
Integrating Genomic Data to Predict Transcription Factor Binding 

Dustin T. Holloway
1
      Mark Kon

2           
 Charles DeLisi

3
 

                              dth128@bu.edu                   mkon@bu.edu      delisi@bu.edu 

  

 

 

 

 

 

 

Abstract 
Transcription factor binding sites (TFBS) in gene promoter regions are often predicted by using position 

specific scoring matrices (PSSMs), which summarize sequence patterns of experimentally determined TF binding 

sites. Although PSSMs are more reliable than simple consensus string matching in predicting a true binding site, 

they generally result in high numbers of false positive hits.  This study attempts to reduce the number of false 

positive matches and generate new predictions by integrating various types of genomic data by two methods: a 

Bayesian allocation procedure, and support vector machine classification. 

Several methods will be explored to strengthen the prediction of a true TFBS in the Saccharomyces 

cerevisiae genome: binding site degeneracy, binding site conservation, phylogenetic profiling, TF binding site 

clustering, gene expression profiles, GO functional annotation, and k-mer counts in promoter regions. Binding site 

degeneracy (or redundancy) refers to the number of times a particular transcription factor’s binding motif is 

discovered in the upstream region of a gene.  Phylogenetic conservation takes into account the number of 

orthologous upstream regions in other genomes that contain a particular binding site. Phylogenetic profiling refers 

to the presence or absence of a gene across a large set of genomes.  Binding site clusters are statistically significant 

clusters of TF binding sites detected by the algorithm ClusterBuster.  Gene expression takes into account the idea 

that when the gene expression profiles of a transcription factor and a potential target gene are correlated, then it is 

more likely that the gene is a genuine target.  Also, genes with highly correlated expression profiles are often 

regulated by the same TF(s).  The GO annotation data takes advantage of the idea that common transcription targets 

often have related function. Finally, the distribution of the counts of all k-mers of length 4, 5, and 6 in gene’s 

promoter region were examined as means to predict TF binding.  In each case the data are compared to known true 

positives taken from ChIP-chip data[1, 2], Transfac, and the Saccharomyces Genome Database. 

First, degeneracy, conservation, expression, and binding site clusters were examined independently and in 

combination via Bayesian allocation. Then, binding sites were predicted with a support vector machine (SVM) 

using all methods alone and in combination.  The SVM works best when all genomic data are combined, but can 

also identify which methods contribute the most to accurate classification.  On average, a support vector machine 

can classify binding sites with high sensitivity and an accuracy of almost 80%. 
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1  Introduction 
Transcriptional mechanisms are shaped at their most basic level by the direct interactions of transcription 

factors and the specific cis-elements that they bind in DNA. Understanding such interactions can provide insight 

into how cells respond to changing needs or stresses.  Experimentally determined TF binding sites are often 

represented as consensus sequences or probability matrices.  Although consensus strings are easy to interpret 

visually, they lack a quantitative description of possible nucleotide frequencies at each position in the binding site.   

A probability matrix (or position weight matrix) provides a detailed description of the target site and allows for the 

efficient scanning and comparison of any DNA sequence against the binding site model.  A number of published 

algorithms are available to detect cis-elements using position probability matrices.  The present analysis will find 

motifs using MotifScanner, which assumes a sequence model where regulatory elements are distributed within a 

noisy background sequence[3]. 

Until recently there have only been 17 detailed probability matrices available for S. cerevisiae despite the 

wealth of experimental binding site data for the estimated 203 TFs in yeast[4].  ChIP-chip experiments have 

assembled over 11,000 unique TF-gene interactions, and computational methods have been used to generate PWMs 

for many of these TFs[1, 5].  Combined with the matrices in Transfac and the literature, matrices for 104 

transcription factors were available for this study. 

Position specific scoring matrices are currently the most widely used method to represent TF binding 

preferences; however, binding models of this sort suffer from several disadvantages, namely that they assume a 
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finite binding site width, something which is not true for flexible TFs, and they assume that each nucleotide within 

a binding site is independent of the others. Despite their drawbacks, simple probability matrices are currently the 

standard in the field, being both easily available and easily used to make site predictions.  Nevertheless, binding site 

detection is plagued by a high rate of false positive predictions, with some matrices producing predictions at a 

frequency of 1 in 500bp[6].  Because of this great excess of false positives, other information must be brought to 

bear in order to more accurately predict regulated genes. 

