary," if $j(E) \neq 0$.

 - **Step 3:** Find 3 roots of $\zeta_2(j(E), y)$ in \mathbb{F}_p.

 If this is not possible, return "ordinary".

 - **Step 4:** Walk 3 paths in parallel, for up to $\lceil \log_2 p \rceil + 1$ steps.

 If any of these paths hits V_d, return "ordinary".

 - **Step 5:** Return "supersingular".

- **Remark:** It's a Las Vegas algorithm with expected time $\tilde{O}(\log^3 p)$, and $O(\log p)$ space. These complexity bounds significantly improve existing methods.

- **Other Applications.**

 - Computing endomorphism rings of ordinary elliptic curves (Bisson, Sutherland)

 - Computing Hilbert class polynomials (Sutherland/Belding, Bröker, Enge, Lauter)

 - Computing modular polynomials (Bröker, Lauter, Sutherland).