A CONTINOUS COMPLEXITY ANALYSIS OF SUPPORT VECTOR MACHINES Mark A. Kon, Boston University ## Paradigm # 1. Paradigm: Support vector machine as a continous algorithm **Fundamental objects:** Basic arithmetic operations and evaluation operations, e.g., function evaluation. How complex is it from a continuous complexity theory viewpoint? # 2. The complexity theoretic model: Given: Unknown probability measure $\rho(\mathbf{x}, y)$ on \mathbb{R}^{d+1} in space F of probability distributions on \mathbb{R}^{d+1} . Goal: find the best functional relationship $y = f(\mathbf{x})$ reflected in $\rho(\mathbf{x}, y) \in F$. Solution mapping- $S: F \rightarrow G =$ allowed class of functions f; defined by $$S(\rho) = f$$. We are given (Monte Carlo) partial information about ρ : $$N ho=\{\mathbf{z}_i=(\mathbf{x}_i,y_i)\}_{i=1}^n$$, where $\mathbf{z}_i \in \mathbb{R}^{d+1}$ chosen according to ρ . **Goal:** estimate the best function $f = S\rho \in G$. Error criterion for estimate $\widehat{f} = \phi(N(\rho))$: start with risk function $V(f(\mathbf{x}), y)$ measuring distance between guess $f(\mathbf{x})$ and value y. Then compute $$I(f) = E_{\rho}(V(\widehat{f}(\mathbf{x}) - y)) = \int_{\mathbb{R}^{d+1}} V(\widehat{f}(\mathbf{x}) - y) d\rho(\mathbf{x}, y).$$ #### **Examples:** $$V(\widehat{f}(\mathbf{x}) - y) = \begin{cases} |\widehat{f}(\mathbf{x}) - y| \\ |\widehat{f}(\mathbf{x}) - y|^2 \\ (1 - \widehat{f}(\mathbf{x})y)_+ \end{cases} \text{ (categorical data } y = \pm 1)$$ (note $x_{+} = \max(x, 0)$). Error of approximation = distance from lowest risk: $$e(\widehat{f}) = |I(\widehat{f}) - I(f_0)| = I(\widehat{f}) - I(f_0)$$ (1) where $$f_0 \equiv \underset{f \in G}{\operatorname{arg\,min}} I(f),$$ **Goal:** Find optimal algorithms for given information $N\rho$. Note: error measure (1) (at least for finite dimensional hypothesis space G) equivalent to standard norm error. Indeed assume I(f) is twice differentiable function of $f \in G$. Since $f_0 = \text{minimum}$, Hessian matrix $H(f_0) \ge 0$ (pos. indef.). If in addition H positive definite, then for any norm $\|\cdot\|$ on G, \exists constants c_1, c_2 s.t. $$c_1 || f - f_0 ||_G \le I(f) - I(f_0) \le c_2 || f - f_0 ||_G.$$ So error \sim a norm. Given information $$N ho = \widehat{ ho} = \sum_{i=1}^n \delta_{\mathbf{Z}_i}$$ and an algorithm $\phi(N(\rho))=\widehat{f}$ for approximating best f from about ρ , define error of algorithm by: $$e(\phi, \rho) = E_{\rho} \Big(R \Big[\widehat{f} \Big] - R(f_0) \Big),$$ where $\widehat{f} = \phi(N(\rho)) = \text{best guess for } f$. ## **SVM** Algorithm ## 3. Standard support vector machine algorithm: Given data $$\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_n) = (\mathbf{x}_1, y_1; \mathbf{x}_2, y_2; \dots; \mathbf{x}_n, y_n)$$ define empirical prob. dist. $\widehat{\rho}$ estimating ρ as: $$\widehat{ ho} = \sum_{i=1}^n \delta_{\mathbf{z}_i}(\mathbf{z}),$$ $(\delta_{\mathbf{z}_i} = \text{point mass at } \mathbf{z}_i)$ i.e., "best" guess of ρ ; here $\mathbf{z} = (\mathbf{x}, y)$. ## **SVM** Algorithm Given cardinality of information n, use best guess $\widehat{\rho}$ to estimate minimizer of I(f): $$f_n = \operatorname*{arg\,min}_{f \in G} I_{\widehat{\rho}}(f) = \operatorname*{arg\,min}_{f \in G} \frac{1}{n} \sum_{i=1}^n V(f(\mathbf{x}_i) - y_i).$$ Denote $I_{\widehat{\rho}}(f) = \text{empirical risk.