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ABSTRACT
We show that maximum a posteriori (MAP) statistical
methods can be used in nonparametric machine learning
problems in the same way as their current applications in
parametric statistical problems, and give some examples of
applications. This MAPN (MAP for nonparametric ma-
chine learning) paradigm can also reproduce much more
transparently the same results as regularization methods
in machine learning, spline algorithms in continuous com-
plexity theory, and Baysian minimum risk methods.
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1 Introduction

Machine learning and arti�cial neural network theory of-
ten deal with the problem of learning an input-output (i-o)
function from examples, i.e., from partial information ([1],
[2], [3], [4], [5],[6], [7]).

Given an unknown i-o function f(x), along with ex-
amples Nf = (f(x1); : : : ; f(xn)), the goal is to learn f .
In this paper we describe an extension of standard maxi-
mum a posteriori (MAP) methods in parametric statistics to
this (nonparametric) machine learning problem. Consider
the problem ([6], [7]) of recovering f from a hypothesis
space F of possible functions using information Nf , or
more general information Nf = (L1f; : : : ; Lnf), with Li
general functionals on f (e.g., Fourier coef�cients). This
problem occurs in machine learning, statistical learning
theory ([6], [7])), information-based complexity, nonpara-
metric Bayesian statistics ([8],[9]), optimal recovery [10]�
and data mining [11].

Since we will assume little about the reader's knowl-
edge of this area, we will include some basic examples and
de�nitions.

To give an example of this type of nonparametric ma-
chine learning, we might be seeking a function f(x) [12]
which represents a relationship between inputs and outputs
in a chemical mixture. Suppose we are building a control

system in which homeostatic parameters, including tem-
perature, humidity and amounts of chemical components of
an industrial mixture can be controlled as input variables.
Suppose we want to control the output variable y, which is
the ratio of strength to brittleness of the plastic produced
from the mixture. We want to build a machine which has
the above input variables x = (x1; x2; :::; xn) and whose
output predicts the correct ratio y. The machine will use
experimental data points y = f(x) to learn from previous
runs of the equipment. We may already have a prior model
for f based on simple assumptions on the relationships of
the variables. We then want to combine this prior informa-
tion with that from the several runs we have made of our
experiment.

Learning an unknown i-o function f from a high di-
mensional hypothesis space F is a nonparametric statistical
problem � inference from the data Nf is done from a very
large set of possibilities. We will show that standard para-
metric MAP estimation algorithms can be extended directly
to a MAP for nonparametric machine learning (MAPN).
The method presented here is simple and intuitively ap-
pealing in spite of the high dimensionality of the prob-
lems, and its estimates under standard hypotheses coincide
with those obtained by other methods, e.g., optimal recov-
ery [10], information based complexity [3], and statistical
learning theory [7], as will be demonstrated below.

MAPN is a Bayesian learning algorithm which as-
sumes prior knowledge given by a probability distribution
� for the unknown function f 2 F , representing infor-
mation about f (we assume here that F is a normed lin-
ear space). An example of Bayesian prior knowledge of
the type mentioned above would be the stipulation that the
probability distribution � on F is a Gaussian measure cen-
tered at f . Examples of common a priori measures on a
hypothesis space F include Gaussian and elliptically con-
toured measures ([3], [13], [8]).

The most important new element in this extension of
MAP to hypothesis spaces of functions is a proof [14] that it
is possible to de�ne density functions %(f) corresponding
to measures � in a way analogous to how this is done in



�nite dimensional estimation � see below.
The MAPN algorithm, as does MAP, will then use the

density function �(f) corresponding to this measure [14],
and maximize it over the set N�1(z) of functions f 2 F
consistent with the data z, yielding the MAPN estimate (or
do the same with an assumption of some measurement er-
ror; see below).

The key issue in the development of the MAPN algo-
rithm is that, as in MAP, we require existence of a density
function � for �. As is well known, such a density can exist
for measures � on �nite dimensional F , i.e., when the num-
ber of parameters to be estimated is �nite. In many data
mining applications, however, as in the above example, an
entire function f (i.e., an in�nite number of parameters)
must be extrapolated from data, and the corresponding in-
�nite dimensional parameter space F presents an obstacle
to extending MAP, since measures in in�nite dimension do
not admit density functions in the standard sense. This is
because the density function �(f) is the derivative (with re-
spect to Lebesgue measure) of the a priori probability mea-
sure �, and Lebesgue measure fails to exist in in�nite di-
mension. Thus it has up to now been natural to assume that
a probability density for f cannot be de�ned or maximized
if F is a function space.

