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Abstract. For machine learning of an input-output function f from examples,
we show it is possible to define an a priori probability density function on the
hypothesis space to represent knowledge of the probability distribution of f , even
when the hypothesis space H is large (i.e., nonparametric). This allows extension of
maximum a posteriori (MAP) estimation methods nonparametric function estima-
tion. Among other things, the resulting MAPN (MAP for nonparametric machine
learning) procedure easily reproduces spline and radial basis function solutions of
learning problems.

1 Introduction

In machine learning there are a number of approaches to solving the so-called
function approximation problem, i.e., learning an input-output function f(x)
from partial information (examples) yi = f(xi) (see [6,9]). This is also the
regression problem in statistical learning [12,8]. The problem has evolved
from a statistical one dealing with low dimensional parametric function esti-
mation (e.g., polynomial regression) to one which tries to extrapolate from
large bodies of data an unknown element f in a nonparametric (large or infi-
nite dimensional) hypothesis space H of functions. Recent nonparametric ap-
proaches have been based on regularization methods [12], information-based
algorithms [9,10], neural network-based solutions [6], Bayesian methods [13],
data mining [2], optimal recovery [5], and tree-based methods [3].

We will include some definitions along with a basic example. Suppose
we are developing a laboratory process which produces a pharmaceutical
whose quality (as measured by the concentration y of the compound being
produced) depends strongly on a number of input parameters, including am-
bient humidity x1, temperature x2, and proportions x3, . . . , xn of chemical
input components. We wish to build a machine which takes the above input
variables x = (x1, . . . , xn) and whose output predicts the desired concentra-
tion y. The machine will use experimental data points y = f(x) to learn from
previous runs of the equipment. We may already have a prior model for f
based on simple assumptions on the relationships of the variables.

With an unknown i-o function f(x), and examples Nf ≡ (f(x1), . . . , f(xn))
= (y1, . . . , yn) = y, we seek an algorithm φ which maps information Nf into
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the best estimate φ(Nf) of f . The new algorithm presented here (MAP for
nonparametric machine learning, or MAPN) is an extension of methods com-
mon in parametric (finite dimensional) learning. In the approach, an a priori
distribution P (representing prior knowledge) on the hypothesis space H of
functions is given, and the function is learned by combining data Nf with a
priori information µ.

One possible a posteriori estimate based on Nf is the conditional ex-
pectation E(µ|Nf) [7,10,9], which can be done in high (nonparametric) and
low (parametric) dimensional situations. In low dimensions an easier estima-
tion procedure is often done using maximum a posteriori (MAP) methods, in
which a density function ρ(x) of the probability measure P is maximized. In
data mining on the other hand, a full (nonparametric) f must be estimated,
and its infinite dimensional hypothesis space H does not immediately admit
MAP techniques. We show that in fact densities ρ(f) exist and make sense
even for nonparametric problems, and that they can be used in the same
way as in parametric machine learning. Given information y = Nf about
an unknown f ∈ H, the MAPN estimate is simply f̂ = arg maxf∈N−1yρ(f).
Density functions ρ(f) have some important advantages, including ease of
use, ease of maximization, and ease of conditioning when combined with ex-
amples (y1, . . . , yn) = Nf (see examples in Section 3). Since they are also
likelihood functions (representing our intuition of how “likely” a given guess
f1 is as compared to another f2), they can be modified on a very intuitive
basis (see also, e.g., [1]). For example, if we feel that we want our a priori
guess at the unknown f to be smoother, we can weight the density function
ρ(f) (for the measure µ) with an extra factor e−||Af ||2 , with A a differential
operator, in order to give less weight to “nonsmooth” functions with high
values of ||Af ||. By the Radon-Nikodym theorem we will be guaranteed that
the new (intuitively motivated) density ρ(f)e−||Af ||2 will be the density of a
bona fide measure ν, with dν = e−||Af ||2dµ.

