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Predictive Genomics, Biology, Medicine 
 
 

Learning theory:  SLT – what is it? 
 
Parametric statistics – small number of parameters – appropriate to small 
amounts of data 
 
Ex.  Find mean m and standard deviation s for a normal distribution from 
sample data. 
 
Nonparametric statistics – large number of parameters – appropriate to large 
amounts of data 
 
Ex.   Neural Network, RBF network, support vector machine 
 
 

Genomics: Current interests: 
 
New algorithms for classification of and prediction from microarray 
gene expression data. 
 
Genome:  about 50,000 genes 
 
Gene expression in cell reflects physiological factors and processes.   
 
Discovery of patterns in gene expression data:  major computational 
challenge.   
 
Includes genome and genetic regulation and expression information.   
 
Information important in diagnosing physiological factors, e.g.: 
 

• nature of  disease, e.g. tumor  
• state and prognosis for a genetically inherited disease 
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Technology: new, error-prone - statistical analysis must tease apart errors as 
well as many physiological factors present.   Current methods of 
classification may not be as effective or accurate as they can be. 
 
Understanding physiological correlates of gene expression (hence protein 
expression) promises to provide insight into conditions and diseases whose 
etiologies have been difficult to understand, e.g.: 
 

• autism 
• multiple sclerosis 
• muscular dystrophy 
• propensities for cancers and arteriosclerosis,  
• Alzheimer’s disease   

 
Preliminary results have been obtained in these areas.   
 
Purpose of project:  work on aspects of such an approach.   
 
Our work involves modeling, simulation, and algorithm based approaches to 
classification and prediction of cell physiology from microarray information.   
 
Major aspect: deal with numerical simulations and their complexity.   
 

• Emphasize accuracy of statistical models 
 

• Computed algorithm discovery methods will search for algorithms 
appropriate to models.   

 
• Subarray cocluster patterns (patterns occurring for subsets of genes and 

of the population).   
 

• Computational demands require the high performance resources of 
Center for Computational Science at BU  

 
• Statistical models of microarray experiments:  Gene Expression Data 

Simulator (GEDS) at University of Pittsburgh 



 45

 
• Error of classification, prediction algorithms calculated with Monte 

Carlo simulations on GEDS 
  

• Algorithms for discovery of subarray coclusters, testing sparse data for 
underlying distribution families, extending regression-attraction 
algorithm. 

 
• Will also develop local numerical algorithms for "customized" 

predictions for individuals from microarrays.   
 
Collaboration:  
 

• Boston University (Mathematics and Statistics, Microarray Resource at 
the Medical School, and Center for Computational Science; 
Bioinformatics Program 

 
• University of Massachusetts Lowell (Mathematics and Statistics) 

 
• University of Pittsburgh Medical School  (Medical School microarray 

core laboratory; UPCI Cancer Biomarkers Laboratory, PittArray core 
laboratory) 

 
• Ben Gurion University in Israel (BGU Human Molecular Genetics Lab, 

Computer Science Department’s Bioinformatics Program) 
 
  
Goals:  answer questions -  
 

1. Can computer implementations of microarray models be used to 
improve them?   

 
2. Can model and parameter determination be accomplished 

computationally? 
3. Can statistical algorithms to solve the models be tested, developed, 

and improved on such models? 
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4. Can statistical methods improve the yield of microarray 
information for small numbers of subjects? 

 
 
5. Can sub-patterns (patterns in subsets of the genome and 

population) in microarray data be verified, discovered, and used? 
 
6. What are maximal levels of information which can be obtained 

from gene expression information?  Can we obtain probabilities 
that a queried patient belongs to a given trained group together 
with confidence bounds? 

 
 
7. What can simulation of the genetic expression profile of cancer 

cells reveal about potential responses to therapies? 
 
 
Statistical methods work better when they incorporate biological models as a 
priori information.  
 
Strategy: divide translation of physiological models into algorithms into 
three parts:  
 

• biological modeling 
• statistical modeling 
• algorithm development 

 
From biology to statistical modeling:  two way process 
 
biology   statistical model    simulated biological data (with scalable 
microarray simulation).   
 
After statistical model is decided on: find algorithms which solve model – 
given complexity of good algorithms, we will use Monte Carlo to gauge 
efficiency via microarray simulator.    
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Further study:  automated algorithm development via search methods 
within algorithm classes 
 
 
Co-regulation of genes:  
 
Many new methods (e.g. graph-theoretic methods of cataloguing 
coregulation from published literature) 
 
Will study automated methods of incrementing statistical models with 
information, and incorporating models into simulator.  Simulator will allow 
testing models, via comparisons of simulator and biological data.  Such 
objective tests of models do not presently exist. 

 
 
More specific aims: 
 
1:  Develop tests of statistical models of microarrays through comparisons 
with computational simulations, and develop new models and methodologies 
on this basis, and discover and modify algorithms for these models. 
 
2:  Develop optimal robust classification algorithms for microarrays based on 
models, with probability estimates of classification membership and 
confidence bounds, and develop statistical methods for reducing patient 
sample sizes necessary. 
 