All together, eight types of genomic data have been examined for their ability to predict transcription factor 

binding. The first is binding site degeneracy (I) (or TF motif redundancy) which explores the relationship between 

the number of predicted motifs for a TF in a promoter and the likelihood that the TF binds.  More instances of a 

motif in a promoter region are expected to translate into a higher probability of real binding.  Conservation (II) uses 

sequence information from multiple orthologous promoters to determine how often a predicted binding site occurs 

in other genomes. The more genomes in which this site is conserved, the more a motif sequence is likely to be a 

true binding site.  Detection of clusters (III) of binding sites has also been shown to more accurately elucidate  

binding sites, and here we use ClusterBuster[7] to determine whether a predicted site lies in such a cluster.  Gene 

expression profiles were used in two ways to add information to the analysis.  TF-Target correlations (IV) will help 

predict instances when a transcription factor regulates genes via its own expression level, and target-target 

correlations (V) will identify genes having similar expression to known targets.  Similarly, GO term annotation (VI) 

can find genes which have been annotated with very similar function to known targets, while phylogenetic profiles 

(VII) can identify those with a similar pattern of occurrence to known targets across 65 microbial genomes.  Finally, 

the k-mer distribution (VIII) built from the counts of all k-mers of length 4, 5, and 6 in each gene’s promoter can be 

used to predict whether any given gene has a distribution similar to known targets.  Schematic descriptions of these 

methods can be seen in Figure 1.  Again, known binding data from Transfac, ChIP-chip experiments, and the 

Saccharomyces Genome Database were used as a standard of comparison against which to measure predictions and 

train a support vector machine for each TF.  

 
 

 

 

Figure 1  Eight Genomic Data 

methods.  A. Degeneracy is the 

frequency, or number, of TF motifs that 

appear upstream of a gene. B. 

Conservation measures the number of 

genomes in which a motif is conserved. 

C .ClusterBuster finds clusters of 

heterogeneous motifs from several TFs. 

Such clusters are more likely to contain 

real binding sites. D . Expression data 

comprises two methods 1. TF-Target 

correlations are measured, and 2. 

Target-Target correlations are 

discovered by comparing a gene’s 

expression to that of known targets. E. 

Phylogenetic profiles show a gene’s 

occurrence profile among many 

genomes.  Common targets of a TF 

may share similar occurrence profiles 

F. K-mer counts in gene promoter 

regions can be used to differentiate 

targets from non-targets. G. GO term 

profiles of each gene are used as a 

measure of gene function.  Functional 

similarity can potentially predict new 

targets of a TF since genes having 

common regulation are thought to share 

function. 



Since each individual method is partially successful at predicting regulation, the consensus of many 

measures together will isolate interactions that are highly likely to be true.  This is in fact what occurs when we take 

subsets of various datasets which show higher probability of containing binding sites (Bayesian allocation). But, 

although false positives are greatly reduced, sensitivity also decreases.  Integrating the data using an SVM learning 

algorithm greatly enhanced our results by achieving high accuracy, reducing false predictions and reaching a 

sensitivity beyond sixty percent. Four methods were explored using Bayesian allocation (Degeneracy, 

Conservation, Clusters, TF-Target Correlation) while all methods were examined by support vector machine.   

2  Methods and Results 

All promoter sequences were collected from RSA tools, Ensembl, or the Broad Institute’s Fungal Genome 

Anatomy Project[8-10]. Sequences were then masked [11, 12] where appropriate to exclude low complexity 

sequences and known repeat DNA from further analysis.  The MotifScanner algorithm was used to scan all 

upstream regions for transcription factor binding sites using PSSM models.  This algorithm requires a background 

sequence model, which in this case is a transition matrix of a 3
rd

 order Markov model generated from the masked 

upstream regions of each genome. MotifScanner only requires one parameter be set by the user; this is the prior 

parameter, which can be interpreted as the probability that a given motif will be found by chance in a promoter.  

Several thresholds have been tested and the results reported in this paper are all at a setting of 0.15, which was 

found to be a reasonable middle ground in that it makes approximately 560 predictions per TF.  Settings beyond 0.2 

produced too many false hits to be useful. 

The position specific scoring matrices (PSSMs) were adapted from Transfac S. cerevisiae count matrices  

(17 PSSMs) and from probability matrices published in[1] (107 PSSMs).  Some PSSMs were redundant, and the 

cumulative set includes matrices for 104 TFs.   All upstream regions from 18 eukaryotic genomes (ranging from 

human to yeast) were scanned with the assembled matrices.  These matrices also served as input to ClusterBuster 

for predictions of binding site clusters. 