2 The maximization algorithm

Let P be a probability distribution representing prior knowledge about f ∈
H, with the hypothesis space H initially finite dimensional. Let λ be uniform
(Lebesgue) measure on H, and define the probability density function (pdf)
of P (assuming it exists) by

ρ(f) =
dP

dλ
. (1)

It is possible to define ρ alternatively up to a multiplicative constant through

ρ(f)
ρ(g)

= lim
ε→0

P (Bε(f))
P (Bε(g))

. (2)
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That is the ratio of densities of two measures at f equals the ratio of the
measures of two small balls there. Here Bε(f) is the set of h ∈ H which are
within distance ε from f . Though definition (1) fails to extend to (infinite
dimensional) function spaces H, definition (2) does. Henceforth it will be
understood that a density function ρ(f) is defined only up to a multiplicative
constant (note (2) only defines ρ up to a constant). The MAP algorithm φ
maximizes ρ(f) subject to the examples y = Nf . Thus (2) extends the
notion of a density function ρ(f) to a nonparametric H. Therefore it defines a
likelihood function to be maximized a posteriori subject to y = Nf . It follows
from the theorem below that this in fact can be done for a common family
of a priori measures [10]. For brevity, the proof of the following theorem is
omitted.

Theorem 1. If µ is a Gaussian measure on the function space H with co-
variance C, then the density ρ(f) as defined above exists and is unique (up to
a multiplicative constant), and is given by ρ(f) = e−〈f,Af〉, where A = C−1/2.

Under the assumption of no or negligible error (we will later not restrict
to this), the MAPN estimate of f given data Nf = y is φ(Nf) = f̂ =
arg maxNf=y ρ(f). More generally, these ideas extend to non-Gaussian prob-
ability measures as well; the theorems are omitted for brevity.

3 Applications

We consider an example involving a financial application of the MAPN pro-
cedure for incorporating a priori information with data. We assume that a
collection of 30 credit information parameters are collected from an individ-
ual borrower’s credit report by a large bank. These include total debts, total
credit, total mortgage balances, and other continuous information determined
earlier to be relevant by a data mining program. We wish to map this infor-
mation into a best estimated debt to equity ratio two years hence. A (limited)
database of past information is available, containing recent information (as
of the last year) on debt to equity ratios, together with data on the d = 30
parameters of interest We wish to combine this information with an earlier
estimate (taken 4 years earlier), consisting of a function f0 : J30 → I from
the (normalized) credit parameters into a debt to equity ratio (also normal-
ized), where J = [−1, 1] and I = [0, 1]. In order to avoid boundary issues, we
will extend f0 smoothly to a periodic map K30 → I, where K = [−1.5, 1.5],
with −1.5 identified with 1.5, so that smooth functions on K must match (as
well as all their derivatives) at the endpoints ±1.5. Similarly, a function on
the torus K30 is smooth if it is periodic and smooth everywhere, including
on the matching periodic boundaries. The purpose of this is to expand a
differentiable function f on K30 in a Fourier series.

On the belief that the current form f : K30 → I of the desired function is
different from the (a priori) form f0 earlier estimated, we make the prior as-
sumption that there is a probability distribution P for the sought (currently
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true) f1 centered at the earlier estimate f0, having the form of a Gaussian on
H, the set of square integrable functions from K30 to I. This a priori measure
P favors deviations from f0 which are sufficiently smooth to be well-defined
pointwise (but not too smooth) and small, and so P is given the form of
a Gaussian measure with a covariance C defined on the orthonormal basis
(here a is a normalization constant) {bk = ae

2
3 πix·k}k∈Z30 (Z is the integers)

for L2(K30) by C(e
2
3 πix·k) = 1

(1+|k|)31 e
2
3 πix·k with k = (k1, . . . , k30) a mul-

tiinteger, and x ∈ K30 (note that P forms a Gaussian measure essentially
concentrated on functions f ∈ L2(K30) with 15.5 square integrable deriva-
tives, which guarantees that such functions’ pointwise values are well-defined,
since 15.5 > d

