
Neural Networks and Radial Basis Functions

1.  Neural network theory

1.  Since artificial intelligence (using Von
Neumann processors) has failed to
produce true intelligence, we wish work
towards computational solutions to
problems in intelligence

2.  Neural network theory has held that
promise.
 Existence proof: neural nets work in
people, insects, etc.

 Applications of neural nets:  Physics,
biology, psychology, engineering,
mathematics

3.  A basic component of many neural
nets:  feed-forward neural networks.



Feed-forward neural network:

  
fig. 1

 
Layer  vertical row of neuronsœ

  Neurons in first layer influence
neurons in second layer.
  Neurons in second layer influence
neurons in third layer.
  Etc.

First layer contains “input", i.e., we
control activations of its neurons.



Last layer contains “output", i.e., its
activations provide a desired output that
the neural network provides in response to
input in first layer.

Funahashi and Hecht-Nielsen have shown
that if we desire a network which is able to
take an arbitrary input pattern in the first
layer, and provide an arbitrary desired
output pattern in the last layer, all that is
necessary is 3 layers:

   
fig. 2

Now consider only 3 layer networks.



B3  œ activation level (either chemical or
electrical potential) of  neuron in firstith 

layer

C3 œ  activation level of neuron inith 

second layer

;3 œ  activation level of  neuron inith 

third layer

/34 œ  strength of connection (weight)
from  neuron in layer  to  neuron inj i>2 " th

layer .#

A34 œ  strength of connection (weight)
from   neuron in layer  to  neuron inj ith th#
layer .$

Example:  First layer is retina and  is the
illumination level at the neuron   This isB3.
input layer (light shines on retina and
activates it).



Last layer is speech center (neurons
ultimately connected to mouth), and its
pattern  of neuron activations;3
corresponds to verbal description about to
be delivered of what is seen in first layer.

2. Neuron interaction rule

Neurons in one layer influence those in
next layer in almost a linear way:

C B3 4œ L Œ "
4œ"

5

3/34 )

i.e., activation  is a linear function ofC3
activations  in previous layer aside B4 ß
from function .L

 here   constant for each)3 œ 3.

 The function is a L  sigmoid:



 fig 3

Note that has an upper bound, soL
response cannot exceed some constant.

 Activation in third layer:

; C3 4œ !
4œ"

8

A34

œ   linear function of the  's  C4

 Goal: show we can get an arbitrary
desired output pattern  of activations on;3
last layer as a function of inputs  in theB3 
first layer.

Vector notation:
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œ  vector of neuron activations in layer
   1.
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œ   vector of connection weights from
neurons in first layer to neuron in thei  th

second layer

  Now:  activation  in second layerC3
is:



C B3 4œ L  œ LÐ † B  ÑÞŒ "
4œ"
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  Activation  in the third layer is:;3
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Goal: to show that the pattern of
activations
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on the last layer (output) can be made to
be an arbitrary function of the pattern of
activation
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on the first layer.

 Notice:  activation of neuron ini>2
layer  is:$

; C A B3 4 34œ œ LÐ †  ÑÞ" "
4œ" 4œ"

8 8
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Thus question is:  if  is defined ; œ 0ÐBÑ
by (1)  (i.e., input determines output
through a neural network equation), is it
possible to approximate any function in
this form?



Ex.  If first layer = , then can requireretina
that if  visual image of chair (vectorB œ
of pixel intensities corresponding to chair),

then  neural pattern of intensities; œ
corresponding to articulation of the words
"this is a chair"

Equivalently:  Given any function 0ÐBÑ À
‘5 Ä ‘5 , can we approximate  by a0ÐBÑ
function of the form (1) in

(a) GÐ Ñ‘5   norm?
(b) P"  norm?
(c) P# norm?

Can show that these questions are
equivalent to case where there is only one
;:



   
fig 4

Then have from (1):

(2) ; œ A C œ A! !
4œ" 4œ"
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Question:  Can any function 0ÐBÑ À
‘5 Ä ‘ be approximately represented in
this form?

Partial Answer:  Hilbert's 13th problem.

1957:  Kolmogorov solved 13th problem
by proving that any continuous function



0 À Ä‘ ‘5   can be represented in the
form

0ÐBÑ œ ÐB Ñ" "Œ 
4œ" 3œ"

#5" 5

4 34 3; < Þ

where are continuous functions,; <4 34ß  
<34 are monotone and independent of .0

That is,  can be represented as sum of0
functions each of which depends just on a
sum of single variable functions.