3:  Test classification algorithms and improve statistical properties through 
Monte Carlo simulation of accuracies, and use (low and eventually high 
dimensional) search techniques to find better algorithms. 
 
4:  Study search algorithms for discovering subarrays containing patterns not 
visible in full arrays. 
 
5:  Test and apply these methodologies to existing cancer databases for 
differentiating cancer gene expression information. 
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6:  Apply these methods to develop software for practitioners using 
microarrays. 
 
 
Outcomes:  new tools for differentiating microarray clusters will be available 
 

1. Information based on clustering of interacting genes and sub-
populations affected by them will be obtainable from microarray 
analysis. 

2. More accurate statistical models of microarrays will be 
implementable and testable using microarray simulator under 
development at the University of Pittsburgh. 

3. Classification algorithms with tunable parameters (appropriate to 
different biological models) will be available, with class probability 
estmates and confidence bounds. 

4. Applications of the above techniques to the development of 
diagnostic tools for differentiating cancer gene expression 
information will be developed 

5. Open source software implementing this work will be available. 
 

Emphasize implementable algorithms for diagnosis, classification, and 
prediction.   
 
Differentiation of cancer gene expression profiles has the potential to greatly 
improve the use of cancer therapies. 
 
Extend also to psychiatric drugs in which responsiveness to therapies seems 
often to be individual parameter. 
  

 
Approach: separation of model from algorithm.  

 
Modeling:  biological problem  
 
Once model is found, finding algorithm which decides which class (e.g., 
metastatic or non-metastatic tumors) microarray comes from becomes a 
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purely statistical and computational; notions of complexity and optimality 
then become appropriate and well-defined.   
 
Correspondingly, errors from classification algorithms can be broken 
down into two parts:  model error and algorithmic error.   
 
Model error: biology not correctly modeled 
 
Algorithmic error:  correct statistical model exists, but classification 
algorithms developed for model have  associated error making them worse 
than optimal algorithms. 
 
Jim Lyons-Weiler and team (Pittsburgh) have developed microarray 
simulation tool (located at http://bioinformatics.upmc.edu/GE2/index.html), 
in which model can be adjusted, and algorithms can be simulated.   
 
More complicated algorithms Claudio Rebbi, director of BU’s Center for 
Scientific Computation. 
 
 
 
Differential Expression. Jittering occurs between t1 and t2 in Fig. 1b.  Differential expression occurs 
as an independent process after jittering.  For any differentially expressed gene i, expression values in 
sample group A are individually and stochastically shifted (all up or all down) using replacement 
values xi + ∆xi.  The maximum value of ∆xi is determined by parameter ∆XAB, which is expressed in 
units of standard deviation (sd).  We typically simulate over a range of (∆XAB 0.25 to 3.0). 
Each leaf in Fig. 1 represents a sample in group A or B in our simulated data set. 
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Fig. 1.  A Case vs. Control Pattern of Inheritance Model in Detail.  Between group correlations 
specified by ∆rAB and within group correlations are specified by ∆rA for group A and ∆rB for group B. 
 

Fig. 1A.                                                      Fig. 1B.  
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2.  Outcome of a jittering process to produce 
correlations between two arbitrary samples i and j (1,000 
genes).  Each biplot represents expression levels for i and j 
drawn from two gamma distribution shape parameter values 
(1= skewed; 20 = normal) over the range of expected 

correlation between i and j (determined by 
∆rij) to demonstrate the type of data that can 
be generated by the Gene Expression Data 
Simulator.  In jittering, random genes are 
selected to be changed stochastically by a 
maximum amount v1. The between-sample 
correlation is measured, and if the target r is 
achieved, jittering stops.  If not, then another 

gene is selected to be changed.  The process continues until the target correlation is achieved. 
Example of the bivariate output.  Modeled expression intensities were generated for two samples 
for three levels of ∆r under two gamma distribution shapes (Fig. 2).  This result demonstrates that the 
simulator can approximate very well biologically realistic data sets with stochastic error and the 
desired correlation. 
 
 
 
PREDICTIVE MEDICINE: 
 
Cancer markers:  Size of tumor, past historical information, patient 
biomarkers, genomic information 
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Microarray markup language   biomarker markup language (need for NIH-
approved standardized language) 
 
Goal:  database into which all kinds of information can be integrated. 
 
Inference engine:  dichotomy – mini-engine and meta-engine (boosting and 
bagging algorithms) 
 
Medical applications:  patient state is time dependent;   
 
x = uncontrolled variables (e.g., cancer etiology, individual biomarkers and 
genetic markers) 
 
y = controlled variables (patient treatment, drugs administered, etc.) 
 

z = (x,y) 
 

z(t+1) = f(z(t)) 
 
Learning:  Discover the function f(t) from databases of examples 

 
Control theory:  how to adjust y(t) (controlled variables) so that disease 
history z(t) progresses as well as possible? 
 
Financial mathematics – algorithms there also apply to control theory aspects 
here 
 
Stochastic differential equations 
 

dx/dt = B’(t) + b(x) 
 
 
C. Rebbi, J. Luciano:  simulations (Matlab nlinfit program suffices) – 
psychiatric data, simulated cancer data 