2.1 Degeneracy as a Method to Predict Binding Sites 

It is clear that a greater number of hits by a matrix in the upstream region of a gene will result in a greater 

likelihood that the TF for the matrix will actually bind the gene.  For each prediction there is a certain probability 

that this prediction will be true, P(True|hit).  It follows that if a certain upstream region has more than one hit, the 

probability that the factor binds is increased.  This method hopes to better predict TF binding by taking into account 

the number of times the binding motif appears in a promoter.  This method of degeneracy was used to evaluate the 

hits generated by weight matrices and the results show that repetition of TF motifs is directly proportional to the 

likelihood of finding a true binding site.  This method’s results are shown in Figure 2. 

 

 
 

2.2 Conservation as a Method to Predict Binding Sites 

Comparative genomics tools have recently been applied with much success to the identification of 

transcription factor binding sites.  Because most regulatory elements are in non-coding regions and show 

considerable variation in sequence even for the same TF, they aren’t easily recognizable.  However, binding sites 

are often preserved through evolution, and thus become apparent in what authors call a “footprint” in alignments of 

orthologous regions from different genomes.  Cis-element conservation is a powerful way to detect functional non-

Figure 2 Degeneracy: Having more than 

one detected binding site for a TF in the 

upstream region of a gene increases the 

likelihood that the TF truly binds the gene. 

Higher counts of motifs yield fewer 

predictions; however, as the number of 

repetitions of a motif increases, the 

probability that the TF binds approaches 1.  

P(k|T)=Probability of motif count k given a 

set of True binding sites. 

P(T|k)=Probability of finding a True 

binding site given a motif count of k. 

Data is average over 104 TFs. 

 



coding elements, and, in this case, will be modified and applied to 18 genomes ranging from yeast to human.  

Conservation of a TF binding site will be determined by counting hits of the TF probability matrix in orthologous 

upstream regions from several organisms.  Orthology information was taken mainly from the Homologene 

database[13] for all organisms except for sensu stricto and sensu lato yeasts, which was downloaded from 

Washington University and the Whitehead Broad Institute [8, 14-16]. 

Previous studies have defined conservation as direct nucleotide conservation in aligned orthologous 

regions.  In previous publications[14] this analysis involved manual inspection and modification of low scoring 

alignments, an approach that would be cumbersome and time consuming with a larger number of genomes.  Other 

authors relied on whole genome alignments of closely related yeast species to identify orthologs and conserved 

upstream regions[15].  This strategy would be difficult if not impossible for genomes farther diverged than the few 

closely related yeast species.  In this analysis, a hit by a PSSM in the upstream region of an ortholog counts as 

conservation.  Some specificity will likely be lost with this strategy; however, the analysis should gain much power 

with the addition of so many more genomes.  Also, since no alignment is made, conservation of a potential binding 

site is being measured rather than the exact nucleotide string.  This is because a PSSM may identify sequences that 

are different in nucleotide composition but still match the probability matrix.  This is a looser conservation criterion 

that makes sense biologically since natural selection will act to preserve a binding site, not necessarily an exact 

nucleotide string. 

It is predicted that the stronger the conservation of a potential binding site, the more likely it is that the site 

is real one.  This hypothesis is supported by results obtained (Figure 3).  The probability of seeing a true site 

increases to 100% as binding site conservation reaches 15 genomes. 

 

 

2.3 Motif Clusters as Indicators of Binding Sites 

A third approach is to identify clusters of various TF binding sites.  It is established that many transcription 

factors act in a competitive or coordinated fashion, having binding sites near or overlapping each other; thus, 

clustering of motifs can be exploited to detect higher confidence sites[7, 17, 18].  The ClusterBuster algorithm was 

designed for cluster detection of this sort, when provided with TF binding site matrices[7].  ClusterBuster defines a 

statistical model of a motif cluster, based on PWM models, and searches for sites in DNA that resemble the cluster 

model more than they resemble a model of ‘background sequence’ which is created by measuring the nucleotide 

abundances in the query sequences.   Here ClusterBuster will be used to detect which TF binding sites reside in 

clusters of motifs. 

The results show that a transcription factor motif found to be in a cluster of motifs is more likely to be a 

functional binding site (Figure 4).  ClusterBuster’s predictions perform approximately three to four times as well as 

simple weight matrix scan alone. 

Figure 3 Conservation of a TF binding 

site in several orthologous upstream 

regions increases the likelihood that a 

potential site is a True site. 

