8. DESCENT AND CANONICAL MODELS.

- **RECALL:** Shimura varieties:
 - G - reductive group over \mathbb{Q}.
 - X - conjugacy classes of $h: S \to G_{\mathbb{R}}$.
 - K - compact open $\subset G(\mathbb{A}_{\mathbb{F}})$.

\[
Sh_K(G, X) = \frac{G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_{\mathbb{F}})}{K} \quad \text{(a variety)}
\]

\[
Sh(G, X) = \lim_{\rightarrow K} Sh_K(G, X) \quad \text{(a scheme/pro-variety)}
\]

1. **Galois Descent**

- **Q:** If X/\mathbb{C} is a variety, is there some $k \subset \mathbb{C}$, X_k/k s.t. $X \cong X_k \times \mathbb{C}$?

In that case, we say that X descends to k or X_k is a model for X/k.

EXAMPLE

- $C: x^2 + y^2 = \pi / \mathbb{C}$.

Is there a model over \mathbb{Q}?

- **Yes:** $C \cong C^1: (x')^2 + (y')^2 = 1 / \mathbb{C}$ \quad \(x' = \frac{x}{\sqrt{\pi}}, \quad y' = \frac{y}{\sqrt{\pi}}\)

$C^1 = C_0 \times \mathbb{C}$, where $C_0: x^2 + y^2 = 1 / \mathbb{Q}$.

$E: y^2 = x^3 + ix + 1.$

Is there a model over \mathbb{Q}?

No: $j(E) = 1728 \frac{4i^3}{4i^3 + 27} \neq \mathbb{Q},$

but if E_0/\mathbb{Q} then $j(E_0) \in \mathbb{Q}.$

$j(E_0 \times \mathbb{C}).$

Note: for $\sigma \in \text{Gal}(\mathbb{C}/\mathbb{Q}),$

$E^\sigma: y^2 = x^3 + \sigma(i)x + 1$

If we had a model E_0/\mathbb{Q}, then

$E^\sigma \cong E_0 \times \mathbb{C} \cong E \Rightarrow E^\sigma \cong E$

But $j(E^\sigma) = j(E)^\sigma \neq j(E)$ if, say, σ is complex conjugation.

In general, we have this necessary condition:

- **Condition 1:** If a model of C/k exists, we should have

$$C \xrightarrow{f_\sigma} C^\sigma \quad \forall \sigma \in \text{Gal}(C/k).$$

- **Remark:** Models over k are not unique (example: $E \cong E_4$)

- **Remark:** The necessary condition 1 is sufficient in genus 1.

Check: If $f_\sigma: E \xrightarrow{\sim} E^\sigma \quad \forall \sigma \in \text{Gal}(C/k)$, then

$\sigma(j(E)) = j(E^\sigma) = j(E) \quad \forall \sigma$

$\Rightarrow j(E) \in k.$ So E_0/k with j-invariant $j(E).$
Now we switch to quasi-projective varieties \(X / \mathbb{C} \).

If there exists a model \(X_0 / \mathbb{k} \), then we have various natural isomorphic curves:

\[
X = X_0 \times \mathbb{C} \xrightarrow{\sim} (X_0 \times \mathbb{C})^\sigma = X, \forall \sigma \in \text{Gal}(\mathbb{C}/\mathbb{k}),
\]

and we have the relations:

\[
f_\sigma \circ f_\tau = f_{\sigma \tau} \quad \forall \sigma, \tau \in \text{Gal}(\mathbb{C}/\mathbb{k}).
\]

Proposition (Weil 1956)

\(X / \mathbb{C} \) descends to \(\mathbb{k} \) (\(\Rightarrow \))

\(\Leftrightarrow \exists f_\sigma : X \xrightarrow{\sim} X^\sigma \forall \sigma \in \text{Gal}(\mathbb{C}/\mathbb{k}) \) satisfying the cocycle condition:

\[
f_{\sigma \tau} = f_\sigma \circ f_\tau : X \to X^\sigma \to X^{\sigma \tau}.
\]

Such a system is called a Weil descent datum.

Remark: If \(X \) has only the trivial automorphism, then there is no way for the cocycle condition to fail. In this case, the necessary condition \(1 \) is sufficient.

Definition.

The field of moduli of \(X / \mathbb{C} \) is the fixed field of

\[
\{ \sigma \in \text{Gal}(\mathbb{C}/\mathbb{Q}) \mid \exists X \xrightarrow{\sim} X^\sigma \}.
\]

This is the smallest field where we may be able to descend \(X \) to.
Let m be odd and define a hyperelliptic curve of genus $m-1$ as

$$y^2 = a_0 x^m + \sum_{r=1}^{m} (a_r x^{m+r} + (-1)^r a_r^s x^{m-r}), \quad a_i \in \mathbb{C}, a_0 \in \mathbb{R}, \quad a_m = 1,$$

where s is complex conjugation.

As long as all a_i, a_i^s are algebraically independent over \mathbb{Q}, there are no automorphisms except id.