2 ). We uniquely define the operator A by C = A−2; A satisfies
A(e

2
3 πix·k) = |k|31/2e

2
3 πix·k. To simplify notation and work with a Gaussian

centered at 0, we denote the full new i-o function we are seeking by f1(x). We
will seek to estimate the change in the i-o function, i.e., f = f1−f0. With this
subtraction the function f we seek is centered at 0 and has a Gaussian distri-
bution with covariance C. Our new i-o data are yi = f(xi) = f1(xi)−f0(xi),
where f1(xi) are the measured debt to equity ratios, and are immediately nor-
malized by subtracting the known f0(xi). Thus yi sample the change f(xi)
in the i-o function.

We first illustrate the algorithm under the hypothesis that data yi = f(xi)
are exact (the more realistic noisy case is handled below). In this exact
information case the MAPN algorithm finds the maximizer of the density
ρ(f) = e−‖Af‖2 (according to Theorem 1) restricted to the affine subspace
N−1(y). This is equivalent to minimizing ‖Af‖ subject to the constraint
y = Nf = (f(x1), . . . , f(xn)), (where f(xi) is the outcome for example xi),
which yields the spline estimate

f̂ =
n∑

j=1

cjCLj , (3)

where for each j, the linear functional Lj(f) = f(xj), and where ci = Sy is
determined from y by a linear transformation S (see [9] for the construction
of such spline solutions). We have (here δ denotes the Dirac delta distribu-
tion) CLj = Cδ(x − xj) = C

(
a2

∑
k e

2
3 πik·(x−xj)

)
=

∑
k a2Ce

2
3 πik·(x−xj)

=
∑

k
a2

|k|31 e
2
3 πik·(x−xj) = G(x − xj) is a radial basis function (equivalently,

a B-spline) centered at xj . So the estimated regression function is f̂ =∑n
j=1 cjGj(x − xj) =

∑n
j=1 cj

∑
k

a2

|k|31 e
2
3 πik·(x−xj). By comparison, a stan-

dard algorithm for forming a (Bayesian) estimate for f under the average
case setting of information-based complexity theory using information Nf =
(y1, . . . , yn) is to compute the conditional expectation φ(Nf) = Eµ(f |N(f)
= (y1, . . . , yn)). For a Gaussian measure this expectation is known also to
yield the well-known spline estimate (3) for f [9,10]. The regularization al-
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gorithm [12] can be chosen to minimize the norm ‖Af‖ subject to Nf = y,
again yielding the spline solution (3).

Noisy information: It is much more realistic, however, to assume the infor-
mation Nf = (y1, . . . , yn) in the above example is noisy, i.e., that if f = f1−
f0 is the sought change in the 2 year debt to equity ratio, then yi = f(xi)+εi

where εi is a normally distributed error term. In this case the MAP estimator
is given by f̂ = arg supf ρ(f |y). However, note that (as always, up to multi-
plicative constants) ρ(f |y) = ρy(y|f)ρ(f)

ρy(y) so that if the pdf of ε = (ε1, . . . , εn)

is Gaussian, i.e., has density ρε(ε) = K1e
−‖Bε‖2 with B linear and K a con-

stant, then ρ(f |y) = K2
e−‖B(Nf−y)‖2e−‖Af‖2

ρy(y) = K3e
−‖B(Nf−y)‖2−‖Af‖2 where

K3 can depend on the data y = (y1, y2, . . . , yn). MAP requires that this be
maximized, so

f̂ = arg min‖Af‖2 + ‖B(Nf − y)‖2. (4)
This maximization can be done using Lagrange multipliers, for example. This
again is a spline solution for the problem with error [7]. In addition, again, the
minimization of (4) is the same as the regularization functional minimization
approach in statistical learning theory [12]. It yields a modified spline solution
as in (3), with modified coefficients cj .
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