P(k|T)=Probability of site conservation 

in k genomes given a set of True 

binding sites. 

P(T|k)=Probability of finding a True 

binding site given that it is conserved in 

k genomes. 

Data is average over 104 TFs. 

 



 
 

2.4 Expression Correlation as a Method to Predict Regulation 

Analysis of MotifScanner outputs show that, not only is there a high rate of false positive hits, but there are 

also many missed binding sites.  Expression analysis has the potential to discover targets missed by MotifScanner, 

as it finds regulatory relationships without prior cis-element searching.  By definition, genes with similar expression 

are likely to be under similar regulatory pressures in the same way that genes regulated by the same TF are more 

likely to be co-expressed[19, 20].  Two thoughts are often pursued when deriving regulatory information from 

expression profile correlations.  One is that transcription factors may regulate genes that have expression profiles 

similar to the TF[21].  The other is that groups of genes with similar expression may be regulated by the same 

TF(s).   

Despite evidence of TF-target co-expression, it is clear that many transcription factors influence their 

targets, not by changes in their own expression, but by phosphorylation, nuclear exclusion, or some other 

mechanism.  Binding site accessibility, modified by chromatin structures, is also a factor that alters gene 

expression.  This kind of behavior can begin to be addressed by methods of gene expression clustering that do not 

rely on TF-target correlations.  Considering the relevance of both types of TF-target prediction, both methods will 

be examined for their ability to predict regulation from microarrays.  

TF-Target Correlations for Bayesian Allocation Measured by Profile Entropy Minimization 

First, to elucidate how well TF-target co-expression indicates regulation, the correlation between each gene 

and every TF will be calculated using a recently developed strategy. True regulatory interactions can often be 

masked in large expression profiles due to noise in these data.  Since genes are often regulated by different sets of 

TFs under different conditions, regulator-target relationships can be drowned out when expression profiles are 

sufficiently large.  A new approach [22] addresses this problem by searching for the conditions under which a 

regulator’s profile is maximally associated with a target’s profile, essentially choosing the set of experiments where 

the TF most clearly and significantly controls the expression of a potential target.  This has the advantage of 

removing the noise present under conditions where the target may be controlled by other factors, and allowing 

detection of correlations that would otherwise not be found if the entire expression profile was examined at once.  

In this analysis correlations with a p-value of 10
-18

 were chosen in order to extract the most significant regulatory 

relationships and reduce false predictions.   

Target-Target Correlations-Dot Products of Expression Profile for SVM 

For support vector machine classification the more simplistic vector dot product will be used to correlate 

gene expression, based on the expression vector of each gene across 1011 experiments[23].  This lends itself 

naturally to SVM classification since the dot product is a commonly used kernel function.  Geometrically, the dot-

product gives us information about the angle between two vectors.  In this case, it can be interpreted as similarity 

between vectors, where the sign of the correlation tells us whether the correlation is positive or negative. 

Co-regulated genes are expected to show similar expression patterns, and this will become evident through 

similarities shown in the kernel matrix.  Given many known targets of a transcription factor as positive examples, 

the SVM can classify a new gene based on how closely its expression resembles that of the known examples. 

2.5 Phylogenetic Profiles 

Co-evolution of a transcription factor’s targets may indicate regulation.  A phylogenetic profile of a gene is 

Figure 4 ClusterBuster: If a TF is 

present within a cluster of binding 

sites upstream of a gene the 

likelihood that the TF truly binds the 

gene is increased.  ClusterBuster 

easily outperforms simple PSSM 

scans, meaning that the presence of a 

motif in a cluster of binding sites is 

more likely to be a true binding 

motif. Data is average over 104 TFs. 



nothing more than the pattern of occurrence of its orthologs across a set of genomes.  Genes with similar patterns 

have been shown to participate in the same physical complexes or have similar biochemical roles within the 

cell[24]. It has also been postulated that transcription factors and their targets co-evolve[25].  Therefore, it seems 

reasonable that a group of commonly regulated genes could share a similar pattern of inheritance.  Phylogenetic 

profiles here were parsed from the COG database, which contains orthology information between S.cerevisiae and 

65 other microbial genomes. Phylogenetic profiles were combined with other data for support vector machine 

classification as described below. 

2.6 GO Annotation 

 Much like phylogenetic profiling, GO term annotation can be used to detect possible transcriptional targets.  

The targets of a transcription factor have often been shown to have similar function and a gene’s GO annotation can 

be used to measure its functional similarity to known targets. 

