Universal Deformation: Properties.

- We've been trying to understand deformations of $\overline{\pi}: \Pi \to \text{GL}_n(k)$, k finite field of char. p, Π profinite group satisfying Φ_p.

 (E.g., $\Pi = \text{G}_{K^s}$ or $\text{G}_{K,s}$).

- $\mathcal{C} = \text{category of complete local Noetherian rings with residue field } k$.

 $\mathcal{C}^\circ = \text{subcategory of } \mathcal{C} \text{ consisting of Artinian rings}$.

 Similarly, for each $\Lambda \in \mathcal{C}$, we defined the analogous categories $\mathcal{C}_{\Lambda}, \mathcal{C}_{\Lambda}^\circ$ of Λ-algebras.

- We have $D_{\overline{\pi}}: \mathcal{C}_{\Lambda}^\circ \to \text{Sets}$, the deformation functor associated to $\overline{\pi}$, whose value at R is the set of R-deformations of $\overline{\pi}$, i.e., $\Psi: \Pi \to \text{GL}_n(R)$.

- **Last time:** $D_{\overline{\pi}}$ is pro-representable by $R = R(\Pi, \overline{\pi}, k) \in \mathcal{C}_{\Lambda}$, with universal deformation $\mathcal{P}: \Pi \to \text{GL}_n(R)$ such that all deformations of $\overline{\pi}$ to $\Lambda \in \mathcal{C}_{\Lambda}^\circ$ arise via unique $R \to \Lambda$

 (assuming $C(\overline{\pi}) = \text{Hom}_\Pi(k^n, k^n) = \{ P \in M_n(k) \mid \overline{\pi}(g)P \overline{\pi}(g) = P \text{ for all } g \}$ is k).

- The existence of R implies some functorial properties of $D_{\overline{\pi}}$, $\Lambda = \mathcal{D}_{\Lambda}$

 Example $\text{det}: \text{GL}_n \to \text{GL}_1$ sends deformations of $\overline{\pi}$ to deformations of $\text{det}(\overline{\pi})$, so we get a homomorphism from the completed group ring $\Lambda[[\Gamma]] \to R(\overline{\pi})$,

 where $\Gamma = \Pi^{\text{ab}, (p)}$ since $\Lambda[[\Gamma]] = R(\text{det} \overline{\pi})$.

EXAMPLE: If \bar{g} is equivalent to \bar{g}' by $X \in \text{GL}_n(k)$, then we get a map $R(\bar{g}) \to R(\bar{g}')$, which is an isomorphism and doesn't depend on the choice of X.

Tangent Spaces and Cohomology Groups.

Fix \bar{g}, Λ. Then the tangent space to $D := D_{\bar{g}}, \Lambda$ is

$$t_D := D(k[\varepsilon]).$$

Since D is pro-representable, we see that

$$t_D = \text{Hom}_\Lambda (R, k[\varepsilon]) = \text{Hom}_k (\Lambda R/(\Lambda R, \Lambda \Lambda), k).$$

Working with our deformation functor D, we can go further:

Suppose $\bar{g}(g) = a \in \text{GL}_n(k)$. Then if \bar{g}_1 is a deformation of \bar{g} to $k[\varepsilon]$ then

$$\bar{g}_1(g) = (1 + bg \varepsilon)a$$

for some $bg \in H_n(k)$.

Claim: bg is a 1-cocycle for the Ad-representation $\text{Ad}(\bar{g})$,

where $\text{Ad}(\bar{g}) = H_n(k)$ with action $g \cdot s = \bar{g}(g) \cdot s \cdot \bar{g}(g)^{-1}$.

The condition that \bar{g}_1 is a group homomorphism means

$$\bar{g}_1(gh) = (1 + bg \varepsilon)x \cdot y,$$

where $\bar{g}(g) = x$, $\bar{g}(h) = y$.