The method for de�ning a density function for a prior
measure � on an in�nite dimensional F in fact can be ac-
complished in a way which is interestingly analogous to the
�nite dimensional case. In the latter situation,

d�(f) = �(f) df

with df Lebesgue measure (which exists only in �nite di-
mension).

We show that it is possible to construct densities � for
such measures also in in�nite dimensional spaces F . More
generally, we can show such densities can even exist for �-
nitely additive measures, e.g., isonormal Gaussian measure
on F with covariance operator C = 1

2I .
Under �nite dimensional Bayesian inference with

prior density �(f), the MAP estimate bf is the maximizerbf of �(f), subject to the data z:
bf = arg max

f2N�1z

�(f):

Likelihood functions have some signi�cant advan-
tages, such as ease of use, ease of maximization, and
ease of conditioning when further information (e.g., data
Nf = y) becomes available.

As mentioned above, the lack of a density �(f) in in-
�nite dimensional hypothesis spaces F is based on the lack
of a Lebesgue measure. However, Lebesgue measure is
required only to de�ne sets of �same size� at different lo-
cations (probabilities are then compared). This can be ac-
complished in other ways in in�nite dimensional hypothe-
sis spaces, as we show here.

We remark that the in�nite dimensional nature of
MAPN should be viewed as summarizing an inductive limit

of �nite dimensional approximation methods. The extent
to which the algorithm is valid is determined by the validity
of the same method for �nite dimensional approximations.
Here such approximations would entail approximating the
space F of allowed i-o functions f as a �nite dimensional
space, say consisting of grid approximations of f . The va-
lidity of the MAPN procedure in in�nite dimension states
that there is a valid inductive limit of MAP algorithms for
�nite dimensional approximations of the desired f .

2 Invariant measures and density functions

Let � be a probability measure on a normed linear space F .
For estimation of an unknown f 2 F we will �rst consider
how transformations of � affect estimators. Consider the
invariance properties of the measure � under a transforma-
tion

T : F ! F :

If F is �nite dimensional, we can de�ne � to be invariant
with respect to T in two ways:

1. It can be measure-invariant with respect to T , so
that

�(T�1A) = �(A) 8 meas. A

2. It can be density-invariant with respect to T , so
that (at least if F �nite dimensional)

d�

d�
(Tf) =

d�

d�
(f) for all x,

where �(f) = d�
d� (f) = �(f) is the density of f , with �

Lebesgue measure.
In a Bayesian setting, let � denote the a priori distrib-

ution for the unknown f , and assume we have dataNf = y
regarding f . Then the expected error minimizing estimator
of f is fB = E(f jNf = y) [3]. If T is measure-invariant
then

T (fB) = T (f)B ;

i.e., the transform of estimator is the estimator of the trans-
form. Thus average-case estimation ([3]; [15]) is invariant
under T . However, this is not true for the MAP estimate.

If � is density-invariant under T , then the MAP esti-
mate is preserved under T , i.e.,

arg max
d�

d�
(T�1f) = T

�
arg max

d�

d�
(f)

�
:

Note that in �nite dimension, if � is density-invariant with
respect to any T which preserves a norm kAxk, then �
is elliptically contoured with respect A; essentially this
means � is a superposition of Gaussians whose covariance
operators are scalar multiples of a single covariance (Traub,
et al., 1987).



3 De�nitions and basic results

Let F be �nite dimensional, � represent prior knowledge
about f 2 F , and de�ne the density ��(f) = d�

d� (with �
Lebesgue measure). Then we can also de�ne �� (up to a
multiplicative constant) by:

��(f)

��(g)
= lim

�!0

�(B�(f))

�(B�(g))
, (1)

where B�(f) denotes the �-ball centered at f . The �rst
(derivative) de�nition does not extend to in�nite dimen-
sion, but the second one on the right of 1 does. More
generally, for cylinder (�nitely additive) probability mea-
sures � on F , we can de�ne a density by p�(f)

p�(g)
=

limR(N)!1, �!0
�(B�;N (f))
�(B�;N (g))

, where B�;N (f) denotes the
epsilon-cylinder at f of codimension n :

B�;N (f) = ff 0j kN(f � f 0)k2 � �g;
and N has �nite rank, with n = R(N) =rank(N) (with
some technical conditions on the sequenceN of �nite rank
operators).
Theorem (Kon, 2004): If �1 and �2 are two outer regular
measures on F , and if d�2d�1

(f) exists and is Lebesgue a.e.
with respect to �1, then

r(f) � lim
�!0

�2(B�(f))

�1(B�(f))
(2)

exists and is �nite a.e. Then

r(f) =
d�2
d�1

(f);

almost everywhere.
Corollary: If � has a density �(f) and the derivative
d�(x�g)
d�(x) exists for all g, then

�(f1)

�(f2)
=
d�(f � f2 + f1)

d�(f)

����
f=f2

For example, if � is a Gaussian measure with positive co-
variance C, then �(f) = e� 1

2kAfk
2

, where C = A�2. By
above, the case C = I (cylinder measure only) is included
as well.