2.7 K-mer Distribution 

 PWMs may fail to detect binding sites if the binding site collection used to generate them was incomplete 

(in the case of experimental data) or if the motif discovery procedure was inaccurate (in the case of computationally 

generated matrices).  In this case, the distribution of all k-mers in a gene’s promoter may be used to predict whether 

it is bound or not-bound by a TF.  K-mer counts in promoters have been used before with SVMs to predict a gene’s 

function[26].  Here, all promoters were decomposed into a vector of k-mers length 4, 5, and 6. Given a set of true 

positives and true negatives (discussed below), an SVM can classify a gene as a target or non-target based on its k-

mer profile.  K-mer profiles were generated using the program fasta2matrix[27]. 

2.6 Data Integration 
Bayesian Allocation as a method of Data Integration 

With the results of various sequence analysis methods in hand, the goal then becomes to integrate them into 

one predictive statistic.  Integration of genomic data can be performed in several ways.  Firstly, Bayesian 

probabilities can be exploited to determine high confidence site predictions.  This can be done using an allocation 

method where data is compared to a set of known true sites, in this case a combination of ChIP-chip and literature 

data.  In this way, a threshold can be set allowing each method to make predictions independently; or, given any 

combination of methods (e.g., degeneracy and conservation) predictions made from different data may overlap, 

thus bringing the true positives above the background.  For example, most detected binding sites will not show 

repetition (i.e., only one site found in a promoter region) and so the probability that a single detected motif is a true 

binding site is low.  However, single motifs which are also present in orthologous promoter regions have a higher 

likelihood of being real.  In this analysis we take as predictions all interactions which fall into a category where at 

least 15% of interactions are true (known from positive set).  Thus, the use of combined data is evident in a case 

where an interaction of degeneracy 1 will not meet the threshold (because the Degeneracy 1 category is not very 

predictive), but by combining conservation and degeneracy, the interaction may fall into Degeneracy-1 

Conservation-4, which is a higher confidence category, passing the threshold.  This methodology uses prior 

knowledge to choose divisions of the data which we believe contain better predictions.  Note, however, that no 

negative examples are used as in SVM or naïve Bayes’ classifiers. 

It is clear that we cannot assume independence between each type of biological data.  Thus, the relationship 

between the predicted and experimental data can be derived from Bayes’ rule without assuming independence: 
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where k1 represents a particular category of data (e.g., 5 represents five repetitions of a motif for the Degeneracy 

method while 5 represents conservation in five genomes for the Conservation method), T indicates true binding, 

and T-bar means no binding.  This representation is valid for the degeneracy data, conservation data, ClusterBuster 

data, and the expression data; and, in fact, all four of these methods (and potentially more) can be combined into 

one statistical measure by increasing the number of conditional parameters (i.e., k1, k2, k3, …).   

Thus, the probability that a TF binds a gene can be calculated taking into account several measures to 

enrich true binding sites.  This type of analysis is very successful at reducing false positives and generating a small 

set of high confidence predictions.  Since each individual method is somewhat successful at predicting regulation, 

the consensus of all measures together will isolate interactions that are highly likely to be true.   The original results 

(on 104 TFs) using Bayesian allocation of the sort described did not produce very useful results.  The result 

enriched for higher confidence sites as compared to PWM scan, but there were still many false hits and low 

sensitivity.  This was thought to be because both the Degeneracy and Conservation Methods relied on PWMs, many 

of which appeared to be poor approximations of the true binding sites in that they were never found to recover even 

5-10% of known true positives.  To combat this, the analysis was performed again, after filtering out TFs whose 



weight matrix could not recover at least 15% of known binding sites.   The dataset overlaps identified for this 

smaller set of 62 TFs can be seen in figure 5. The data output from the Bayesian allocation analysis was tested 

using a split sample cross-validation procedure.  The combination of methods produces predictions having greater 

precision than any one method, although sensitivity remains low compared to basic PWM scan (MotifScanner). 