}$ Thus goal is to estimate a minimizer over G of empirical risk $I_{\rho}(f)$ based on information $\widehat{\rho} = N(\phi(\rho))$. For support vector machine (SVM): $y = \pm 1$ (classification of \mathbf{x}), and restrict $f \in G$ to be affine (for linear partition of classes in space): $$G = \{ f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b : \mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R} \}.$$ # 4. Algorithmic error Complexity-theoretic bounds on SVM algorithms: what is error as information cardinality $n \to \infty$? SLT bound: intuitively define VC dimension of $V(f(\mathbf{x}), y)$ = capacity of this set of functions (as $f \in \mathcal{G}$ varies) **Def. 1:** Indexed family of functions $G = \{g_{\beta}\}_{\beta \in B}$ on space R **separates** a finite set $X = \{x_i\}_{i=1}^n \subset R$ if $\forall Y \subset X$, $\exists \beta \in B$, $\alpha \in \mathbb{R}$ s.t. $$g_{\beta}(y) - \alpha > 0$$ iff $x \in Y$; that is, all finite subsets Y can be separated out by some $g \in G$. **Def. 1**: **VC** dimension h of family G of functions on R = cardinality of the largest set of points X separated by G. Need error estimates independent of distribution $\rho(\mathbf{z}) \in F$. Let p > 2 and $$\tau = \sup_{f \in G} \frac{\|V(f(\mathbf{x}), y))\|_p}{\|V(f(\mathbf{x}), y)\|_1},$$ and $$a(p) = \frac{1}{2^{1/p}} \left(\frac{p-1}{p-2}\right)^{\frac{p-1}{p}}.$$ Finally, define $$\mathcal{E} \equiv 4 \frac{h(\ln \frac{2n}{h} + 1) - \ln(\frac{\eta}{4})}{n},$$ where h is the VC dimension of the set of functions $\{V(f(\mathbf{x}),y)\}_{f\in G}$. Then **Theorem (Vapnik):** For any distribution ρ on \mathbb{R}^{d+1} , and any loss function V, we have with probability at least $1 - \delta$, error $$\epsilon \equiv R(f_n) - \inf_{f \in \mathcal{H}} R(f) \le \frac{J \tau a(p) \sqrt{\mathcal{E}}}{\left(1 - \tau a(p) \sqrt{\mathcal{E}}\right)} + O\left(\frac{1}{n \ln n}\right).$$ where $$J = \inf_{f \in \mathcal{H}} R(f)$$. Recall ϵ may be replaced by a norm error if G finite dimensional. **Remark:** Note that for *n* large we have $$\epsilon \le K\sqrt{\mathcal{E}} = K\sqrt{4\frac{h(\ln\frac{2n}{h}+1) - \ln(\frac{\eta}{4})}{n}}$$ Like Monte Carlo with extra $\ln \frac{2n}{h}$ term in numerator; Uniform Monte Carlo result - to find the overall minimizer f_0 of R(f) within ϵ we need to estimate R(f) uniformly in f, within ϵ - hence the ln term. Note also result is uniform in distribution ρ . ϵ -complexity: Now derive information complexity of risk minimization. We see that the above uniform bounds give an inverse relationship as follows. Define the δ -probabilistic ϵ -complexity n of identifying the risk-minimizing function by: $$n = \mathsf{comp}(\epsilon)$$ $$=\inf_{n'}\{|R(f_{n'})-R(f_0)|<\epsilon \text{ with probability at least }1-\delta\}$$ Now invert above relationship between ϵ and n: $$\epsilon \le \frac{(J\tau a)\sqrt{\mathcal{E}}}{(1-\tau a\sqrt{\mathcal{E}})} + O\left(\frac{1}{n}\right)$$ yielding complexity $$n(\epsilon) \le 2(J\tau a)^2 h \frac{\ln(1/\epsilon^2)}{\epsilon^2} + o\left(\frac{\ln 1/\epsilon}{\epsilon^2}\right).