3.  Some results

1987:  Hecht-Nielsen remarks that if we
have 4 layers



  
fig 5

any function  can be approximated0ÐBÑ
within  in  norm by such a% ‘GÐ Ñ.

network.

Caveat: we don't know how many neurons
it will take in the middle.

1989:  Funahashi proved:

Theorem:  Let  be a non-constant, LÐBÑ
bounded, and monotone increasing
function.  Let  be a compact (closedO
and bounded) subset of ,  and  be‘5 0ÐBÑ
a real-valued continuous function on :O



  
fig 6

Then for arbitrary  , there exist real%  !
constants and vectors  suchA ß Z4 4

4)  ,  
that

0ÐBÑ œ A LÐZ † B  Ñ"
4œ"
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satisfies

m0ÐBÑ  0ÐBÑm Ÿ Þ_ %

Thus functions of the form  are dense in(2)
the Banach space  defined in theGÐOÑ,
² † ² _ norm.



Corollary:  Functions of the form (3) are
dense in for all .P ÐOÑ :ß " Ÿ : :   _

That is, given any such , and an i-o:
(input-output) function 0ÐBÑ − P ÐOÑ:

and  , there exists an  of the form%  ! 0

(3) such that ² 0  0 m Ÿ: %    

Caveat:  may need very large hidden layer
(middle layer).

Important question:  How large will the
hidden layer need to be to get an
approximation within  (i.e., how%
complex is it to build a neural network
which recognizes a chair)?

5.  Newer activation functions:

Recall is assumed to be a sigmoidLÐBÑ  
function:



fig 7

Reason:  biological plausibility.

Newer idea: how about a localized LÐBÑ

fig 8

Not as biologically plausible, but may
work better.  E.G., could be a wavelet?L

Poggio, Girosi, others pointed out: if
LÐBÑ œ  cos  on , getB Ò!ß _Ñ



0ÐBÑ œ A ÐZ † B  ÑÞ"
4œ"
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4 4
4cos ) (3)

Now choose Z œ 7 œ4

Ð7 ß7 ß7 ßáÑ 7" # $ 3 where  are
nonnegative integers, and .  Then)4 œ !

0ÐBÑ œ A Ð7 † BÑÞ!
7

7 cos 

Now if

O œ ÖÐB ß B ßá ß B Ñl" # 5  Ÿ B Ÿ1 13  

if  and 3 œ #ß $ßá ! Ÿ B Ÿ ×" 1

then this is just a multivariate Fourier
cosine series in .  We know thatB
continuous functions can be approximated
by multivariate Fourier series, and we
know how to find the  very easily:A4



A œ 0ÐBÑ 7 † B .BÞ4
#Œ '
15 cos 

We can build the network immediately,
since we know what the weights need to
be if we know the  function.  Very3  9
powerful.

Notice that here is:  LÐBÑ

     
     fig. 9

 nothing like a sigmoid.

Note: questions of stability however -
make a small mistake in , and cos B 7 † B
may vary wildlyÞ



However, in machine tasks this may not be
as crucial.

Why does this not solve the approximation
problem once and for all?  It ignores
learning.   The learning problem is better
solved by:

5.  Radial basis functions

Had:

; œ A C œ A" "
4œ" 4œ"

8 8

4 4 4  

LÐZ † B  Ñ œ 0ÐBÑÞ4
4)

Now consider newer families of activation
functions, and neural network protocols:



Instead of each neuron in hidden layer
summing its inputs, perhaps it can take
more complicated functions of inputs:

Assume now that  is a fixed function:O

 
      fig 10

and assume (for some fixed choice of D ß3
5Ñ À

C œ C ÐBÑ œ O
B  D

" "
"Š ‹

5

C œ C ÐBÑ œ O
B  D

# #
#Š ‹
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in general

C œ C ÐBÑ œ O
B  D

3 3
3Š ‹

5



Now write (again)

; œ A C ÐBÑ œ A O Þ
B  D" " Š ‹

3 3

3 3 3
3

5

Goal now is to represent  function 3  9 0
as a sum of bump functions:

 
fig 11

Functions  are called  O radial basis
functions.

Neural networks and approximation
people are interested in these.

Idea behind radial basis functions:



Each neuron  in hidden layer has givenC3
activation function which dependsC ÐBÑ3

on activations  in firstB œ  ÐB ßáB Ñ" 5

layer.

Weights connect middle layer to  A3

output layer (single neuron)

  

     fig 12

Output is:

; œ A C ÐBÑ!
3œ"

8

3 3



(should be good approximation to desired
3  9 ; œ 0ÐBÑ function ).