Note that there is an isomorphism

$$f_g : X \rightarrow X^s$$

$$(x, y) \mapsto (-x^{-1}, i x^{-m} y),$$

so the field of moduli is contained in \mathbb{R}.

However, $f_g \circ f_g$ is the hyperelliptic involution (i.e., $f_g \circ f_g (x, y) = (x, -y)$), so the cocycle condition fails ($f_g \circ f_g \neq f_g^2 = f_{\text{id}} = \text{id}$).

Therefore, X does not descend to \mathbb{R}.

Theorem (Weil 1956. Reference: Milne, 14.6).

X/\mathbb{C} descends to k if all $X^s \cong X$ and there exists a set of points $P_1, \ldots, P_n \in X(\mathbb{C})$ such that:

1) Any automorphism of X fixing all the P_i's is the identity.

2) There is a subfield $L \subseteq \mathbb{C}$, finitely generated over k, such that

$$\sigma P_i = P_i \quad \forall \sigma \in \text{Gal}(\mathbb{C}/L).$$

Goal: Identify a special set of points on which we know the Galois action, as well as some field L as above.
2. Canonical models.

2.1. Special points.

Imaginary quadratic integers in \mathbb{H}^+ are special, in the sense that they are fixed by some elliptic matrix $y = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{GL}_2(\mathbb{R}) \cap \mathbb{H}^+$. (Recall that y is elliptic if $(tr y)^2 - 4 \det y < 0$).

Definition.

An algebraic torus over k is an algebraic group T s.t. $T_{\bar{k}} \cong \mathbb{G}_m^n$.

Definition.

Let (G, X) be a Shimura datum. A special point is some $x \in X$ s.t. \exists \mathbb{Q}-torus $T \subseteq G$ such that $h_x(\mathbb{C}^*) \leq T(\mathbb{R})$.

We also say that (T, x) is a special pair.

Remark: (T, x) special means that $T(\mathbb{R})$ acting by conjugation fixes x. Conversely, if $T \subseteq G$ is a maximal torus and $T(\mathbb{R})$ fixes x, then (T, x) is special.

Example.

Let $G = \text{GL}_2$ and $\mathbb{H}^+ = \mathbb{C} \setminus \mathbb{R}$. Then $G(\mathbb{R}) \cap \mathbb{H}^+$ acts via

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} z = \frac{az + b}{cz + d}.$$

If $z \in \mathbb{H}^+$ generates an imaginary quadratic field E / \mathbb{Q}, then we can embed $E \to \text{Mat}_2(\mathbb{Q})$ using the basis $\{1, -z\bar{z}\}$ for E.

We get a maximal torus $T := \text{Res}_{E/\mathbb{Q}}(\mathbb{G}_m) \subseteq G$.

Exercise: find x such that (T, x) is a special pair.
2.2. Canonical models.

Given a special pair \((T, x) \in (G, X)\), we have a cocharacter \(\mu_x^E\) defined over \(E(x)\), and we can form the map:

\[
\Gamma_x : \mathbb{A}^E_{x(x)} \xrightarrow{\pi} \mathbb{A}^E_{x(x)} \xrightarrow{\text{proj}} T(A_{E}) \xrightarrow{\text{projection}} T(A_{E}).
\]

We have the Artin map from Class Field Theory:

\[
\text{art}_{E(x)} : \mathbb{A}^E_{x(x)} \rightarrow \text{Gal}(E(x)^{ab}/E(x))
\]

Call \([x, a]_K\) the point of \(\text{Sh}_K(G, X)\) represented by \((x, a), a \in G(A_{E})\).

Definition. (Milne 12.8)

Let \((G, X)\) be a Shimura datum and \(K \subset G(A_{E})\) a compact open subgroup. A model \(M_K(G, X)\) of \(\text{Sh}_K(G, X)\) over the reflex field \(E(G, X)\) is a canonical model if for all special pair \((T, x) \in (G, X)\) and \(a \in G(A_{E})\), \([x, a]_K\) has coordinates in \(E(x)^{ab}\) and

\[
\sigma [x, a]_K = [x, \sigma(x) a]_K
\]

for all \(\sigma \in \text{Gal}(E(x)^{ab}/E(x))\) and \(s \in \mathbb{A}^E_{x(x)}\) s.t. \(\text{art}_{E(x)}(s) = \sigma\).

Langlands Conjecture. (Milne 1983)

Let \((G, X)\) be a Shimura datum and \(\sigma \in \text{Aut}(\mathbb{C})\). Langlands defined \((G^\sigma, X^\sigma)\) and conjectured a unique isomorphism

\[
f_\sigma : \text{Sh}(G^\sigma, X^\sigma) \rightarrow \text{Sh}(G, X)
\]

satisfying some conditions.

Theorem. (Milne 1983)

For any Shimura datum \((G, X)\), \(\text{Sh}(G, X)\) has a canonical model (defined to be a compatible system of canonical models for \(\text{Sh}_K(G, X)\)). This model is unique up to unique isomorphism.