$$ = information complexity of approximating $f_0 = \underset{f}{\arg\inf} \ I_{\rho}(f)$ within error ϵ , using algorithm $$\phi(N(\rho)) = \underset{f \in G}{\arg\inf} I_{\widehat{\rho}}(f)$$ which minimizes empirical risk function. Note that probability δ of failure of approximation appears in higher order terms. # 5. Support vector machine: In this case we assume $$G = \{ \text{affine functions } f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b \}$$ We assume $y = \{\pm 1\}$ (classification). Want $f \in G$ which minimizes the loss with $$V(f(\mathbf{x}),y)=(1-f(\mathbf{x})y)_+$$, i.e., $$R(f)=\int_{\mathbb{R}^{d+1}}(1-f(\mathbf{x})y)_+\,d\rho(\mathbf{x},y).$$ The affine function f which minimizes the empirical risk $\frac{1}{n}\sum_{i=1}^n V(f(\mathbf{x}_i,y_i))$ forms a plane which separates the data well. # Is SVM Optimal? # 6. Is the SVM algorithm optimal? Note: we have for SVM error, $$\epsilon = O\left(\sqrt{\frac{\ln n}{n}}\right);$$ and complexity $$n(\epsilon) = O\left(\frac{\ln 1/\epsilon}{\epsilon}\right)$$ (with prob. $1 - \delta$). Note that the best possible case is for a function class G with only one non-trivial function f. In this case (standard Monte Carlo without uniformity in f) we have (again with probability $1 - \delta$): ## Is SVM Optimal? $$\epsilon = \Omega\left(\frac{1}{\sqrt{n}}\right); \quad n(\epsilon) = \Omega(\epsilon^2)$$ Thus we conclude: **Theorem 1:** The SVM is within a logarithm $\ln(1/\epsilon)$ term of being optimal, i.e., of having optimal ϵ -complexity with probability $1-\delta$. Can we improve on the logarithm term? Yes, at least in some cases. # 7. Improvement of VC bounds We can improve the bounds if we restrict ourselves to "almost" all of $G = \{affine functions f\}$. Specifically, let us consider the space G_M consisting of all affine functions $\mathbf{w} \cdot \mathbf{x} + b$ with slopes $|\mathbf{w}|$ less than or equal to M (or any other compact subset $G_M \subset G$). On G_M the functional $$B(f) = R_{ ho}(f) = \int_{\mathbb{R}^{d+1}} V(f(\mathbf{x}), y) \, d\rho(\mathbf{x}, y)$$ is continuous in $f \in G_M$. Note for any fixed $f \in G_M$, from Monte Carlo: $$|R_{\widehat{\rho}}(f) - R_{\rho}(f)| = \left| \frac{1}{n} \sum_{i=1}^{n} V(f(\mathbf{x}_i), y_i) - \int V(f(\mathbf{x}), y) d\rho(\mathbf{x}, y) \right|$$ $$= O\left(\frac{1}{\sqrt{n}}\right).$$ Now note if $V(f(\mathbf{x}_i, y_i)) = P(f(\mathbf{x}) - y)$ where P = polynomial, then $$R_{\rho}(f) = \int P(\mathbf{w} \cdot \mathbf{x} + b - y) d\rho(\mathbf{x}, y)$$ $$= \int \sum_{i} c_{i} a_{i}(x_{1}, \dots, x_{n}, y) d\rho(\mathbf{x}, y)$$ where a_i are monomials in x_1, \ldots, x_n, y . Now note that since for each a_i : $$|R_{\widehat{\rho}}(a_i) - R_{\rho}(a_i)| = O\left(\frac{1}{\sqrt{n}}\right),$$ the same follows for their finite sum $P(\mathbf{w} \cdot \mathbf{x} + b - y)$, uniformly in bounded \mathbf{w} . Thus as above with probability $1 - \delta$: **Theorem 2:** For any set $G_M \subset G$ of affine functions of bounded slope, and a polynomial V, we have $$R(f_n) - \inf_{f \in \mathcal{F}} R(f) = O\left(\frac{1}{\sqrt{n}}\right).$$ Thus, information complexity of ϵ -approximation is of order ϵ^{-2} for SVM, i.e., is almost optimal. Further, the algorithm of empirical risk-minimization is complexity-almost optimal. Thus log term in asymptotic error, if there, comes from specific small set of possible $f \in G_M$ for V as above. We note that for a compactly supported ρ , we can approximate any V uniformly by polynomials, so that **Theorem 3**: For a complactly supported ρ and any continuous V, there exists a V^* which is arbitrarily close to V such that the probability $1-\delta$ information complexity of