Can check:

Best choice of weights   is by choosingA3

A3  large if there is a large “overlap”
between the desired  function3  9  0ÐBÑ
and the given function C ÐBÑ œ O3 ˆ ‰BD3

5

(i.e.,   large where  large):C ÐBÑ 0ÐBÑ3

 
fig 13

Thus  measures “overlap” betweenA3

0ÐBÑ C ÐBÑÞ and activation function 3



Usually there is one neuron  which hasC3
the highest overlap ; in adaptiveA3

resonance theory, this neuron is the
“winner” and all other neurons have
weight .!

Here we have that each neuron provides a
weight  according to the “degree ofA3

matching” of neuron with desired 3  9
function .0ÐBÑ

Poggio:  “A theory of how the brain might
work” (1990) gives plausible arguments
that something like this “matching” of
desired  function against bumps like3  9
C ÐBÑ3  may be at work in the brain (facial
recognition; motor tasks in cerebellum).

6.  Mathematical analysis of RBF
networks:



Mathematically, class of functions we
obtain has the form:

;ÐBÑ œ A O ß
B  D" Š ‹

3œ"

5

3
3

5
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where is a fixed function and O ÖD ß3 5×
are constants which may vary.

Note: class of functions  of this form;ÐBÑ
will be called  W ÐOÑ! .

Again: what functions  can be0ÐBÑ

approximated by ?0ÐBÑ

Park and Sandberg (1993) answered this
question (other versions previously):

Theorem (Park and Sandberg, (1993)):
Assuming is integrable,  is dense inO W !

P Ð Ñ" w‘  if and only if ' O Á !Þ 



That is, any i-o  function  in 0ÐBÑ P"

(i.e., an integrable function) can be
approximated to arbitrary degree of
accuracy by a function of the form (5) in
P"  norm.

Proof: Assume that . ' O Á !

Let  continuous compactly, œ
supported functions on .‘d

Then any  function can be P"

approximated arbitrarily well in  byP"

functions in ,  i.e.,   is dense in  , , P Þ"

Thus to show that  functions can beP"

arbitrarily well approximated in normP"

by functions in W! ,

it is sufficient to show that  functions  in
,  can be well approximated in  by P"

functions in W!.



Choose  and a function%1  ! O −- ,
such that

mO O m  Þ- " "%

Let the constant + œ Þ"
O ÐBÑ.B' -

Define  so that9 ÐBÑ œ +O ÐBÑß -

( (9ÐBÑ .B œ + O ÐBÑ .B œ "Þ-

Define 95 5ÐBÑ œ †"
<  .9 5ÐBÎ Ñ

Basic Lemma:  Let 0- − Þ, Then

m0  ‡0 m !
Ä !

- - "9 Ò
5
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(Here  denotes convolution)‡



Thus functions of the form  can be0-
arbitrarily well approximated by ;95‡0-

therefore sufficient to show   can be95‡ 0-
approximated by functions in W!

arbitrarily well.

Now write (for  below sufficientlyX
large):

Ð ‡0 Ñ Ð Ñ œ Ð  BÑ0 ÐBÑ.B9 ! 9 !5 5- -
ÒX ßX Ó

    (
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where  are points of the form!3



Ò  X  ß  X  ßá#3 X #3 X
8 8
" #

       ß  X  Ó#3 X
8
<

[one point in each sub-cube of size
#XÎ8].

Riemann sum implies that / Ò88 Ä _
95‡0-  pointwise; then can use dominated
convergence theorem to show that
convergence is also in .P"

Thus we can approximate  by .95 ‡ 0- /8
Now need to show  can be/8
approximated by something in .  By W! (5)

/ !
! ! !

! ! 5 5
8 -<

!

8
- 3 3

<

-
<

Ð Ñ œ O
" 0 Ð ÑÐ#X Ñ 

8 O Ð Ñ . †
"' Š ‹<

.

Now replace  by  which can be madeO O-

arbitrarily close; then have something in
W!.



Converse of the theorem (only if ) is easy.

Second theorem for  density:P#

Define

W œ"  Ÿ" » 

i
+ OÐÐ B  D ÑÎ Ñ + ß − à D −3 3 3 3 3 3

.5 5 ‘ ‘   

(variable scale 53  which can depend on 3
added).

Theorem:  Assuming that is squareO  
integrable, then  is dense in W ÐOÑ"

P Ð Ñ O# .‘  iff  is non-zero a.e.

Theorem:  Assume that  is integrableO
and continuous and  does notO Ð!Ñ"

contain any set of the form Ö>A À >   !×
for any vector .  Then  is dense inA W"



GÐ[Ñ  with respect to the sup norm for
any compact set .[