Thus

$$\bar{g}_1(g) \bar{g}_1(h) = (1 + bg \varepsilon)x(1 + bh \varepsilon)y = (x + bg \varepsilon x)(1 + bh \varepsilon y) =$$

$$(x + bg \varepsilon x + bh \varepsilon y) = (1 + bg \varepsilon + bh \varepsilon x' \varepsilon)y \Rightarrow bg + bh \varepsilon x' = bg + gbh \varepsilon x'$$
This gives a correspondence between
defining \(\mathcal{G} \) to \(k[x] \leftrightarrow \) 1-cocycles on \(\text{Ad}(\mathcal{G}) \).

So \(t_0 \to H'(\mathbb{T}, \text{Ad}(\mathcal{G})) \) is an isomorphism of \(k \)-vector spaces.

(Exercise: check these claims).

Corollary

If \(d_1 = \dim_k H'(\mathbb{T}, \text{Ad}(\mathcal{G})) \) then \(R \) is a quotient of a power series ring in \(d_1 \) variables, i.e.,

\[
0 \to I \to \bigwedge[\ldots, X_d] \to R \to 0
\]

We can also describe \(t_0 \) with data intrinsic to \(\mathcal{G} \) as follows:

Let \(V_{\mathcal{G}} \) be the space corresponding to \(\mathcal{G} \). Let

\[
0 \to V_{\mathcal{G}} \to E \to V_{\mathcal{G}} \to 0
\]

be an extension of \(V_{\mathcal{G}} \) by \(V_{\mathcal{G}} \) in the category of \(k[\mathbb{T}] \)-modules.

Then \(s_E : \mathbb{T} \to GL_n(k) \) (the representation corresponding to \(E \))

can be expressed as

\[
s_E(g) = \begin{bmatrix}
 \mathcal{G}(g) & A_g \\
 0 & \mathcal{G}(g)
\end{bmatrix}
\]

for some \(A_g \in H^0(k) \).

One can show that \(g \to A_g \mathcal{G}(g)^{-1} \) is a 1-cocycle on \(\text{Ad}(\mathcal{G}) \).

Thus it induces an isomorphism

\[
\text{Ext}_k^1(V_{\mathcal{G}}, V_{\mathcal{G}}) \cong H'(\mathbb{T}, \text{Ad}(\mathcal{G}))
\]
Obstructed and Unobstructed Deformation Problems

Suppose $R_i, R_0 \in \mathbb{C}^n$ with a surjective map $R_i \to R_0$ with kernel I satisfying $I \cdot M_{R_i} = 0$ (i.e., I is an R_i/IM_{R_i} vector space).

Given $\varphi : \Pi \to \text{GL}_n(R_0)$, we want to measure obstructions to lifting to a map $\gamma : \Pi \to \text{GL}_n(R_i)$ (i.e., $\gamma \mod I = \varphi$).

For γ to be a homomorphism, we need

$$c(g_1, g_2) = \gamma(g_1) \gamma(g_2) \gamma(g_1)^{-1} \gamma(g_2)^{-1}$$

to equal 1 always.

But we know that

$$c(g_1, g_2) = 1 + d(g_1, g_2) \quad \text{for} \quad d(g_1, g_2) \in H^0(I) = H_0(\mathbb{C}) \otimes I.$$

Claim: $d(g_1, g_2)$ is a 2-cocycle. [And replacing γ by a different $\tilde{\varphi}$]

This gives $0(\varphi) \in H^2(\Pi, \text{Ad}(\varphi) \otimes I) \cong H^2(\Pi, \text{Ad}(\bar{\varphi})) \otimes I$.

We expect the deformation problem to be simpler when $H^2(\Pi, \text{Ad}(\varphi)) = 0$.

Theorem (Haraux)

Assume $\mathcal{C}(\varphi) = k$. Let $R := R(\Pi, \bar{\varphi}, k).

Set $d_1 := \dim_k H^0(\Pi, \text{Ad}(\bar{\varphi}))$. Then

$$\dim \left(R/IM_{\Lambda} R \right) \geq d_1 - d_2.$$

(Where $\dim = \text{Krull dimension}$).