4 Density viewpoint: density functions as a
priori information

As mentioned earlier, it is sometimes attractive to de�ne
a measure � representing prior knowledge about f which
is only �nitely additive, e.g. a cylinder measure, to prop-
erly re�ect a priori information. As an example, consider
a Gaussian �, with covariance operator C = I . It is
known that in in�nite dimension, this is not a probability
measure (i.e., it is not normalizable as a countably additive
measure). Nevertheless, it has a density as a cylinder mea-
sure, as indicated above. This density �(f) = e�

1
2kfk

2

can re�ect a priori knowledge about f in a precise way.
Speci�cally, �(f) re�ects relative preferences for different
choices of f . For example, the density �(f) � 1, repre-
sents an a priori �Lebesgue measure� for f , i.e., indicating
no preference, on any size space.

However, densities �(f) as a priori information can
incorporate other types of information, e.g., as partial in-
formation about a probability distribution or even non-
countably additive probabilities e.g., cylinder measures
(see e.g., [16]).

The use of a density which does not correspond to a
measure can be illustrated with a simple example of infer-
ence with a priori information, which is in fact analogous
to the situation in an in�nite dimensional function space.
Consider an unknown integer n. Suppose we only have
the a priori knowledge that

P (n is even) = 2P (n is odd)
Such information cannot be formulated in a single proba-
bility distribution on the integers, since such a distribution
would have to be �uniform� on the evens and on the odds,
and no such countably additive distribution exists. A like-
lihood function is needed to incorporate this information,
i.e.,

�(n) =

(
2 if n even
1 if n odd

Likelihood functions play a similar role in an in�nite di-
mensional space F , re�ecting partial knowledge about f
in a noncompact space where there is no �uniform� prob-
ability distribution. As an example in in�nite dimension,
suppose we know only that, given two choices f1 and f2 of
f , the ratio of their probabilities is

e�
1
2kf1k

2

e�
1
2kf2k2

;

it makes sense to de�ne a likelihood function e� 1
2kfk

2

,
whether or not this corresponds to an actual measure. Thus
likelihood functions are a more natural way than measures
of incorporating a priori information in in�nite dimensional
Bayesian settings. This can also be seen in �nite but high
�nite dimensional situations, in which a naive regulariza-
tion approach to incorporating a priori information regard-
ing an unknown f might be as follows.

Common methods for inference in statistical learning
theory ([6], [7],[17]) involve regularization. Thus in addi-
tion to data y = Nf , a priori information might be: kAfk
should be small for a �xed linear A, where, e.g., A is a
derivative operator, in which case kAfk is a Sobolev norm.

For simplicity, assume A = I is the identity and the
norm is Euclidean. A naive approach might be to assume
a prior distribution on the random variable R = kfk, say

�R(R) =
2p
�
e�R

2

(R > 0): (3)

Note this marginal for R corresponds to an n dimensional
distribution of the form



�f (f) = C1
1

kfkn�1 e
�kfk2 ; (4)

if we assume �f (f) to be radially symmetric in f . This
likelihood function is singular at the origin and clearly van-
ishes as n ! 1 (so that it has no in�nite dimensional
limit), seemingly implying no likelihood methods in in�-
nite dimension.

Compare this to the present likelihood function ap-
proach: we start with likelihood function �f (f) =

C2e
�kAfk2 (above, A = I), which directly expresses in-

tuition that a function f1 is preferable to a function f2 by
a likelihood factor e

�kAf1k2

e�kAf2k
2 . An added feature is that this

likelihood function is the density of a measure on F if and
only if A�2 is trace class [3].

The point here is that working with standard proba-
bility measures � can be misleading, while expressing a
priori information in likelihood functions clari�es a priori
assumptions in practical situations.

In the in�nite dimensional case, if we assume a priori
likelihood function, e.g.,

�(f) = e�kAfk
2

,

even if A = I , (so � is the density of an isonormal cylinder
Gaussian measure), we understand the connection of �(f)
(and hence underlying probabilities) with a priori knowl-
edge about likelihoods (see below).