an SVM using error criterion V^* is of order $\frac{1}{\sqrt{n}}$. #### Scaled Algorithm Families # 8. Use of scaled families of algorithms Increased information generically corresponds to increased algorithmic complexity - This occurs, for example in spline approximation - more data points means approximation in spline space with more knots. A science of scaling the two is sometimes useful. **Example:** If I have have a million data points then I don't want to try linear regression (i.e., an approximation space G only consisting of linear functions). I want to enlarge the space to include more parameters, e.g., quadratics and cubics. One popular computational model is now to scale algorithms ϕ with cardinality of information via size h of range in G. #### Scaled Algorithm Families Specifically, for information $N: F \to Y$ of cardinality n, choose algorithm $\phi_n: Y \to G$ whose range G_n has dimension h(n), with scaling h(n) chosen so that the error of approximation is minimized. The error for such an algorithm $$\epsilon = R(f_n) - R(f_0) = \underbrace{(R(\widehat{f}_n) - R(f_k))}_{\text{estimation error } \epsilon_{\text{est}}(n)} + \underbrace{(R(f_k) - R(f_0))}_{\text{approximation error } \epsilon_{\text{app}}(h)},$$ #### where $\widehat{f}_n = \text{minimizer of empirical risk with } n \text{ data points}$ $f_n =$ closest element of G_n to true f_0 Note: $\epsilon_{\text{est}}(n)$ decreases at some rate as $n \to \infty$ $\epsilon_{\text{app}}(h)$ decreases at some rate as $n \to \infty$. ## **Scaled Algorithm Families** But: if h too large for n, have overfitting - estimation error $\to 0$ - we are in the wrong space. Goal: increase h = h(n) so not enough dimensions h(n) in G_n for $\epsilon_{\text{est}} = \text{zero}$. This is scaling of complexity h=h(n) of ϕ with information complexity n. Colloquially: keep the number of free parameters (h = alg. comp.) scaled to amount of data (n = information complexity) (Note: in e.g. Kon and Plaskota, 2000: algorithmic complexity = neural complexity). # 9. Scaling of algorithms: applications to SVM More on scaling n and h: Recall $$\epsilon \le K\sqrt{\mathcal{E}} = K\sqrt{4\frac{h(\ln\frac{2n}{h}+1)-\ln(\frac{\eta}{4})}{n}}$$ This suggests: scale n with h so h/n is constant or decreasing Note h must increase (not just n) for approximation error $e_{\mathsf{app}}(k) \underset{k \to \infty}{\longrightarrow} 0.)$ Thus want $\widehat{f}_n = \phi_n(N_n(\rho)) \in G_n = \operatorname{ran}(\phi_n)$, with $h = \operatorname{VC} \operatorname{dim}(G_n)$ scaled as follows. Let $P_k = \text{polynomials of degree } k \text{ on } \mathbb{R}^d$. Usual SVM algorithm: ϕ_1 : data $\{\mathbf{z}_i\} \to \text{affine polynomials } P_1$. Target space P_1 (along with y and composed with V) has VC dimension $\leq d+2$. For **nonlinear SVM**: Extend P_1 to P_k of appropriate dimension done by extending data vector $$\mathbf{x} = (x_1, \dots, x_n) \rightarrow$$ $\tilde{\mathbf{x}} = (\text{all possible monomials of degree } k \text{ in components } x_i)$ Then use standard SVM algorithm on $\tilde{\mathbf{x}}$. Let dim $P_k = D(k)$. Therefore, scale k so : algorithmic complexity $= VC \dim = h \le \dim P_k + 2$ scales with information complexity n For this scaled family of algorithms **Theorem 4:** For the above scaled family of SVM algorithms, we have that the δ -probabilistic error satisfies $$\epsilon_n \leq O\left(rac{ au a(p)\sqrt{\mathcal{E}}}{1- au a(p)\sqrt{\mathcal{E}}} ight) + O\left(rac{1}{n} ight) + \epsilon_{app}$$ (h), where $$\mathcal{E}=2\frac{\ln{(\alpha+1)}}{\alpha}-4\frac{\ln{(\delta/4)}}{n}$$, with $\alpha=\frac{2n}{h}$. Note in some cases dimensional reduction appropriate to prune the set $G_n = \text{Ran } \phi_n$, so nonlinear SVM (of appropriate dimensionality) on such reduced data sets can be attempted. **Example:** (bioinformatic data) Advantage of NLSVM (i.e., polynomial separators) reduces in typical (Gaussian) situation to question: given two multivariate Gaussian distributions $\rho_1 \equiv N(\mu_1, \Sigma_1)$ (those **x** for which y=1) and $\rho_2 \equiv N(\mu_2, \Sigma_2)$ (those with =-1), what is shape of optimal separator between the two? Optimal separator = function $f(\mathbf{x})$ s.t. the probability of error $$R(f) = P_1(f(\mathbf{x}) < 0) + P_2(f(\mathbf{x}) > 0)$$ is minimized. Or: weighting of false positives versus false negatives, where the new risk function is $$R_1(f) = \alpha_1 P_1(f > 0) + \alpha_2 P_2(f < 0),$$ with $\alpha_1 + \alpha_2 = 1$. To extent risk for linear SVM large, decision to use a NL SVM makes sense. Note: to identify optimal f among all functions, observe that the surface $\rho_1(\mathbf{x}) = \rho_2(\mathbf{x})$ is optimal. This is determined by the identity $$-\ln\alpha_1 + \ln\det\Sigma_1 + \frac{1}{2}\langle\mathbf{x} - \mu_1, \Sigma_1^{-1}(\mathbf{x} - \mu_1)\rangle$$ $$=-\mathrm{ln}\alpha_2+\mathrm{ln}\;\mathrm{det}\;\Sigma_2+\frac{1}{2}\langle\mathbf{x}-\mu_2,\Sigma_2^{-1}(\mathbf{x}-\mu_2)\rangle,$$ Note in this case surface is quadratic, and use of quadratic (P_2) SVM is appropriate. In fact we expect generically, in cases where distributions of positive and negative classes have different covariances, may be significant improvement using quadratic SVM over a linear one. This suggests a criterion for determining whether a quadratic SVM is appropriate for a given data set: if we determine empirical covariance matrices $\widehat{\Sigma}_1$ and $\widehat{\Sigma}_2$ for the two data sets (assuming they are sufficiently large to allow for accurate estimates), then if $\widehat{\Sigma}_1 - \widehat{\Sigma}_2$ large, we expect a quadratic discrimination surface. ## Example # 10. Example: bioinformatic data Wisconsin cancer database, 1. Standard SVM applied to the 9 input variables to predict cancer malignancy (\pm 1) Data summarized below. 349 randomly chosen examples from 699 total, 349 randomly chosen elements of test set. The first test via SVM had an error rate of 13.75% on the test set. When the three most useful variables were extracted, they themselves had an SVM error rate of 32.39%. #### Example When the fully nonlinear SVM of degree 2 was applied to these three variables, the total error rate went down to 8.60%. | Machine \ Error rate | FP | FN | TP | TN | ERR | %ERR | |----------------------|----|----|-----|-----|-----|-------| | | | | | | | | | 9-variable SVM | 37 | 11 | 107 | 194 | 48 | .1375 | | | | | | | | | | 3-variable SVM | 41 | 72 | 44 | 192 | 113 | .3239 | | | | | | | | | | 3-variable NL SVM | 29 | 1 | 117 | 202 | 30 | .0860 | F/TP-false/true positive; F/TN-false/true negative; ERR-total errors; # Example Currently applying the same methodologies to identifying transcription initiation sites in the genome from genetic behaviors.