 
 

Support Vector Machine as a Method of Data Integration 

A support vector machine (SVM) is essentially a classification scheme for generating a linear classifier in 

some feature space defined by the data.  The theory behind SVMs has been well explored, and many studies have 

been published applying SVMs to computational biology, primarily in classifying genes according to function[28-

30].  In order to run an SVM based classification all data must be represented in a kernel matrix.  Formally, this 

representation is discussed as an embedding of data into a feature space, �.  Given some items of data, x1 and x2, 

their mapping can be shown as �(x1) and �(x2).  Finally, some kernel function, K(x1, x2) = <�(x1) , �(x2)>  is used 

to specify the inner products of the data items in feature space.  The result is a kernel matrix containing the inner 

products of every pair of data items.   Practically speaking, no explicit mapping to a vector space is necessary since 

the classification is performed using only the inner products, which can be calculated directly from the data.  The 

kernel matrix, though it must be generated using a valid kernel function, is really nothing more than a similarity 

matrix.   

 As with other classification techniques, a set of known positives and negatives must be supplied to the 

SVM.  In this analysis, a classification will be done for each transcription factor independently (hence 104 separate 

classifiers).  Positive examples for TF binding are taken from CHiP-Chip and other published experiments, and 

negatives are randomly chosen from those promoter regions that show no motifs for the particular TF under a very 

loose threshold of MotifScanner.   For each method, every gene will have a list of attributes as its vector, and the 

scalar dot product between gene vectors will be the similarity measure used to create the unique kernel matrix for 

each data type (Degeneracy, Conservation, etc).   

An example can be made using the data for Degeneracy.  For motif frequency data let 

( )m

n

mmmm
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represent a set of TF motif frequencies for gene m, over n transcription factors (n=104).  
mD1  would then be the 

number of times the motif for transcription factor 1 appears in the promoter of gene m. 

Again, the dot product kernel function will be used to measure the similarity of gene vectors. 

km DDdot
��

•=         � denotes the dot product between vectors for genes m and k.  

Once a kernel matrix is created for each method, they are easily combined simply by adding all matrices 

together.  Other authors have explored several ways to combine data for SVM classification[26, 28].  It has been 

shown that combining data by generating individual kernels followed by simple matrix summation often gives the 

best performance (Figure 6). SVM classification was performed using the Gist software package[27], and results 

are reported after a leave-one-out cross-validation procedure. 

 

Figure 5 Bayesian Allocation 

on Degeneracy, Conservation, 

TF-Target Correlation, and 

ClusterBuster.  Results are 

shown for the combination of 

Degeneracy and Conservation 

and the combination of all 4 

methods together.  The 4 

Method  combination produces 

the best results of any method 

alone. Raw MotifScanner data 

(PWM scan) is shown at far left 

for comparison.  Motifscanner 

has a larger sensitivity but very 

low precison as it makes many 

false predictions.   



   
 

Indeed Support Vector Classification performs better than simple Bayesian allocation and the combination 

of eight methods outperforms any one method by itself (Figure 7).  SVM classification yields a sensitivity and 

accuracy not achieved by other methods.   
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3  Discussions 

A support vector machine offers several advantages when predicting binding sites.  For instance, a gene 

vector for binding site degeneracy will contain the frequencies of binding site motifs for all TFs in the analysis, not 

just the one on which the classification is based.   This inherently includes dependencies between transcription 

factors, something not taken into account with the Bayesian allocation procedure.  If two or more TFs act together, 

then the positive examples will show predicted motifs for all of them rather than only one, reducing the ambiguity 

Figure 6 Separate Kernels 

are created for each 

method by taking the dot 

products of the gene 

vectors in each analysis.  

The various kernels are 

then added together to 

combine the various 

predictors.  The composite 

kernel is then used for 

support vector 

classification.   

Figure 7 SVM Results 

SVM classification 
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diverse biological data 

to make more accurate 

predictions than any 

single method alone. 
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when classifying an unknown gene.  Furthermore, in the Bayesian example expression data had previously been 

modeled as a correlation between TF and target, meaning that if such a significant correlation was detected, the TF 

was predicted to bind the target.  This only captures part of gene regulation since many TFs change their activity by 

post-translational modification or some other means.  When creating a kernel matrix, each gene’s expression profile 

forms a vector which can be compared to every other gene’s profile using the scalar dot product.   The resulting 

kernel is analogous to a Pearson correlation matrix where co-regulated genes are highly correlated.  In this way, 

genes that have an expression profile similar to known targets will be classified as being bound by the TF.  This is a 

much more intuitive measure since true targets are expected to have similar expression. Results for SVM 

classification using several types of genomic data are an improvement over other methods, providing increased 

sensitivity while reducing false positive identifications.  Future work will include experimenting with different 

kernel functions to optimize classification, and comparing the SVM procedure to more conventional learning 

methods such as naïve Bayes, K-nearest-neighbor, and decision tree. 
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