5 Applications

MAPN in Bayesian estimation:
As indicated above, in in�nite dimensional Bayesian

inference the MAP estimator can be as useful as in para-
metric statistics. An unknown f 2 F with a Bayesian
prior distribution on F now has a likelihood function, as in
parametric statistics.

Gaussian prior: For example consider an in�nite di-
mensional Gaussian prior measure � on a Hilbert space F
with covariance C. Assume without loss that C has dense
range. We need:

De�ning A =
p
C
�1
, � can be shown to have den-

sity ��(f) = e�
1
2kAfk

2

[14]. Suppose we are given stan-
dard information y = Nf = (f(x1); : : : ; f(xn)). By the
above, the conditional density ��(f jy) is the restriction of
��(f), so the MAPN estimate of f is:

bf = arg max
Nf=y

e�
1
2kAfk

2

= arg min
Nf=y

kAfk

Note that this corresponds to the spline estimate of f [3],
as well as the regularization theory estimate of f for exact
(i.e., error-free) information [17], and Bayesian minimum
average error estimates based on Gaussian priors [15].

Gaussian prior with noisy information: For inex-
act information, assume a random independent error � with
density ��(y). The information model is

y = Nf + �:

Then the MAPN estimate is

bf =arg max
f

�(f jy):

Note

�(f jy) =
�y(yjf)�(f)
�y(y)

:

If we further assume that the density inRn of � is Gaussian,
i.e.,

��(�) = C3e
�kB�k2 ,

with B linear and C3 a constant, we conclude

�(f jy) = C4
e�kB(N(f)�y)k

2

e�kAfk
2

�y(y)

= C5e
�kB(N(f)�y)k2e�kAfk

2

,

whereC5 can depend on y. MAPN yields bf as a maximum
of e�kB(N(f)�y)k

2�kAfk2 , so

bf = arg min
Nf=y

kAfk2 + kB(Nf � y)k2:

This log likelihood function can be minimized e.g.,
using Lagrange multipliers. Note this is exactly the spline
solution of the same problem, and also the minimum of the
regularization functional

kAfk2 + kB(Nf � y)k2

appearing in regularization methods for solving Nf = y
([7], [17]).

Note also that the same procedure can be used for es-
timates based on elliptically contoured measures, which for
elliptically contoured measures is more dif�cult to do using
minimum square error methods. If likelihood functions are
used, operator methods of maximizing them which work in
�nite dimension also typically work in in�nite dimensions,
with matrices replaced by operators (e.g., the covariance a
Gaussian becomes an operator).

Example: In the example of the chemical mixture
mentioned earlier, suppose that we have an input vec-
tor x = (x1; x2; :::; x20) representing an input mixture,
with the 20 parameters representing temperature, mixing
strength, along with 18 numbers representing proportions
of chemical components (in moles/Kg). The measured out-
put y represents the measured ratio of strength to brittleness
for the plastic product of the mixture. In this example, we
have assumed n = 400 runs of the experiment (a relatively
small number given the size of the space F of possible i-o
functions). For simplicity we assume that all variables xi
have been re-scaled so that their experimental range is the



interval [�1=2; 1=2]. Thus the a priori space F of possible
i-o functions will be all (square integrable) functions on the
input space X = [�1=2; 1=2]20.

As a �rst approximation we assume that the target f 2
F is smooth, and thus we assume a prior probability distri-
bution of f to be a Gaussian, favoring functions which are
smooth and (for regularity purposes) not large. In addition,
it may be felt (from previous experience) that the input vari-
ables x1; :::; x5 are associated with more sharp variations in
y than the other 15 variables, and we expect the variation
of f in these directions to be more sensitive to data than
to our a priori assumptions of smoothness. Finally, we
will want the a priori smoothness and size assumptions to
have more weight in regions where there are less data in a
precise parametric way. To this end our a priori desider-
atum will initially require "smallness" of the regulariza-
tion term kf(x)k2� � k(d(x) [1 + (a �D)] f(x))k

2
; where

a = (:1; :1; :::; :1; :2; :2; :::; :2)2R20 has its �rst 5 compo-
nents equal to :10 (re�ecting greater desired dependence of
f on the variations in the �rst �ve variables) and its last 15
components equal to :20 (re�ecting smaller dependence on
the last 15 variables); these parameters can be adjusted. We
have also de�ned D =

�
d15

dx151
; d

15

dx152
; :::; d

15

dx1520

�
; the high or-

der of this operator is necessary since its domain must con-
sist of continuous functions on R20; i.e., functions which
have more than 10 derivatives. Note that the norm k�k
above is given by kfk2 =