Furthermore, if $d_2 = 0$, then $\dim \left(R/IM_{\Lambda} R \right) = d_1$, and in fact

$$R \cong \Lambda \left[X_1, \ldots, X_{d_1} \right].$$
DIMENSION CONJECTURE

When \bar{f} is absolutely irreducible, we have

$$\dim \left(\mathcal{R}/m_{\bar{f}} \mathcal{R} \right) = d_1 - d_2.$$

Galois Representations.

Let K be a number field, $d := [K: \mathbb{Q}]$,

- $S =$ finite set of places in K,
- $\Sigma =$ set of infinite places.

Set $T = G_{K,s}$. Let $\bar{\rho} : G_{K,s} \to \text{GL}_n(k)$ be such that $\text{L}(\bar{\rho}) = k$ with deformation ring \mathcal{R}.

Tate’s Global Euler Characteristic Formula.

Let M be a finite $G_{K,s}$-module. Then, if 1.

$$\frac{\# H^i(G_{K,s}, H)}{\# H^i(G_{K,s}, M)} = \frac{1}{\prod_{\text{rectifiable primes } \mathfrak{p} \in S_{\infty}} \# H^0(G_{K_{\mathfrak{p}}}, H)}.$$

Taking $M = \text{Ad}(\bar{\rho})$, of size a power of p, and requiring S to contain all places with p, Tate’s formula translates to:

$$h^0(G_{K,s}, \text{Ad}(\bar{\rho})) - h^i(G_{K,s}, \text{Ad}(\bar{\rho})) + h^2(G_{K,s}, \text{Ad}(\bar{\rho})) =$$

$$= \sum_{\mathfrak{p} \in S_{\infty}} h^0(G_{K_{\mathfrak{p}}}, \text{Ad}(\bar{\rho})) - d \cdot \dim_k \text{Ad}(\bar{\rho}).$$
I.e.,
\[d_1 - d_2 = d_0 + d \cdot n^2 - \sum_{\omega \in \mathfrak{S}_n} h^\omega(G_{k,\mathfrak{s}}, \text{Ad}(\bar{\varphi})). \]

But \(d_0 = \dim H^0(G_{k,\mathfrak{s}}, \text{Ad}(\bar{\varphi})) = \dim (\text{Ad}(\bar{\varphi}) G_{k,\mathfrak{s}} = 1, \text{ since} \)
\(\text{Ad}(\bar{\varphi}) G_{k,\mathfrak{s}} = \mathcal{Z}(\bar{\varphi}) = k. \)

We get:

PROPOSITION.

Let \(K/\mathbb{Q} \) be a number field of degree \(d, \)

\(\bar{\varphi}: G_{k,\mathfrak{s}} \to \text{GL}_n(k), \text{ s.t. } \mathcal{Z}(\bar{\varphi}) = k; \text{ R its universal deformation ring} \)

Then
\[\dim (R/m_{\mathfrak{m}} R) \geq 1 + d \cdot n^2 - \sum_{\omega \in \mathfrak{S}_n} h^\omega(G_{k,\mathfrak{s}}, \text{Ad}(\bar{\varphi})). \]

EXAMPLE

If \(\bar{\varphi} \) is a character, then \(R = \Lambda \left[G_{k,\mathfrak{s}}^{ab,r} \right], \text{ and} \)

\[\frac{R}{m_{\mathfrak{m}} R} = k \left[G_{k,\mathfrak{s}}^{ab,r} \right]. \]

Hence its dimension as a ring is

the rank \(r \) of \(G_{k,\mathfrak{s}}^{ab,r} \) as a \(\mathbb{Z}_p \)-module, i.e., it is

\[\mathbf{rk}_{\mathbb{Z}_p} \text{Hom}_{\mathcal{Cts}}(G_{k,\mathfrak{s}}, \mathbb{Z}_p). \]

The RHS of the proposition inequality is \(1 + r \).

Each \(h^\omega(G_{k,\mathfrak{s}}, \text{Ad}(\bar{\varphi})) \leq 1 \)

\[\Rightarrow d - r, -r, = r. \]

Lazard's conjecture: this is an equality.