R
R20 f(x)

2dx, and the associ-
ated inner product is hf; gi =

R
R20 f(x)g(x)dx

Above the function d(x) is chosen to re�ect the den-
sity �(x) of the sample points fxkgnk=1 at the location x.
Note if �(x) is large, then we wish our estimate to de-
pend more on data and less on a priori assumptions, and
that we want d(x) to be small there; the opposite is de-
sired when �(x) is small. As an initial approximation we
choose d(x) = (1 + �(x))�1, with the local linear density
�(x) de�ned by �(x)m =

Pn
k=1 e

�(x�xk), where here the
dimensionm = 20:

We will need to de�ne a domain with proper bound-
ary conditions for the square of the above regulariza-
tion operator in order to obtain a function class F with
a unique Gaussian distribution. The simplest boundary
conditions are Dirichlet B.C., i.e., the requirement that f
vanish on the boundary. Since this is not a natural re-
quirement for our function class, we extend the domain
space F to be square integrable functions on [�1; 1]20
in order to impose such conditions suf�ciently far away
from the "region of interest" (the valid domain of vari-
ation of the inputs, [�1=2; 1=2]20 � [�1; 1]20). Thus
F is square integrable functions in 20 variables, each
in the interval [�1; 1]. We de�ne the operator aD =�
a1

d15

dx151
; a2

d15

dx152
; :::; a20

d15

dx1520

�
. The Dirichlet operator B

de�ned by hf;Bfi = k(d(x) [(1 + (aD)] f(x))k2 is given

by

Bf = (d(x) [(1 + (aD)]) (d(x) [(1 + (aD)])
�
f

= d(x) [(1 + (aD)] [(1� (aD)] d(x)f(x)
= d(x)(1� (aD)2)d(x)f(x)

with domain of B restricted to f satisfying f(x) = 0 on
the boundary, i.e., when any xi = �1: This operator has
a trace class inverse B�1 = C, which is the covariance
operator of a Gaussian measure P on F . We de�ne P
to be the associated Gaussian distribution on the space F
of functions f : [�1; 1]20 ! R. Note that our data are
restricted to the subset [�1=2; 1=2]20 � [�1; 1]20:

The measure P is our a priori Gaussian measure on
F . By the above analysis, given an unknown f 2 F and
information y = Nf = (f(x1); :::; f(xn)), then according
to the above, the MAPN estimator of f is

bf = arg inf
Nf=y

fkf(x)k2� � k(d(x) [1 + (aD)] f(x))k
2

= hf;Bfi
=



f; d2(x)f(x)� d(x)(aD)2d(x)f(x)

�
g:

Note that ([18], [7], [12]), the above minimizer is

bf(x) = nX
k=1

ckG(x;xk); (5)

where G(x;x0) is the Green function for the differential
operator B de�ned above. Thus G is the kernel of the
covariance operator B�1 = C; which can be computed
separately. NoteB�1f = d(x)�1(1�(aD)2)�1d(x)�1f:
Thus

G(x;x0) =d(x)�1G0(x;x
0)d(x0)�1;

where G0(x) is the kernel of

(1� (aD)2)�1 =
 
1�

20X
i=1

a2i
d30

dx30i

!�1
(6)

on F , with vanishing boundary conditions. Since the
boundaries of the domain [�1; 1]20 of F are relatively far
from the region of interest [�:5; :5]20 in which the data lie,
we approximate the Green kernel G0(x; x0) with boundary
conditions vanishing on the boundary of [�1; 1]20; by the
approximation eG(x; x0); the kernel of (1 � (aD)2)�1 on
R20 with boundary conditions at1. This has the form

eG(x;x0) = eG(x� x0)

= F

0@ 1� 20X
i=1

a2i (i�i)
30

!�11A (x� x0); (7)

where F denotes Fourier transform and �i is the variable
dual to xi. Thus our approximation of f is given by (5)
(see, e.g., [12]), with c = fcigni=1 = G�1(Nf)T; where



G is a matrix with Gij = G(xi � xj); with T denoting
transpose. Explicitly,

bf = nX
k=1

ckG(x� xk) �
nX
k=1

�
G�1NfT

�
k
eG(x� xk);

where eG(x� xk) is computable from (7).
6 Conclusions

We have showed that it is possible to extend MAP esti-
mates to high and in�nite dimensional approximations. In
applications we have constructed an approximation to an
unknown function f from pointwise information Nf =
(f(x1); :::; f(xn)) by incorporating prior information re-
garding smoothness of f , and adapting the solution in a
way which depends on the local density � of data points xi.
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